Geothermal Energy Resources of India: Country Update

Dornadula Chandrasekharam* and Varun Chandrasekhar**

*Indian Institute of Technology Hyderabad, India, **GeoSyndicate Power Pvt Ltd, Mumbai, India

dchandra50@gmail.com, varunc@gmail.com

Keywords: Geothermal resources, India, boron isotopes, EGS, GHP

ABSTRACT

India's power generation during the last four years has increased from 228,719 MWe (2014) to 356,818 MWe (2018) with coal being the primary energy source. Although the solar photovoltaic (pv) source generated electricity has increased from 24,503 MWe (2015) to 728,359 (2018), this is not reflected in the CO₂ emissions of the country. The CO₂ emissions by India has crossed 2076 million tonnes at present, up from 620 million tonnes in 2015. However, ground source heat pumps (GHPs) for space cooling have picked up pace over the past few years. Large commercial storage houses (pharmaceutical warehouses) are implementing GHP systems to save electricity bills. M/s GeoSyndicate has recently completed installing one such system for a pharmaceutical warehouse in Mumbai and several such systems are in the process of installation in Maharashtra. The 6¹¹B values (2.5 to 27 per mil) suggests involvement of ancient marine sediments during the circulation of thermal waters. The study indicates high reservoir temperatures (~ 250 °C) towards the southern part of the west coast geothermal province. The geochemistry of Tulsishyam thermal springs in Gujarat indicate circulation of the thermal waters within the high radiogenic granites. The uranium, thorium and potassium contents of the granites are the main source of heat and the surface heat flow values estimated vary from 53-90 mW/m² (Singh et al., 2018). Based on the carbon isotope signature, the estimated CO₂ emissions from the Himalayan thermal springs is about 29 million mol/year (Tiwari et al., 2016). Investigation on the thermo-mechanical properties of high heat generating granites (potential candidate for EGS site) from Bundelkhand, Madhya Pradesh has been carried out.

1. INTRODUCTION

World energy demand increased by 2.1 % relative to 0.9 % in the previous year. India and China shared major part of this increase amount to 40%. This rise is supported by fossil fuels. With increase in energy demand, the CO₂ emissions in 2018 globally showed an increase of 1.7 % amounting to about 33 Gt CO₂ (Boden et al., 2011). Major emissions are recorded from the power sector, especially from coal based thermal power plants. Coal based power plants contributed about 10Gt of CO₂ to the total emissions mainly from India and China and USA (Boden et al., 2011). Although India is generating considerable amount of electricity from solar pv, coal based thermal power plants still hold a major share (87%) in power generation. The current power generation from coal based thermal power plants is 194445 MWe (134388 MWe in 2014) Table 1. Renewable based power generation also registered an increase of 9% compared to 2014 generation status. Overall annual growth in electricity generation has not drastically changed from that reported in 2014. Besides coal, rice paddies and cattle are also major sources of emissions.

In the India context, it is difficult to control the last two sources of emitters. In spite of this increase in electricity generation, 13 % of the Indian population have no access to electricity and rely on traditional sources of energy such as dung, wood, for their domestic needs. Although few villages have been given electricity through solar pv, the quality of electricity is not satisfactory (https://www.carbonbrief.org/the-carbon-brief-profile-india. Accessed on 2 July 2019). India's per capita emissions stood at 2.7 t CO₂ in 2015, while the global average emissions are 7t (tonnes) CO₂ in the same year (Oliver et al., 2017, https://www.carbonbrief.org/the-carbon-brief-profile-india. Accessed on 2 July 2019). Multi regional global energy system model (TIAM-UCL; Anandarajah and Gambhir, 2014) indicate that India can achieve per-capita CO₂ emissions of 1.3 t by 2050 by adopting low carbon renewable energy sources. Similarly, according to LEAP model (Kumar and Madlener, 2016), under the accelerated renewable technology scenario, by 2050 India will be in a position to reduce emissions up to 74%, by increase the use of renewable energy by 36%. The Black Carbon (BC) emissions over India during the year 2018 was 2534 Gg/y (Verma et. al., 2017) which is twice the value reported during 2008 1343 Gm/y ((Sahu et al., 2008, Chandrasekharam and Chandrasekhar, 2015). Considering the emissions reported during the lifecycle of solar pv (Chandrasekharam and Ranjith, 2019), geothermal is better option compared to other renewables in controlling the global CO2 emissions and keep check on the global temperature rise. Although slow, the geothermal energy is making tremendous progress in India with new discoveries and new applications. The setback in the development is mainly due to lack of policy for geothermal. Ministry of New and Renewable Energy has circulated draft policy report which is being revised based on the comments from members of the International Geothermal Association, Germany.

Table 1. India's Power generation status: 2018 (MoP, 2018)

2018 status

▶ Present Production:
 ▶ IPP's contribution:
 3,56,818 MWe
 (1,47,125) MWe

Plant/Fuel 7	Plant/Fuel Type			Percenta	ige
Thermal		2,26279		(64)	
	Coal	_,,_,	194445]	87
	Gas		24937		11
	Oil		638		2
Hydro		45.	399	13	
Nuclear		6'	780	2	
Renewable	Renewable		359	21	
Total		356818		100	

Expected (addition) Production by 2017-18:

Growth in : 2015-16Growth in 2016-17

Growth in 2017-18

200000 MWe

5.6% 4.7%

3.95

Ministry of Power Annual report 2018

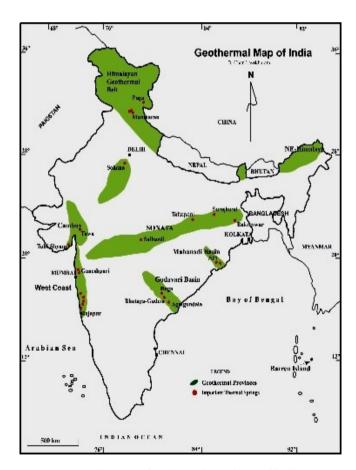


Figure 1: Geothermal provinces of India

2. EXPLORATION ACTIVITIES

Exploration work is being carried out in several geothermal provinces by government and private institutes. These are elaborated in the following section.

2.1 West coast thermal province

Boron isotopic concentration (2.5‰ to 27.0‰) and REE concentration in the thermal waters of Rajapur, West Coast geothermal province (Figure 1) was published recently (Trupti et al., 2016, a,b, 2018). This is the first-time boron isotopes and REE content were utilized to understand the evolution of the thermal springs in India. The data indicate presence of thick sedimentary layer below the Deccan Trap flow overlying the basement granite. The thermal fluids are circulating through the granites and the sedimentary layers before emerging to the surface. This data together with water-rock interaction experimental work (Trupti et al., 2018; Trupti et al., 2016 a,b,c) suggest reservoir temperatures of the order of 260 °C for these thermal springs.

2.2 Gujarat geothermal province

Tulsi Shyam thermal springs in Gujarat geothermal Province (Figure 1) (Minissale et al., 2003) are visited again with additional geothermal heat flow data to understand their evolution (Singh et al., 2018). These springs are located in the Saurashtra region of Gujarat, India with discharge temperatures varying from 39 to 42 °C. Though these thermal springs emerge through the near surface layer of Deccan basalt, detailed geochemical analysis suggests that the waters are interacting with the granitic basement rock. Silica and cation geothermometry estimates have reservoir temperature in the range of 138 to 207 °C. Furthermore, the area has high heat flow values of 53–90 mW/m² because of shallow Moho depth. The prevailing conditions suggest that this site is a potential EGS site for future exploration activities (Singh et al., 2018).

2.3 Bihar-Bengal geothermal province

Geothermal springs in this province discharge considerable amount of helium (He) as described earlier during the previous world geothermal congress in Australia (Chaudhuri et al., 2015). A review on the helium emissions from all the geothermal springs has been carried out. Although helium is a major ingredient in the gases from all the thermal springs, the concentration of helium in Bakreswar thermal springs in Bihar-Bengal geothermal province is anomalously high encouraging recovery of helium from the thermal springs. A pilot helium recovery plants has been established about 5 years ago and is working successfully (Chaudhuri et al., 2019).

2.4 Jharkhand geothermal province, Eastern India

New data on the thermal springs occurring in Jharkhand in Eastern Peninsular India have been presented (Singh et al, 2019..this volume). The geothermal waters have relatively higher concentration of Na^+ , and K^+ as compared to those of Ca^{++} and Mg^{++} ; Cl^- and SO_4^{--} are in reasonably high concentration compared to concentration of HCO_3^{--} and CO_3^{--} . Fluoride concentration in the geothermal waters is significantly high (18.8 to 24.9 mg/L). High concentration of Cl^- and F^- in thermal springs is postulated to be due to deep circulation of waters within the granitic basement. The heat generating capacity of the granites have been calculated based on uranium, thorium and potassium content in the granites exposed on the surface as well as granites cores taken from drill holes in this area. This varies from $71.3 - 142.8 \text{ mW/m}^2$. These high heat producing granites are probable heat source for these thermal springs.

2.5 Himalayan geothermal province

Carbon isotopic and oxygen and hydrogen isotopic data on the thermal springs from Indus, Nubra valley, Sutlej, Beas and Parbati valleys falling within the Himalayan geothermal provinces (Figure 1) have been published (Tiwari et al., 2016). The authors utilized the carbon isotope ratios to understand the evolution of the thermal's springs. The δ^{13} CDIC ratios of these springs vary from -8.4% to +1.7%VPDB, indicating a deeper source of their origin of CO₂ (CO₂ flux from metamorphic reactions in the continental crust) in the thermal waters. Their study indicates that the NW Himalayan geothermal province has the potential to degas 2.9 x 107 mol CO₂ per year. Further they report reservoir temperature of 107 °C. Thus, this province is a potential source of natural CO₂ emissions.

2.6 Exploration drilling

The Geological Survey of India drilled four exploratory bore wells within the Godavari geothermal province (Figure 1). Hot water with temperatures varying from 67 to 82 $^{\circ}$ C, with flow rate of 20 30 L / second discharges from these wells (Figure 2). These wells are best suited for power generation by installing 2 to 3 MWe well head generators.

Figure 2: Exploratory bore wells in Godavari valley.

3. HIGH HEAT GENERATING GRANITES

Assessment of (geochemical and physio-mechanical properties) potential granites and granite provinces suitable for initiating EGS (Enhanced Geothermal Systems) projects is being continued in different regions of the country. High heat generating granites are exposed through the country and initial assessment on the heat generation status and heat flow values over these granite from several parts have already been reported (Chandrasekharam et al., 2007, 2008 a, b, 2010, 2014 a, Singh et al., 2014b, Singh et al., 2015 a, b). This work is being continued. Last two years heat generation capacity of granites and heat flow values over the terrain has been assessed. The results are reported in this congress (Chandrasekharam et al., 2020)

4. NEW DEVELOPMENTS

Private commercial establishments are keen in installing GHP for space cooling to save large electricity bills. For the first time 72 KWe GHP unit was installed, by M/S GeoSyndicate Power Pvt. Ltd., in a pharmaceutical storage house, in Mumbai, India, using groundwater drawn from a well as a circulating medium. A shell and tube exchanger (Figure 3) were used to maintain the

Figure 3: GHP unit installed in a pharmaceutical storage facility.

space temperature of 27 °C. The unit is running successfully since installation in March 2019. This has brought awareness amongst several commercial establishments and M/S GeoSyndicate has received several orders from food and grains storage establishments to installed space cooling units. This is good sign of development for saving electricity generated from fossil fuel and saving considerable CO₂ emissions. Recently Ministry of New and Renewable Energy, Govt. of India expressed interested in encourage GHP technology in public and private establishments and is drafting a geothermal energy policy document to be implemented in India soon.

Acknowledgements

DC thanks the Director IITH for providing facilities to carry out this work.

REFERENCES

Anandarajah, G. and Gambhir, A. 2014. India's emission pathways to 2050: What role can renewables play. Applied Energy, 131, 79-86.

Boden, T.A., G. Marland, and R.J. Andres. 2011. Global, Regional, and National Fossil-Fuel CO₂ Emissions. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn., U.S.A. doi 10.3334/CDIAC/00001 V2011

Chandrasekharam, D. and Varun Chandrasekhar. 2007. Enhanced Geothermal Resources: Indian Scenario. Geothermal Res. Council Trans., 31, 271-273.

Chandrasekharam, D. and Chandrasekhar, V. 2008a. Granites and granites: India's warehouse of EGS. Bull. Geothermal Res. Council, 37, 17-20.

Chandrasekhar, V. and Chandrasekharam, D. 2008b. Enhanced geothermal resources in NE Deccan Province, India 2008. Geothermal Res. Council Trans, 32, 71-75.

Chandrasekharam, D. and Chandrasekhar, V. 2010. Hot Dry Rock Potential in India: Future Road Map to Make India Energy Independent. Proceedings World Geothermal Congress 2010 Bali, Indonesia (CD)

Chandrasekharam, D., Chandrasekhar, V., Garg, G. Singh, H. K. and Trupti, G. 2014a. High heat generating granites of Siwana, Rajasthan. GRC Trans., 38, 78-85.

Chaudhuri H, Sinha B, Chandrasekharam, D. 2015. Helium from geothermal sources. Proc World Geotherm Congr 2015, Melbourne, Australia, 19–25 April, https://www.researchgatenet/publication/

301548386_Helium_from_geothermal_sources Accessed 31 Jul 2018

- Chaudhuri, H., Seal, K., Maji, C., Pal, S. and Mandal, M.K. 2019. The unrevealed facts on helium resources of India. Arabian Jr. Geosci. 12, 216-235.doi.org/10.1007/s12517-019-4369-1
- Singh, H., Yadvendar, K., Chandrasekharam, D., Trupti, G and Singh, B. 2014b. High-heat-producing granites of East Dharwar Craton around Gugi, Karnataka, and their possible influence on the evolution of Rajapur thermal springs, Deccan Volcanic Province, India. Geothermal Energy, 2, 1-12.
- Kumar, S. and Madlener, R. 2016. CO2 emission reduction potential assessment using renewable energy. Energy, 97, 273-282.
- MoP. 2018. Annual report, Ministry of Power, Government of India, 201p.
- Minissale, A., Chandrasekharam, D., Vaselli, O., Magro, G., Tassi, F., Passini, G.L. and Bhrambat, A. 2003. Geochemistry, geothermics and relationship to active tectonics of Gujarat and Rajasthan thermal discharges, India. J. Vol.Geoher.Res., 127, 19-32.
- Minissale, A., Vaselli, O., Chandrasekharam, D., Magro, G., Tassi, F. and Casiglia, A. 2000. Origin and evolution of "itracratonic" thermal fluids from central-western Peninsular India. Earth. Planet. Sci. Lett., 181, 377-394.
- Oliver, J.G.J., Schure, M.K. and Peters, J.A.H.W. 2017. Trends in global CO2 and total Greenhouse gas emissions. PBL Netherlands Environmental Assessment Agency, The Hague.69p.
- Sahu, S., Beig, G. and Sharma, C. 2008. Decadal growth of black carbon emissions in India. Geophy. Res. Lett., 35, 1-5.
- Singh, B., Ranjith, R.G., Singh, H.K. and Chandrasekharam, D. 2015a. Possible Enhanced Geothermal System Potential of High Heat Producing Radioactive Bundelkhand Granite. World Geothermal Congress 2015, Proceed CD.
- Singh, B., Ranjith P. G., Chandrasekharam, D. Viete, H. K. Singh, A. Lashin, N. Al Arifi. 2015b. Thermo-mechanical properties of Bundelkhand Granite near Jhansi, India. Geomecha. Geophy. Geoener. Geores. DOI 10.1007/s40948-015-0005-z.
- Singh, H.K., Chandrasekharam, D., Trupti, G., Mohite, P., Singh, B., Varun, C and Sinha, S.K. 2016. Potential geothermal resources of India: A Review. Curr Sustainable Renewable Energy Reports, DOI 10.1007/s40518-016-0054-0
- Singh, H.K., Aswathi, T., Poonam, M., Sinha, S.K., Chandrasekharam, D. and Trupti, C. 2018. Geothermal energy potential of Tulsishyam thermal springs of Gujarat, India. Arabian Journal of Geosciences. 11:136-47 doi.org/10.1007/s12517-018-3501-y.
- Tiwari, S.K., Rai, S.K., Bartarya, S.K., Gupta, A.K. and Negi, M. 2016. Stable isotopes (¹³CDIC, D, ¹⁸O) and geochemical characteristics of geothermal springs of Ladakh and Himachal (India): Evidence for CO₂ discharge in northwest Himalaya. Geothermics 64, 314–330.
- Trupti C, Minissale, A., Vasseli, O., Chandrasekharam, D., Singh, H.K. 2018. Understanding the evolution of thermal fluids along the western continental margin of India using geochemical and boron isotope signatures. Geothermics 74 (2018) 197–209
- Trupti, G., Singh, H.K. and Chandrasekharam, D. 2016a. Major and Trace element concentrations in the geothermal springs along the West coast of Maharashtra, India. Arabian Jr. Geosci. DOI 10.1007/s12517-015-2139-2.
- Trupti, C. Varun, C. and Chandrasekharam, D. 2016b. Geothermometry of West Coast Geothermal Province, Maharashtra, India, GRC Trans. 40, 495-501.
- Trupti, G., Singh, H.K. and Chandrasekharam, D. 2016c. Major and trace element concentrations in the geothermal springs along the west coast of Maharashtra, India. Arab J Geosci (2016) 9:4. DOI 10.1007/s12517-015-2139-2
- Verma, S., Reddy, D.M., Ghosh, S., Bharath Kumar, D. and Chowdhury, A.K. 2017. Estimates of spatially and temporally resolved constrained black carbon emission over Indian region using a strategic integrated modelling approach, Atmospheric Research (2017), doi: 10.1016/j.atmosres.2017.05.007
- Varun, C., Trupti, C. Chandrasekharam, D. 2016. New Insight Into the Evolution of India's West Coast Geothermal Province:Trace Element Signature in the Thermal Waters GRC Trans. 40, 501-505.
- (https://www.carbonbrief.org/the-carbon-brief-profile-india. Accessed on 2 July 2019)

TABLE 1. PRESEN	NT AND PL	ANNED I	PRODUCTION	OF ELECT	RICITY							
	Geoth	ermal	Fossil F	uels	Hydi	ro	Nuc	lear	Other Renewa	bles (specify)	To	tal
	Capacity MWe	Gross Prod. GWh/yr	Capacity MWe	Gross Prod. GWh/yr	Capacity MWe	Gross Prod. GWh/yr	Capacity MWe	Gross Prod. GWh/yr	Capacity MWe	Gross Prod. GWh/yr	Capacity MWe	Gross Prod. GWh/yr
In operation in December 2019	0		226,279	1,585,763	45,399	318,156	6,780	56,423	78359*	205,924	356,818	2,166,26
Under construction in December 2019	25	197	11,366	79,652	1,305	9,145	500	4,161	120	315	13,291	93,47
Funds committed, but not yet under construction in December 2019	25	197	11,366		1,305		500		120	315		93,47
Estimated total projected use by 2020	25	197	237,645	1,665,415	46,704	327,301	7,280	60,584	78,479	206,239	370,109	2,259,73
	* includes	small am	ount of wind, bi	omass and	small hydro	Source: Mo	oP, 2018					

TABLE 2.	UTILIZATION OF GEOTHERMAL	NERGY FOR ELECTRIC	POWER G	ENERATION	AS OF 31 DE	CEMBER 2019	9		
11	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \								
"	N = Not operating (temporary), R = Retired. Othe	rwise leav	e blank if p	presently of	perating.			
2)	1F = Single Flash	D = Dina	a. /Dankir	o Cyala)					
	2F = Double Flash		id (explaii	ne Cycle)					
	3F = Triple Flash	O = Oth	er (please	specify)					
	D = Dry Steam	0 011	or (produce	opecny)					
3)	Electrical installed capacity i	n 2019							
	Electrical capacity actually u	p and running in 20°	19						
						Total	Total		Total under
Locality	Power Plant Name	Year Com- missioned	No. of Units	Status ¹⁾	Type of Unit ²⁾	Installed Capacity	Running Capacity	Annual Energy Produced 2019	Constr. or Planned
,						MWe ³⁾	MWe ⁴⁾	GWh/yr	MWe
Total									

ABLE 3	UTILIZATION (F GEOTHE	RMAL EN	ERGY FOR	DIRECT H	EAT AS OF	31 DECE	MBER 2019 (ot	her than he	eat pumps)
1)	I = Industrial pro C = Air conditio		a)					heating (other th other than heat		mps)	
	A = Agricultural			etables)				nming (including		v)	
	F = Fish farming		in, nan, rog	51445.007				soil heating	g Damie Greg	,,	
	K = Animal farn							ecify by footnot	e)		
	S = Snow melti	ng							, i		
2)	Enthalpy inform	ation is give	n only if the	ere is stear	n or two-ph	ase flow					
3)	Capacity (MWt)	= Max. flow = Max. flow								(MV	V = 10 ⁶ W
4)	Energy use (TJ/							.1319 / (kJ/kg)] x 0.03	154	(Т.	J = 10 ¹² J)
								/ (KJ/Kg)] X 0.03	134		
5)		= [Annual E apacity fact e projects d	tor must be	less than	or equal to	1.00 and is		SS,			
ote: ple	ease report all nu										
			<u> </u>					2 3		Liber	
		_ 4\			imum Utiliz		2)	Capacity ³⁾		nual Utiliza	
Lo	cality	Type ¹⁾	Flow Rate (kg/s)	emperature Inlet	(°C) Outlet	Enthalpy Inlet	/ ²⁾ (kJ/kg) Outlet	(MWt)	Ave. Flow (kg/s)	Energy ⁴⁾ (TJ/yr)	Capacity Factor ⁵⁾
	Himalayas	B.O	1000ª	95	15			118.7	100	1055.2	0.3
	Himalayas		1200 ^b		25	-	-				0.2
	Cambay	В		85			-	106.8		633.1	
	West Coast	В	160°	72	30		-	10.0		55.4	0.2
	SONATA	В	100 ^d	95	25	1		10.4		120.0	0.4
	Bakreswar	В	600 ^e	89	30			52.5		778.2	0.5
	Jharkhand	В	400 ^f	89	25			38.0	63	531.8	0.4
	Bihar	В	360 ^g	50	25			13.4	72	237.4	0.6
	Godavari	_									
	Manuguru 1	0	25 ^h	82	30			5.4	25	171.5	1.0
	Manuguru 2	0	25 ^h	71	30			4.2		135.2	1.0
		0	25 ^h	67		 	 				
	Manuguru 3	+			30		-	3.7		122.0	
	Manuguru 4	0	25 ^h	80	30		-	5.1	25	164.9	1.0
								368.2	513	4004.7	6.6
T	OTAL							357.5	538	4004.7	12.2
		O: Cookin	_								
				ge of 10spr	_						
		io: cumulat	ive dischar	ge of 15 sp							
			irro dit	ac of 16							
		c: cumulat	ive dischar		_						
		c: cumulat d: cumulat	ive dischar	ge from 6 s	prings						
		c: cumulat d: cumulat e: cumulat	ive dischar ive dischar	ge from 6 s ge from 6 s	springs springs						
		c: cumulat d: cumulat e: cumulat	ive dischar ive dischar	ge from 6 s	springs springs						
		c: cumulat d: cumulat e: cumulat f: cumulat	ive dischar ive dischar ive dischar	ge from 6 s ge from 6 s	springs springs prings						

BLE 4. GEOTHE	RMAL (GROUND-S	OURCE) HEAT I	PUMPS AS OF	31 DECEMBER	2019				
his table should i	report thermal energ	y used (i.e. ener	rgy removed fron	the ground or	water) and repo	rt separately he	eat rejected to th	ne ground or wat	er in the
rejected to	the ground in the c	ooling mode as t	this reduces the	effect of global	warming.		_		
Report the	e average ground te	mperature for gro	ound-coupled un	its or average w	ell water or lake	water tempera	ature for water-so	ource heat	
2) Report ty	pe of installation as	follows:		V = vertical gro	und coupled			(Т	J = 10 ¹
				H = horizontal ground coupled					
				W = water sou	rce (well or lake	water)			
				O = others (ple	ase describe)				
3) Report the	e COP = (output the	rmal energy/inp	ut energy of con	npressor) for you	ur climate - typi	cally 3 to 4			
	e equivalent full load								
	energy (TJ/yr) = flow					319			
			t energy (kJ/hr):				/yr		
6) Cooling e	nergy = rated outpo								
	37	37 (7			•				
ite: please report	all numbers to thre	e significant figu	ıres						
	t all numbers to thre			itry.					
				itry.					
		an be by regions	s within the coun	itry.			Heating		
Due to room	limitation, locality c	an be by regions Typical Heat F	s within the coun	Number of			Equivalent Full	Thermal	l .
	Ground or Water Temp.	an be by regions Typical Heat F	s within the coun Pump Rating or pacity		Type ²⁾	COP ³⁾	Equivalent Full Load	Energy Used ⁵⁾	Ener
Due to room	limitation, locality c	an be by regions Typical Heat F	s within the coun Pump Rating or pacity	Number of	Type ²⁾	COP ³⁾	Equivalent Full		Ener
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener
Due to room	Ground or Water Temp.	Typical Heat F	s within the coun Pump Rating or pacity	Number of	Type ²⁾	COP ³⁾	Equivalent Full Load	Energy Used ⁵⁾	Cooli Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Energ (TJ/)
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener (TJ/
Due to room Locality Aulund Mumbai In	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener (TJ/
Due to room Locality	Ground or Water Temp.	Typical Heat F	s within the coun	Number of Units			Equivalent Full Load Hr/Year ⁴⁾	Energy Used ⁵⁾ (TJ/yr)	Ener

TABLE 5.	SUMN	MARY TABLE	OF GEOTH	ERMAL DIRE	CT HEAT U	SES AS OF 31	DECEMBE	R 2019					
1) Installed Cap	acity (therma	l power) (MV	t) = Max. flov	v rate (kg/s)	x [inlet temp. (°C) - outlet tem	np. (°C)] x 0.00	04184				
						lpy (kJ/kg) - outl			1				
2	Annual Ener	gy Use (TJ/yr) = Ave. flow	rate (kg/s) x	[inlet temp. (°	C) - outlet temp.	(°C)] x 0.13	1:	$(TJ = 10^{12} J)$				
				-		utlet enthalpy (k	J/kg) x 0.031	154					
3)	Capacity Fac	ctor = [Annual	Energy Use	TJ/yr)/Capac	ity (MWt)] x 0	.03171			(MW = 10 ⁶ V				
		ts do not oper		capacity all ye	ear								
4)	Other than	ther than heat pumps											
5)	Includes d	cludes drying or dehydration of grains, fruits and vegetables											
6)	Excludes	Excludes agricultural drying and dehydration											
7)	Includes b	alneology		•									
	Use		Installed (Capacity ¹⁾	Annual E	nergy Use ²⁾	Capacit	y Factor ³⁾					
			(M	Wt)	(TJ/yr =	: 10 ¹² J/yr)							
Individual S	Space Heat	ing ⁴⁾											
District He													
Air Conditi	oning (Cool	ling)	0.1	44*	3.82		0.8						
Greenhous	se Heating												
Fish Farm	ing												
Animal Fa													
Agricultura	al Drying ⁵⁾												
Industrial F	Process He	at ⁶⁾											
Snow Melt	ing												
Bathing ar	nd Swimmir	ıg ⁷⁾	35	7.5	4	004	(0.3					
	s (specify)												
Subtotal													
Geotherma	al Heat Pun	nps											
TOTAL			357.6			4007.82		1.1					
	* total of ty	vo units											

TABLE 6.	WELLS DRILLED FOR ELECTRICAL, DIRECT AND COMBINED USE OF GEOTHERMAL RESOURCES FROM JANUARY 1, 2015 TO DECEMBER 31, 2019 (excluding heat pump wells)										
1)	Include thermal gra	dient wells, bu	it not ones l	ess than 100 m	deep						
Purpose	Wellhead	Number of V	Total Depth (km)								
	Temperature	Electric Power	Direct Use	Combined	Other (specify)						
Exploration ¹⁾	(all)				4	1km					
Production	>150° C										
	150-100° C										
	<100° C										
Injection	(all)										
Total					4	1km					

TABLE 7.		ION OF PROFESSIONAL PERSONNEL TO GEOTHERMAL S (Restricted to personnel with University degrees)							
	(1) Govern (2) Public (3) Univers	Utilities		(4) Paid Foreign Consultants (5) Contributed Through Foreign Aid Prog (6) Private Industry					
Ye	ear		Profes	sional Pers	son-Years	of Effort			
		(1)	(2)	(3)	(4)	(5)	(6)		
20	15	2	nil	20	nil	nil	25		
20	16	1	nil	30	nil	nil	20		
	2017 2 nil		nil	35	nil	nil	20		
20	717		11111						
)18		nil		nil	nil	20		
20		3		40			20 20		

TABLE 8. TOTAL INVESTMENTS IN GEOTHERMAL IN (2019) US\$											
	Resear	ch &	Field Dev	elopment	Utiliz	ation	Funding Type				
Period Development Incl.		Including I	Including Production		Electrical	Private	Public				
	Million US\$		Million US\$		Million US\$	Million US\$	%	%			
1995-1999	0.02	22	n	il	0.00816			100			
2000-2004	0.13	33	n	iil	0.0122		70	30			
2005-2009	0.50)3	n	nil			75	25			
2010-2014	15		5		0.5		100	0			
2015-2019	150		80		15		80	20			