The United States of America Country Update 2023 – Power Generation

Ann Robertson-Tait¹, William Harvey², Sarah Jewett³ and Lauren Boyd⁴

¹GeothermEx; ²Metis Renewables, ³Fervo Energy, ⁴US Department of Energy Geothermal Technologies Office

3260 Blume Drive, Suite 220, Richmond, California 94806 USA ann1@slb.com

Keywords: Country update, geothermal power, US, United States

ABSTRACT

The United States of America hosts a diverse and potent array of geothermal resources and plant types. High temperature dry steam or multiple flash complexes such as at The Geysers or Salton Sea in California originally occupied the larger end of the MW spectrum. Increased use of binary power plant technology has vastly extended geothermal applications into lower temperature reservoirs, such as those found in the Basin and Range province. New plant configurations are appearing such as geothermal-solar hybrids and coproduction of geothermal power at oil and gas fields, and mineral recovery (primarily lithium) has become an important driver, particularly (but not exclusively) in the Salton Sea geothermal field.

For the year ending December 2021, the total installed nameplate geothermal power capacity in the United States was approximately 3.9 GWe. This is a 94 MW increase for the three-year period since the previous country update, which was based on units in operation in December 2018 (Robertson-Tait *et al.*, 2020). Geothermal power is produced in the states of Alaska, California, Hawaii, Idaho, Nevada, New Mexico, Oregon and Utah. Together, California and Nevada host the majority (3,338 MWe) of this generation, with 2,602 and 736 MWe installed in California and Nevada, respectively.

Both federal- and state-level policy and regulatory support for geothermal energy have increased during the reporting period, creating a new, positive momentum for geothermal electricity generation and heating and cooling in the United States, particularly during the past year. Highlights in the federal realm include announcing a federal 24/7 carbon-free electricity mandate, passing the historic Inflation Reduction Act of 2022, appropriating increased funds for geothermal energy research, development, and deployment (RD&D), and increased focus on facilitating permitting reform for geothermal energy projects.

Federal support from the US Department of Energy's Geothermal Technologies Office (DOE-GTO) has expanded since the prior update in 2019. DOE-GTO has maintained a strong focus on Enhanced Geothermal Systems (EGS), initiating the Enhanced Geothermal Shot in 2022, a challenge to reduce EGS costs by 90% by 2035. This is one of several recent initiatives to overcome scientific and technical barriers and enable the United States to reach the goal of net-zero emissions by 2050. The Frontier Observatory for Research in Geothermal Energy (FORGE) project in Utah (Utah FORGE, DOE-GTO's flagship EGS RD&D project) continues to make significant progress, having drilled and instrumented several monitoring wells and three deeper wells, recently completing the second well of the EGS doublet in June 2023. Injection testing in early July 2023 demonstrates a connection between the injection well and the production well. DOE-GTO has also invested in deep basin geothermal through its Geothermal Energy from Oil and Gas Demonstrated Engineering (GEODE) initiative, which was recently awarded to a broad consortium that includes deep expertise in geothermal, oil and gas, and research. Although not related to geothermal power (the focus of this paper), DOE-GTO has taken another notable step: significantly expanding its geothermal portfolio for heating and cooling at the community scale, which represents a huge decarbonization opportunity.

State support is particularly strong in California, which has a mandated renewable power requirement and a mandated cap on CO₂ emissions. This, combined with the de-stabilizing effect on the electricity grid from rooftop and utility-scale solar and the massive demand for power in California, has led the California Public Utility Commission (CPUC) to recommend the development of at least 2,000 more MW of base-load geothermal power in the near future. Although this amount may be considered modest in comparison to the potential for additional geothermal development in the United States, it is a significant turning point in terms of policy. This, like the U.S. Senate hearings on geothermal power in 2019, can be credited to work by the geothermal industry, supported by the independent technical evaluations of DOE-GTO and USGS. Legislation to support the growth of geothermal power has been introduced to streamline specific permitting processes (without undermining environmental stewardship), improve access to transmission systems and re-establish parity with tax credits provided to other renewable power sources. Together with the specific mandated requirements in the State of California (which can be served in part by sources generated outside the state), these factors will enable the continued development of geothermal power projects in the western United States.

Significant additional geothermal power remains to be produced in the United States. DOE-GTO's 2019 GeoVision study concludes that technology improvements – many of which are the subject of active research today – could significantly increase geothermal power generation in the United States, which the GeoVision study estimates could reach 60 GWe. A significant portion of this capacity is expected to be derived from EGS. Earlier (in 2008), the United States Geological Survey (USGS) had estimated that the generation capacity of known conventional hydrothermal resources in the United States is approximately 9 GWe, of which approximately 4 GWe is already installed. Thus, another 5 GWe of conventional hydrothermal resources are available for development. The USGS estimates that there is another 30 GWe of potential from as-yet undiscovered geothermal resources, some of which are hosted in deep sedimentary basins.

As the demand for more geothermal power continues to increase in the United States, more tertiary educational institutions are offering geothermal curricula that focus on a wide range of subjects, including exploration technologies, hybrid solutions that combine geothermal with other technologies to maximize green benefits, reservoir modeling (geologic and numerical models), innovative drilling methods, power plant technology optimization, and the development of unconventional geothermal resources, including Enhanced Geothermal Systems (EGS) and closed-loop systems, now commonly referred to as Advanced Geothermal Systems (AGS).

Collaboration on specific technical topics between universities, research organizations and DOE is leading to innovation in many aspects of geothermal energy. As oil and gas companies enter or return to the geothermal market, collaboration is increasing between them and existing geothermal operators, research organizations and DOE-GTO. The focus is not only on the known reserves of traditional geothermal resources in the United States, but also deep sedimentary basins, the domain of oil and gas. This growing relationship brings another crucial element to the wholesale energy transformation that is underway today: the ability to scale-up geothermal quickly.

Although the past several years have been characterized by modest geothermal growth, current social, economic and political trends provide significant optimism for the development of additional geothermal power, particularly in the western United States. A combination of potent forces are in place to drive a new wave of geothermal power expansion in the United States, including the long-term (2024-2032) tax credits for geothermal power projects, the need for baseload generation to mitigate impacts on the grid from intermittent renewable power, the entry / re-entry of oil and gas, and accelerated policy engagement by the geothermal industry.

1. INTRODUCTION

The objective of this paper is to provide an update on the state of geothermal development in the United States. The country's overall electrical generation portfolio and market conditions are presented first, followed by the details of the currently operating geothermal assets and the potential for additional capacity. Herein we discuss trends in geothermal project development, the geothermal policy landscape in the United States, new entrants and synergies in the geothermal sector, and other initiatives that support the development of advanced geothermal technologies at the national level, including R&D.

1.1 Summary of Current Installed Power Generation Capacity (All Sources)

Table 1 provides totals for the installed capacity and annual electrical production in the United States for the years ending 2018 (which was the basis for the 2020 USA Country Update) and 2021. These years were selected as the last full years for which the U.S. Energy Information Administration (EIA) provides annual data. Note that the EIA presents generation on a net basis. The numbers presented in Table 1 are for utility-scale facilities only and do not reflect smaller installations such as residential solar. Total installed capacity (MWe) from all sources has increased by 3.8% over the 3-year period from 2018 to 2021. Net electrical generation dropped from 4,181 to 4,108 GWh/year (-1.7%), likely due to the impact of COVID-19 in 2021. Table 1 also shows the gradual shift away from fossil fuel installed capacity (-2.6%), mostly baseload, towards renewables (+27%), mostly intermittent sources such as wind and solar.

	Geothermal		Other Renewables (wind, utility scale solar, biomass, hydro)		Nuclear		Fossil Fuels		Other sources		Total	
Energy source	Installed Capacity (MWe)	Net Electrical generation GWh/yr	Installed Capacity (MWe)	Net Electrical generation GWh/yr	Installed Capacity (MWe)	Net Electrical generation GWh/yr	Installed Capacity (MWe)	Net Electrical generation GWh/yr	Installed Capacity (MWe)	Net Electrical generation GWh/yr	Installed Capacity (MWe)	Net Electrical generation GWh/yr
In operation in December 2018	3,806	15,967	244,555	700,911	104,270	791,117	841,288	2,660,019	2,569	12,973	1,196,488	4,180,987
In operation in December 2021	3,889	15,975	311,433	794,180	99,960	778,188	819,775	2,507,819	6,521	12,140	1,241,578	4,108,302

Table 1: Present Production of Electricity (EIA 2022)

The installed capacity of fossil fuel power plants declined by 21.5 GW over the two-year period, offset by a 67 GW increase in other renewables. Nuclear and geothermal installed capacities and net electrical generation contributions have been relatively level.

Wind and solar (PV and thermal) have driven most of the growth in the overall renewable portfolio. Through 31 December 2021, renewables accounted for about 20% of total U.S. annual generation. Geothermal's overall generation share has stayed constant from 2018-2021 at 2% of all renewables and 0.4% of total generation.

1.2 Potential for Additional Generation (All Sources)

The EIA also provides estimates for planned generating capacity (net summer) additions across all sectors from 2022-2026. Fossil fuel plants are anticipated to continue to be retired at a net rate of -28,021 MW over this period, accompanied by nuclear (-808 MW). 105,529 MW of renewable capacity is expected to be added over this period, mainly wind (+30,012 MW) and solar (+75,251 MW). The EIA projects only 94 MW of added geothermal capacity over this period, which seems conservative compared to projects currently planned.

2. GEOTHERMAL ELECTRICITY PRODUCTION

As shown in Figure 1, the epicenter of geothermal power generation in the United States is in the western part of the country, with an array of eight states with operating geothermal plants: Alaska, California, Hawaii, Idaho, Nevada, New Mexico, Oregon and Utah, with the majority centered in the geologically favorable states of California and Nevada. In an expanding radius from these states, there has been exploration and a few small pilot projects in the states of Arizona, Colorado, Louisiana, Mississippi, Texas, Washington and Wyoming.

Information about operating geothermal fields, projects and individual generator units in the United States are presented herein using the table format specified in the IGA template, which was updated in 2020. Table 2.1 presents general information about operating geothermal fields in the United States as of 2021, all of which are hydrothermal systems. The information in Table 2.1 includes field name, field operator, the number of wells in operation and the depth of the deepest production well (where available) and the system type (hot water, two-phase liquid-dominated and two-phase steam-dominated).

2.1 Total Current Installed Capacity

Table 2.2 presents information about the power plants and individual generation units, including the unit name, type, year commissioned, operating status, turbine manufacturer, nameplate capacity, and generation. For consistent reporting year over year, the required reporting data were primarily taken from the California Energy Commission (CEC) (2022) for projects in California. The CEC data are sometimes available on a unit basis, although only net electrical production is shown. As reported in form EIA-923, EIA's annual data by plant does not show gross annual production data. For other states, data are taken from EIA (2022), which shows overall generation at each geothermal complex, but data on a unit basis is often unavailable. In selected instances, operators have provided installed capacity data that may differ from the EIA due to project upgrades such as turbine retrofits. Due to data pieced together from various sources, the values included in the tables below may not be in complete alignment with each other or the values shown in Table 1. Where data are not available, N/A is indicated.

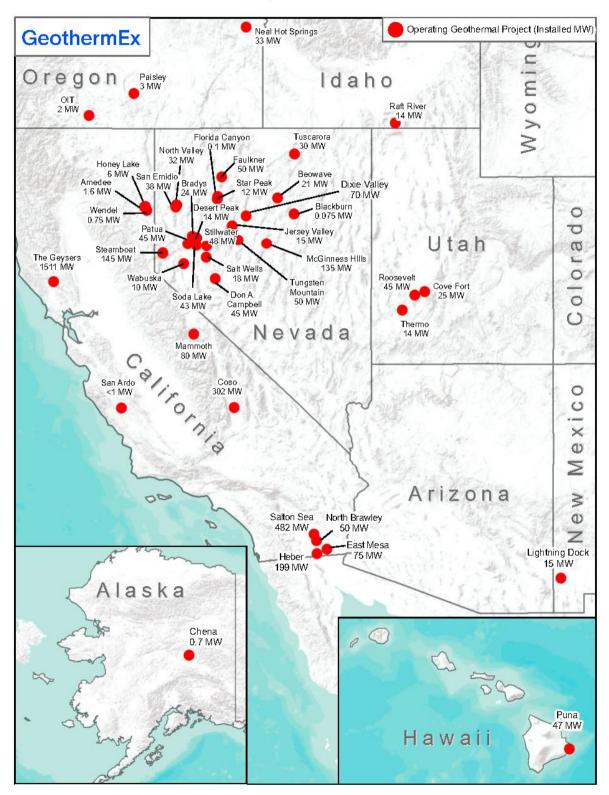


Figure 1: Locations and installed capacities at geothermal fields developed for power generation in the United States

Total installed (generator nameplate) geothermal capacity at the end of year 2021, as stated by EIA (2022), is approximately 3.9 GW. As noted above, depending on the data source, MW ratings differ. In addition, some plants have been re-rated due to turbine modifications, or evolution of their fields or power plant equipment, and that information may not be perfectly synchronized across data reported by owners, the CEC or EIA. The EIA data in Table 1, for total net geothermal generation in the year ending December 2021, was 15.98 TWh. The sum of data in Table 2.2 indicates a 2021 total net geothermal generation of 15.77 TWh.

Table 2.1 Operating geothermal fields in the United States

(1) Field Name (2) Field operator (3) Wolls in operators (4) Wolls in operators (5) Wolls in operators (6) System type (7) Field Name or mustals (7) Field Name (8) System type (9) Great Visit (9) Great Visit (1) Great Visit (2) Great Visit (3) Annual Visit Vis			Geothermal	Field		
An	(1) Field Name	(2) Field operator		deepest production well	(6) System type	
CA - Caso	AK - Chena	Chena Hot Springs	N/A		Hot water	
CA - Conso			50	227	Two-phase, liquid-dominated: High	
CA - Verted Discolard Fouriery Section						
April	CA - Coso	Coso Operating Company	39	3200	enthalpy	Navy II
CA - Honey Lake N/A N/A N/A Not water N/A N/A Not water N/A			43			вьм
CA-Honey Lake NA NA Not water American Amer	CA - Wendel		1	400	Hot water	Wendel
CA - Honey Lake	CA - Amedee		N/A	N/A	Hot water	Amedee
CA - Mammoth Mammoth Pacific (Ormat) N/A	CA - Honey Lake		N/A	N/A	Hot water	Honey Lake
CA - Crimesa CA -	CA - Mammoth	Mammoth Pacific (Ormat)	N/A	N/A	Hot water	G-1 (MP-1) G-2 (MP-2) G-2 (MP-2) G-2 (MP-2) G-3 (PLES-1) G-3 (PLES-1) G-3 (PLES-1)
Meber Mebe	CA - Ormesa	Ormat	N/A	N/A	Hot water	OG I (Ormesa I) OG II (Ormesa II) Ormesa II Ormesa IH GEM 2 GEM 3 GEM Bottoming Unit
1	CA - Heber	Ormat	N/A	N/A		Heber Heber Heber Heber Heber Heber Heber Heber
Salton Sea	CA - North Brawley	Ormat	N/A	N/A	Hot water	North Brawley
1		BHER/CalEnergy	5 1 1 1 4 4 6 6 6 4 1 1 1 1 1 1 1 1 1 1 1			Salton Sea 3 Salton Sea 2 Salton Sea 2 Salton Sea 2 Salton Sea 2 Salton Sea 4 Salton Sea 5 Vulcan Vulcan
1 2652 Emore Backpressure Leathers John L. Featherstone McCabe (5&6) McCabe (5&6) McCabe (5&6) McCabe (5&6) Ridgeline (7&8) Eagle Rock (11) Cobb Creek (12) Big Ceysers (13) Sulphur Springs (14) Lake View (17) Socrates (18) Sonoma (3) Calistoga (19) Calistoga (19				1		
CA - The Geysers CA - The Geysers NCPA To Two-phase, Vapour-dominated Leathers	l			2783		Elmore
CA - Salton Sea - Cyrq	<u></u>			2652		
CA - The Geysers NCA - The Geysers N	CA - Salton Sea - Cyrq	Cyrq Energy	8	2622		John L. Featherstone
CA - The Geysers NCPA 75 3343 Two-phase, vapour-dominated NCPA II (Geothermal 1) NCPA II (Geothermal 2)	CA - The Geysers			3932		McCabe (5&6) Ridgeline (7&8) Ridgeline (7&8) Ridgeline (7&8) Eagle Rock (11) Cobb Creek (12) Big Geysers (13) Sulphur Springs (14) Lake View (17) Socrates (18) Sonoma (3) Callistoga (19) Callistoga (19) Calistoga (19) Quicksilver (16) Grant (20) Aidlin (1) Aidlin (1) West Ford Flat (4) Bear Caryon (2)
CA - The Geysers Chen Mountain Energy N/A N/A Two-phase, liquid-dominated: Low Bottle Book	CA - The Geysers	NCPA	75	3343	Two-phase, vapour-dominated	NCPA I (Geothermal 1) NCPA II (Geothermal 2)
	CA - The Geysers	Open Mountain Energy	N/A	N/A	Two-phase, liquid-dominated: Low enthalov	

		Geothermal	l Field			
(1) Field Name	(2) Field operator	(3) Wells in operation	(4) Depth of deepest production well (m)	(6) System type	(7) Plant Name or number	
CA - San Ardo	Chevron	N/A	N/A	Hot water	San Ardo	
HI - Puna	St	·		Two-phase, liquid-dominated: High	Puna Geothermal Venture	
mi - Puna	Ormat	N/A	N/A	enthalpy	Puna Expansion	
ID - Raft River	Ormat	N/A	N/A	Hot water	Raft River	
NM - Lightning Dock	Cyrq Energy	N/A	N/A	Hot water	Lightning Dock	
MINI- EIGHTHING DOCK	Cyriq Erreigy	9	882	FIOC WELCE	Lightning Dock Repowering	
NV - Beowawe	Ormat	N/A	N/A	Two-phase, liquid-dominated: Low enthalpy	Beowawe	
NV - Blue Mountain	Cyrq Energy	10	1345	Hot water Hot water	Beowawe 2 Blue Mountain I	
NV- Dide Woulden	CYTH LITEIRY	10	1343		Bide Wiodiltaiii i	
NV - Brady	Ormat	N/A	N/A	Hot water	Brady	
NV - Desert Peak	Ormat	N/A	N/A	Hot water	Desert Peak 2	
		·			1	
NV - Don A. Campbell	Ormat	N/A	N/A	Hot water	Don A. Campbell	
NV - Dixie Valley	Ormat	N/A	N/A	Two-phase, liquid-dominated: Low enthalpy Hot water	Dixie Valley	
NV - Jersey Valley	Ormat	N/A	N/A	Hot water	Jersey Valley	
NV - Florida Canyon	Florida Canyon	N/A	N/A	Hot water	Florida Canyon Mine	
NV - North Valley	Ormat	N/A	N/A	Hot water	North Valley	
NV - Patua	Cyrq Energy	8	2962	Hot water	Patua	
NV - Tuscarora	Ormat	N/A	N/A	Hot water	Tuscarora	
NV - McGinness Hills	Ormat	N/A	N/A	Hot water	— McGinness Hills	
NV - Salt Wells	ENEL Green Power North America	N/A	N/A	Hot water	Salt Wells	
NV - San Emidio	Ormat	N/A	N/A	Hot water	San Emidio Repower North Valley	
NV - Soda Lake	Cyrq Energy	7	2742	Hot water	Soda Lake 1 Soda Lake 2 Soda Lake 3 (Repower)	
NV - Star Peak	OME	N/A	N/A	Hot water	Star Peak	
NV - Steamboat	Ormat	N/A	N/A	Two-phase, liquid-dominated: Low enthalpy	Steamboat Hills Steamboat Hills Repower Steamboat III Steamboat III Galena 1 (Richard Burdette Galena 2 Galena 3	
NV - Stillwater	ENEL Green Power North America	N/A	N/A	Hot water	Stillwater 2	
NV - Tungsten Mountain	Ormat	N/A	N/A	Hot water	Tungsten Mountain	
NV - Wabuska	ОМЕ	N/A	N/A	Hot water	Wabuska 1 Wabuska 2 Whitegrass No. 1 Whitegrass No. 2	
NV - Blackburn	Grant Canyon Oil and Gas	1	N/A	Hot water	Pilot	
OR - OIT	Oregon Institute of Technology	3 N/A	1612 N/A	Hot water	OIT Unit 1 OIT Unit 2	
OR - Neal Hot Springs	Ormat	N/A	N/A	Hot water	Neal Hot Springs	
	Surprise Valley Electrification Corp.	N/A	N/A	Hot water	Paisley	
OR - Paisley			1		H	
•	ENEL Green Power North	N/A	N/A	Hot water	Cove Fort 3	
OR - Paisley		N/A N/A	N/A N/A	Two-phase, liquid-dominated: Low enthalpy	Blundell Unit 1	
OR - Paisley UT - Cove Fort	ENEL Green Power North America			Two-phase, liquid-dominated: Low	 	

2.2 Details of Existing Geothermal Generation Facilities

The intent of this section is not to provide a detailed description of all existing plants in each state, but rather to comment on recent trends or development activities within the past several, which may overlap with commentary in the previous (2020) update.

2.2.1 Alaska

The Chena Hot Springs project continues to deliver both electrical and thermal power, displacing costly diesel fuel consumption in this remote area.

The most sizable new project under development in the state is the 36 MW Unalaska geothermal power plant, located on an island in the Aleutians. The project is a joint development between Chena Power and Ounalaska Corporation (OC), the Alaska Native Village Corporation for Unalaska, Alaska, formed in 1973. As described in a January 2023 press release, the joint operator (Ounalaska and Chena Power, who have formed OCCP, LLC) and Ormat have reached an EPC agreement to design and build the Makushin Geothermal Project (MGP). The project is named for the nearby Makushin Volcano, which was explored in the early 1980s by Republic Geothermal. Two wells drilled near the Makushin Volcano encountered attractive conditions for geothermal development.

Table 2.2 Details of geothermal power plants in the United States

Geothermal Field		Power Plan	t					ı	Power Unit				
(1) Field Name	(7) Plant Name or number	(8) Plant operator	(9) Combined Heat and Power (CHP)?	(10) Co- prod.?	(11) Hybrid energy system?	(13) Unit Name or number (EIA, CEC or owner's)	(14) Type of unit	(15) Year of commission	(16) Status	(17) Turbine manufact.	(18) Installed Capacity (MW)	(19) GEP (GWh/a)	(20) NEP (GWh/a), 2021
AK - Chena	Chena Unit 1 Chena Unit 2	Chena HatSprings	Yes	No No	No	Unit 1 Unit 2	B-ORC B-ORC	2008 2007	Decommissioned Operating	Pratt & Whitney Pratt & Whitney	0.3 0.3	N/A	N/
	Chena Unit 3 Navy I	Casa Finance Partners	No.	No No	No	Unit 3 Unit 1 Unit 2	B-ORC 1F/2F/3F 1F/2F/3F	N/A 1987 1988	Operating Operating Operating	Kaishan MH I Fuji	0.4 35.77 33.33	N/A N/A N/A	N/s 455.42
	- Navy I	COSO FINANCE PARTIES		No No		Unit 3 Unit 4	1F/2F/3F 1F/2F/3F	1988 1990	Operating Operating	Fuji Fuji	33.33 33.33	N/A N/A	365.55
CA - Coso	Navy II	Casa Pawer Developers	No	No No	No	Unit 5 Unit 6	1F/2F/3F 1F/2F/3F	1990 1990	Operating Operating	Fuji Fuji	33.33 33.33	N/A N/A	w/Navy I w/Navy I
	BLM	Casa Energy Developers	No	No No	No	Unit 7 Unit 8 Unit 9	1F / 2F / 3F 1F / 2F / 3F 1F / 2F / 3F	1989 1989 1989	Operating Operating	Fuji Fuji Fuji	33.33 33.33 33.33	N/A N/A N/A	908.881 W/BLN W/BLN
GA - Wendel	Wendel	Baseland Pawer US	No	140	No	N/A	B-ORC	N/A	Operating Under construction (within one year of commissioning)	N/A	0.75	N/A	N//
CA - Amedee	Amedee	Amedee Geothermal Venture	No.	No	No	Units 1&2	8-ORC Other	1988	Decommissioned	Barber-Nichols	1.5	-	
CA - Honey Lake	G-1 MP-1 G-1 MP-1	HL Pawer	No	No No	Yes	U100 U200	B-ORC B-ORC	1984 1984	Operating Operating Operating	N/A Ormat Ormat	5	N/A N/A	59.191 W/MP-1
	G-2 MP-2 G-2 MP-2			No No		T101 T102	B-ORC B-ORC	1990 1990	Operating Operating	Ormat Ormat	5 5	N/A N/A	71.109 W/MP-
GA - Mammoth	G-2 MP-2 G-3 PLES-1 G-3 PLES-1	Mammath Pacific Ormat	No	No No	No	T103 T101 T102	B-ORC B-ORC B-ORC	1990 1990 1990	Operating Operating Operating	Ormat Ormat Ormat	5 5	N/A N/A N/A	W/MP- 102.89i W/PLE
	G-3 PLES-1 Casa Diablo IV			No No		T103	B-ORC B-ORC	1990 2022	Operating Operating	Ormat	5 40	N/A	w/PLE
	OG I Ormesa I OG II Ormesa I I			No No		26 units 20 units	B-ORC B-ORC	1986 1987	Operating Operating	Ormat Ormat	25.4 24	N/A N/A	109.88 102.72
CA - Ormesa	Ormesa IE Ormesa IH	Ormat	No	No No	No	12 units 12 units GEM 2	B-ORC B-ORC B-ORC	1988 1989 1989	Decommissioned Decommissioned Decommissioned	Ormat Ormat	14.4 9.5 21.5	-	
	GEM 2 GEM 8 GEM Bottoming Unit			No No		GEM 3 GEM Btm	B-ORC B-ORC	1989 2007	Decommissioned Decommissioned	Ormat	21.5	-	
	Ormesa III Heber			No No		Heber 1	8-ORC 1F/2F/3F	2020 1985	Operating Not operating temporarily	Ormat MH I	24 52	N/A N/A	74.056 175.379
	Heber Heber	_		No No		Heber 1 se power Gould 1	B-ORC B-ORC	2023 2005	Under construction (within one year of commissioning) Operating	Ormat	45 3.5	- N/A	w/Hebe
CA - Heber	Heber Heber	Ormet	No	No No	No	Gould 2 GEN 13	B-ORC B-ORC	2005 2005	Operating Operating	Ormat Ormat	7	N/A N/A	w/Hebe w/Hebe
	Heber Heber	_		No No		Heber South (GEN 14) GEN 4 Heber 2 (SIGC Gen 1-12)	B-ORC B-ORC	2008 2018 1993	Operating Operating Decommissioned	Ormat Ormat	15 19 48	N/A N/A N/A	w/Hebe w/Hebe 152.65
as some providen	Heber North Brawley	1		No		Heber 2 sepower	B-ORC B-ORC	2022	Operating	Ormat	40	N/A	45.12
CA - North Brawley	Salton Sea 1 Salton Sea 3	Ormat	No	No Yes No	No	Unit 1 GEN1	1F/2F/3F 1F/2F/3F	1982 1989	Operating Operating Operating	Ormat Fuji MH I	10.3	N/A N/A	68.7 248.7
	Salton Sea 2 Salton Sea 2			No No		GEN1 GEN2	1F/2F/3F 1F/2F/3F	1990 1990	Operating Operating	MHI	11.7 5.2	N/A N/A	76.96 W/SS
	Salton Sea 2 Salton Sea 4			No No		GEN3 4100	1F/2F/3F 1F/2F/3F	1990 1997	Operating Operating	GE Rotoflow MH I	54	N/A N/A	w/SS 273.88
CA - Salton Sea - CalEnergy	Salton Sea 5 Vulcan Vulcan	B HER/CalEnergy	No	No No No	No	S100 Vulcan GEN1 Vulcan GEN2	1F/2F/3F 1F/2F/3F 1F/2F/3F	2000 1985 1985	Operating Operating Operating	Fuji MH I MH I	58 35 11	N/A N/A N/A	291.68 218.68 W/Vuka
	Del Ranch [Hoch] GE Turbo	-		No No		70012 70073	1F/2F/3F 1F/2F/3F	1988 2000	Operating Operating	Fuji GE Rotoflow	53.5 12.78	N/A N/A	276.90 55.2
	Elmore Elmore Backpressure			No No		T0015 GEN2	1F / 2F / 3F Back Pressure	1988 2019	Operating Operating	Fuji GE	53.5 10	N/A N/A	371.10 w/Elmoi
:A - Salton Sea - Cyrq	Leat hers John L. Featherstone	Cyrq Energy	No	No Yes	No	GEN1	1F/2F/3F 1F/2F/3F	1988 2012	Operating Operating	Fuji Fuji	53.5 55	N/A	337.63
	McCabe [58:6] McCabe [58:6]			No No		MCSTS MCST6	Dry Steam Dry Steam	1971 1971	Operating Operating	Toshiba Toshiba	59 A 59 A	N/A 752.63884 W/58.6	575.73 697.59 w/56
	Ridgeline 788 Ridgeline 788	Colpine	No	No No	No	RLST7 RLST8	Dry Steam Dry Steam	1972 1972	Operating Operating	Toshiba Toshiba	59 A 59 A	547.32741 w/768	516.51 w/76
	Eagle Rock 11 Cobb Creek 12			No No		ERST11 CCST12 BGST13	Dry Steam Dry Steam	1975 1979 1980	Operating Operating	Toshiba Toshiba	118.8 79.05 138.5	601.10962 397.39363 433.22076	570.76 574.22
	Big Geysers 13 Sulphur Springs 14 Lake View 17			No No		S9ST14 LVST17	Dry Steam Dry Steam Dry Steam	1980 1982	Operating Operating Operating	GE [Toshiba] Toshiba Toshiba	125.5 130.91	533.99712 524.75598	403.27 497.0 471.63
CA - The Geysers	Socrates 1.8 Sonoma 3			No No		9CST18 SQST3	Dry Steam Dry Steam	1983 1983	Operating Operating	Toshiba MH I	120 78	464.47676 469.09834	386.60 406.
	Calistoga 19 Calistoga 19			No No		CAST1 CAST2 CKST1	Dry Steam Dry Steam	1984 1984 1985	Operating	Toshiba Toshiba	85.991 w/19 124.55	469.11733 w/19 395.37754	432.94 w/1 365.61
	Quicksilver 16 Grant 20 Aidlin 1	-		No No		GTST20 ADST1	Dry Steam Dry Steam Dry Steam	1985 1989	Operating Operating Operating	Toshiba Toshiba Fuji	82.85 25	322.611 106.84492	297.0
	Aidlin 1 West Ford Flat 4			No No		ADST2 182	Dry Steam Dry Steam	1989 1988	Operating Decommissioned	Fuji MH I	w/Aidlin 2×14.5	w/Aidlin	w/Aidli
	Bear Canyon 2 NCPA I Geothermal 1			No No		182 Unit 1	Dry Steam Dry Steam	1988 1983	Decommissioned Operating	MH I Ansakko	2×11	N/A	483.6
CA - The Geysers	NCPA I Geothermal 1 NCPA II Geothermal 2 NCPA II Geothermal 2	- NCPA	No	No No No	No	Unit 2 Unit 3 Unit 4	Dry Steam Dry Steam Dry Steam	1983 1985 1985	Operating Decommissioned Operating	Ansakko Fuji Fuji	55 55 55	N/A - N/A	w/Unit 302.37
CA - The Geysers	Bottle Rock	Open Mountain Energy	No		No	N/A	8-ORC	N/A	Under construction (within one year of commissioning)	Kaishan?	N/A	-	
GA - San Ardo HI - Puna	San Ardo Puna Geothermal Venture I	Baseload Power US Ormat	No No	No	No No	1 10 Units	B-ORC Other	2022 1993	Operating Operating	Orcan	×1 35	N/A	183.39
ID - Raft River	Puna Expansion Raft River	Ormat	No No	No No	No	2 Units 1	B-ORC B-ORC	2012 2008	Operating Operating	Ormat	12 13.5	N/A N/A	w/Pun 92.94
NM - Lightning Dock	Lightning Dock Lightning Dock Repowering	Cyrq Energy	No	No No	No	Units 1-4	B-ORC B-ORC	2013 2018	Decommissioned Operating	Kaishan Turboden	15	N/A	50.93
NV - Beowawe	Beowawe 2	Ormat	No	No No	No	1	1F/2F/3F B-ORC	1985 2011	Operating Operating	MH I Barber-Nichols	17.7 3.125	N/A N/A	89.49 9.04
NV - Blue Mountain NV - Brady	Blue Mountain I Brady	Cyrq Energy Ormat	No No	No No	No No	Units 1-3 Units 1-3	B-ORC 1F/2F/3F	2009 1992	Operating Decommissioned	Ormat GE	49.5 25.1	N/A	
NV - Desert Peak	Desert Peak 2	Ormat	No	No No	No	99991 Units 1-2 Phase 1	B-ORC B-ORC B-ORC	2018 2007 2014	Operating Operating Operating	Ormat Ormat	24 14.2 22.5	N/A N/A N/A	58.02 92.25 128.39
V - Don A. Campbell	Don A. Campbell	Ormat	No	No	No	Phase 2	B-ORC	2015	Operating	Ormat	22.5	N/A	113.52
NV - Dixie Valley	Dixie Valley	Ormat	No	No No	No	1 Bottoming	1F / 2F / 3F B-ORC	1988 2012	Operating Operating	Fuji Barber-Nichols	5.2	N/A N/A	467.16 22.97
NV - Jersey Valley NV - Florida Canyon NV - North Valley	Jersey Valley Florida Canyon Mine North Valley	Ormat Florida Canyon Ormat	No No	No No	No No	1 1	B-ORC B-ORC B-ORC	2011 2012 2023	Operating Decommissioned Operating	Ormat ElectraTherm Ormat	0.1 32	N/A - N/A	
NV - North Valley NV - Patua NV - Tuscarora	Patua Tuscarora	Ormat Cyrq Energy Ormat	No No	No No	Yes No	Unit 1, 3, 5	B-ORC B-ORC	2013 2012	Operating Operating	ACMT Ormat	45 30	N/A N/A	
W - McGinness Hills	McGinness Hills	Ormat	No	No No	No	MH-1 MH-2	B-ORC B-ORC	2012 2015	Operating Operating	Ormat	35 net 35 net	N/A N/A	1176.87 W/McG
	annique IIIIIa			No No		MH-3 Expansion	B-ORC B-ORC	2018 2021	Operating Operating	Ormat	46 net 15 net	N/A N/A	w/McG w/McG
NV - Salt Wells	Salt Wells San Emidio Repower	ENEL Green Power North America Ormat	No No	No No	No No	Units 1-2	B-ORC B-ORC	2009	Operating	ACMT ACMT	18	N/A N/A	62.17 58.90
NV - San Emidio	North Valley Soda Lake 1	Ormat	No No	No No	No.	Units 1-4	B-ORC B-ORC	2023 1987	Operating Decommissioned	Ormat	25 15	-	30.90
NV - Soda Lake	Soda Lake 2 Soda Lake 3 [Repower]	Cyrq Energy	No	No No	No	Units 1-6 3	B-ORC B-ORC	1991 2019	Not operating temporarily Operating	Ormat Ormat	20 23	N/A	124.5
NV - Star Peak	Star Peak Steamboat Hills	ОМЕ	No	No No	No	N/A 50654	B-ORC 1F/2F/3F	2022 1988	Operating Decommissioned	Kaishan GE	12.5 net 21.5	N/A	N/ 210 51
	Steamboat Hills Repower Steamboat II Steamboat III			No No		GEC 51/52 S4665 S4666	B-ORC B-ORC B-ORC	2020 1992 1992	Operating Operating Operating	Ormat Ormat	35 18 18	N/A N/A N/A	210.57 50.4 54.15
NV - Steamboat	Galena 1 Richard Burdette	Ormat	No	No	No	96321	B-ORC	2005	Operating	Ormat	30	N/A	11.6.31
	Galena 2 Galena 3			No No		96540 96541	B-ORC B-ORC	2007 2008	Operating Operating	Ormat Ormat	13.5 30	N/A N/A	35.48 100.19
NV - Stillwater	Stillwater 2	ENEL Green Pawer North America	No	No	Yes	30765	B-ORC	2009	Operating	AGMT	48	N/A	97.8
NV - Tungsten Mountain	Tungsten Mountain	Ormat	No	No	Yes	1	B-ORC	2017	Operating	Ormat	50	N/A	239.3

Geothermal Field		Power Unit											
(1) Field Name	(7) Plant Name or number	(8) Plant operator	(9) Combined Heatand Power (CHP)?	(10) Co- prod.?	(11) Hybrid energy system?	mumber (EIA, CEC or		(15) Year of commission	(16) Status	(17) Turbine manufact.	(18) Installed Capacity (MW)	(19) GEP (GWh/a)	(20) NEP (GWh/a), 2021
	Wabuska 1			No		1	B-ORC	1984	Decommissioned	Barber Nichols	0.75		-
	Wabuska 2			No] [2	B-ORC	1987	Decommissioned	Barber Nichols	1	-	-
NV - Wabuska	Whitegrass No. 1	OME	No	No	No	Whitegrass No. 1	B-ORC	2018	Operating	Kaishan	4.4	N/A	19.14
	Whitegrass No. 2					Whitegrass No. 2	8-ORC	2023	Under construction (within one year of commissioning)	Kaishan	-5	-	-
NV - Blackburn	Pilot	Transitional Energy	No	No	No	Pliot	8-ORC	2022	Operating	Electratherm	0.075		
OR-OIT	OIT Unit 1	оп	Yes	No	No	1	B-ORC	2009	Operating	Pratt & Whitney	0.2	N/A	N/A
OK-OII	OIT Unit 2	1 011	res	No		2	B-ORC	2014	Not operating temporarily	JCI	1.75	N/A	N/A
OR - Neal Hot Springs	Neal Hot Springs	Ormat	No	No	No	Units 1-3	B-ORC	2012	Operating	ACMT	33	N/A	182.841
OR - Paisley	Paisley	Surprise Valley Electrification Corp.	No	No	No	1	B-ORC	2015	Not operating temporarily	Barber Nichols	3.1	-	
UT - Cove Fort	Cove Fort 3	ENEL Green Pawer North America	No	No	No	3	B-ORC	2013	Operating	Ormat	25	N/A	149.978
UT - Blundell	Blundell Unit 1	Pacificorp	No	No	No	1 - 299	1F/2F/3F	1984	Operating	GE	30.7	N/A	211.226
	Blundell Unit 2			No		2 - 299	B-ORC	2007	Operating	Ormat	14.1	N/A	w/Blundell
UT - Thermo	Thermo 1	Cyrq Energy	No	No	No	50 units	B-ORC	2008	Decommissioned	Pratt & Whitney	13	-	-
S. Herrito	Thermo 1 Repower	plud rueiBk	.20	No		1	B-ORC	2013	Operating	Ormat	14	N/A	58.458

Notes for Tables 2.1 and 2.2:

- 1. N/A: Data not available or not applicable.
- 2. Column 12 in the IGA table format is to indicate the percentage of electricity produced from geothermal for hybrid plants. As the data were not available to support those calculations, this column is not shown.
- 3. Column 14 Type of Unit: 1F/2F/3F = Single, Double or Triple Flash, B-ORC = Binary (Organic Rankine Cycle)
- 4. Column 19 GEP: Gross electrical production. Generally not available.
- 5. Column 20 NEP: Net electrical production. Generally these are 2021 year end values available from EIA.

2.2.2 California

The Casa Diablo IV project by Ormat, a 30 MW binary expansion to the Mammoth complex, started commercial operations in July 2022.

The nominal installed capacity at The Geysers (including Calpine and NCPA holdings, excluding Bottle Rock) of 1,495 MW and its field output of 6.287 TWh in 2021 keep The Geysers in position as one of the world's largest operating geothermal fields.

The California Public Utilities Commission (CPUC) developed an Integrated Resource Plan (IRP) for that state that calls for 1 GWe of new geothermal power capacity, although this may come from Nevada as well. The resource buildout is anticipated in the 2025-2030 time frame, and likely is a factor driving much of the new development mentioned herein.

Open Mountain Energy and Kaishan Group announced in late 2022 that they were taking over operations and intending to repower the idle Bottle Rock project at The Geysers (ThinkGeoenergy, 2022). Target COD for the repowering is December 2023.

In late 2022, Baseload Capital started operations of an Orcan binary plant at Chevron's San Ardo field (ThinkGeoenergy 2022). Capacity was not made public but appears to be made up of 200 kW units totaling <1 MW. This and the Transitional Energy project in Nevada (see below) are harbingers of the increasing interest in recovering heat and generating power from co-produced fluids from oil and gas wells.

Several pilot lithium extraction systems are operating at existing plants such as Hudson Ranch, which was acquired by Cyrq Energy in early 2021. Additional large developments are planned at the Salton Sea by Berkshire Hathaway Renewables (BHER), which has been developing its Lithium extraction technology for the past few years. Controlled Thermal Resources (CTR) has acquired significant lease holdings, drilled and tested its delineation wells and announced an agreement with Fuji in early 2023 for the supply of multiple units at the Hell's Kitchen combined lithium and power production project. While the buildout will depend on the available resource, the intention is for six 55 MW units, 330 MW in total (ThinkGeoenergy, 2023).

2.2.3 Hawaii

In late 2020, the Puna power plant resumed operations after an eruption and lava flow in 2018 that covered several wells and damaged a substation.

2.2.4 Idaho

The Raft River binary plant, operated by Ormat, remains the only geothermal electrical generator in Idaho.

2.2.5 Nevada

Cyrq Energy's Soda Lake repower project using Ormat equipment was commissioned in 2020 as anticipated in the last update.

Ormat continued to add capacity in 2021 at McGinness Hills with an expansion of 15 MW. With more than 135 MW (net) so far, McGinness is a successful illustration of a large, stepwise development of a binary geothermal power complex, one of several operated by Ormat. Completion of the 25 MW North Valley project at the San Emidio field was announced in April 2023.

Open Mountain Energy (OME, a subsidiary of Kaishan Group) integrated their Star Peak project to the Nevada grid in August 2022. The project had been completed in 2021 but interconnection was delayed by the utility. This plant is at the site of the previously named Rye Patch-Humboldt House project. OME is expanding operations at the Wabuska field with a planned second Whitegrass unit anticipated to start operations in mid-2023.

Transitional Energy reported the start of operations in 2022 of a pilot plant at an oilfield in rural Nevada, using an Electratherm binary unit. A gradual scale-up to about 1 MW is planned (Cestari, 2022).

2.2.6 New Mexico

The Lightning Dock 14 MW project, operated by Cyrq Energy with power plant equipment from Turboden, remains the only utility-scale geothermal electrical generator.

2.2.7 Oregon

The three binary units at Neal Hot Springs are now operated by Ormat, after acquiring them from U.S. Geothermal. These likely will be repowered with Ormat technology in the coming years. Small units were installed at the Oregon Institute of Technology (OIT) in 2014 and Paisley in 2015, but these have encountered technical challenges, and are yet to reach their full generation potential (Dr. John Lund, personal communication, 2019).

2.2.8 Utah

At Roosevelt Hot Springs, the single flash + binary bottoming plants at Blundell continue to operate. Cove Fort and the Thermo 1 re-powering (using Ormat equipment) are the only operating plants in Utah. The Utah FORGE project (located in Milford, close to the Blundell plant) continues to make progress, but power production and sales are not anticipated from this underground laboratory.

3. RECENT GEOTHERMAL TRENDS

3.1 Geothermal Electricity Market Trends

In the 2019 GeoVision study (US DOE 2019), DOE-GTO concludes that technology improvements – many of which are being actively investigated today – could significantly increase geothermal power generation in the United States. DOE-GTO estimates the geothermal potential of the United States at 60 GW, including capacity from Enhanced Geothermal Systems (EGS). In 2009, the United States Geological Survey (USGS) estimated that the known conventional hydrothermal resources in the United States can potentially supply another 9,000 MW of power, and that the potential of undiscovered resources is on the order of 30,000 MWe (Williams *et al.*, 2009), some of which may be provided by resources in deep sedimentary basins (see, for example, Allis *et al.*, 2011).

Though demand for geothermal power has historically lagged that of other renewables, the US has seen an unprecedented increase in demand for 24/7, carbon-free energy since the summer of 2021. In June 2021, the California Public Utilities Commission issued a monumental ruling (CPUC, 2021) requiring that all California Load Serving Entities (LSEs) procure between them 1 GW of firm, non-weather dependent, clean power by 2026, a date that was recently extended by 2 years. Driven to procure an amount of firm, clean power proportional to their share of peak demand, LSEs have entered into long-term power purchase agreements with geothermal developers at an extraordinary pace. In addition, the rising costs of battery energy storage has put geothermal energy on a much more competitive footing with other renewables on a USD/MWh basis.

Individual states are not the only entities seeking to bolster reliability, reduce costs, and meet aggressive clean energy targets. The federal government too has begun to value firm alternatives as necessary complements to intermittent energies. In December 2021, President Biden issued an Executive Order aimed at catalyzing clean energy industries and jobs through federal sustainability, mandating that the government use its scale and procurement power to achieve 100 percent carbon pollution-free electricity by 2030, including 50 percent 24/7 carbon-free electricity.

Additionally, voluntary clean energy goals have driven corporations and universities to search for ways to effectively match their hourly load and heat their campuses. Microsoft ("100/100/0" or 100% electricity 100% of the time to be matched by 0 carbon energy), Google (24/7 Carbon-Free Energy or "CFE" by 2030), and there is increasing interest in geothermal energy solutions (and more geothermal curricula) on university campuses.

Recognizing the adjacency in skills, techniques and operations, the oil and gas sector has become increasingly active in the geothermal sector. Major and minor oil and gas companies are planning geothermal developments and bringing new innovations to the sector. Previous testing such as pilot plants such as the Rocky Mountain Oilfield Testing Center (RMOTC) operating in 2011-2012 and projects in the Williston Basin have demonstrated that binary units can harvest thermal energy from hot water in deep basins, and oil and gas operators are well aware of the opportunity to produce their hot water cut. Although the differences in completions make repurposing oil and gas wells difficult, the availability of subsurface information and production data provide a strong basis for quantifying the flow rates and temperatures of hot water that can be produced from oil and gas fields.

As examples, in 2022:

- Transitional Energy started operations of a pilot plant in May at an oil field in Nevada.
- Baseload Capital started operations of a binary plant in Chevron's San Ardo oil and gas field in July.

In addition, DOE-GTO's GEODE project was recently awarded to a broad consortium that includes deep expertise in geothermal, oil and gas, with the specific goal of cross-pollination of techniques and technologies from the geothermal and oil and gas sectors.

Learnings from these projects are being applied to more power generation and direct use applications throughout the USA at suitable sites, helping to foster collaboration across the geothermal and oil and gas industries. According to a 2023 report from the University of Texas (Austin) report (Beard *et al.*, 2023), 80 percent of oil and gas entities interviewed for the report note they have a geothermal strategy in place or under development. Installations such as these can serve as a capacity building "bridgehead" for larger projects. In addition, at the request of Energy Secretary Jennifer Granholm, a December 2022 National Petroleum Council report on net zero solutions included a section on geothermal energy.

In summary, geothermal energy in the United States is receiving significant new capital, attracting new entrants, and innovating like never before. Project development is accelerating to match increased demand, new power projects are underway across the western USA. Further east, projects are unfolding from the Williston Basin in North Dakota to the Gulf Coast in Texas and Louisiana, leveraging existing data from the many wells in deep sedimentary basins.

3.2 Power Plant Trends

Several trends seem to be continuing or are new since the 2020 update, as discussed in the section below. These include:

- A slow-down in consolidation
- Co-production
- Capacity addition through facility optimizations and upgrades

These trends are discussed briefly in the sections below.

3.2.1 Consolidation is Slowing

Consolidation allows geothermal operating costs to be spread over a larger portfolio, helping make geothermal more competitive with low-cost intermittent renewables such as wind and solar. The 2020 USA update mentioned acquisitions such as U.S. Geothermal by Ormat, and the Patua and Blue Mountain projects by Cyrq Energy. This acquisition and consolidation trend has continued for this 2023 update, as illustrated by Beowawe and Dixie Valley being acquired by Ormat in 2021. Macquarie Infrastructure and Real Assets (MIRA), an investor in renewable worldwide such as in The Philippines' Energy Development Corporation, also acquired Cyrq Energy with its previous holdings and the Hudson Ranch project that Cyrq acquired in 2021. The number of single-owner operating plants available for acquisition is diminishing, so consolidation appears to be slowing down internally within the geothermal sector. However, the re-entry of oil and gas may counter this trend.

Greenfield developers currently without operating plants (*e.g.*, CTR, Fervo, etc.) and larger established operating companies (*e.g.*, BHER, Calpine, Ormat etc.) are ramping up their development pipelines to meet the growing demands for added capacity from the CPUC and from community choice aggregators seeking clean 24/7 power.

3.2.2 Co-Production

The 2020 update mentioned hybridization (co-locating geothermal and solar or other generation technology) as an ongoing trend, as illustrated by such facilities at Stillwater, Patua, and Tungsten Mountain. Harvesting multiple value streams by leveraging existing infrastructure seems useful at any facility. A more prevalent theme in 2023 appears to be co-production, particularly with respect to strategic minerals such as lithium. Given the transformation of the energy storage industry, an acceleration towards electric vehicles, and rising lithium prices, geothermal projects that have a lithium extraction aspect have attracted major investments or interest from companies such as GM, Stellantis, SLB New Energy, Italvolt and others. Interest in strategic minerals recovery from geothermal is rising worldwide, but the strength of the resource and multiple research and development efforts in the Salton Sea geothermal field should make it one of the most promising areas to follow. Other co-production opportunities exist within deep sedimentary basins, as noted above.

3.2.3 Capacity Addition Through Facility Optimizations and Upgrades

While greenfield projects draw more media attention, the potential for capacity increases at existing facilities through optimization and retrofits should not be overlooked. Over time, field characteristics usually drift away from original design points, and equipment gradually degrades. Both effects lead to reduced output compared to what would be possible with better fitting newer eqiopment. Figure 3 shows the collective MW sizes of these aging cohorts of existing plants. Plants already decommissioned are not reflected in the figure, nor have older plants that have already been repowered been reset to a "new" commissioning decade.

Calpine's Super-rotor program with associated plant upgrades (Maedomari and Avery, 2011) is an example of a decade-plus effort to rehabilitate many units at The Geysers that were commissioned in the 1970s and 1980s. Re-powerings with upgrades in major equipment such as turbines and cooling systems are an opportunity to increase generation with best available technology and improve power delivery as the resource evolves over time. Increasing capacity and generation at existing facilities through operational tuning or retrofits have fewer hurdles related to permitting and power purchase agreement, helping to accelerate geothermal growth.

The process of plant re-optimization can be assisted with improved data collection, analysis and optimization procedures. Research programs such as GOOML (Geothermal Operational Optimization with Machine Learning) may provide more tools to help operators find improved configurations for interconnected power plants and fields (Siratovich *et al.*, 2022). If the US geothermal industry is expected to add more than a GW of new plant capacity in the next decade, a significant proportion of effort during that period needs to be steadily directed towards upgrade opportunities for the existing plants as they age.

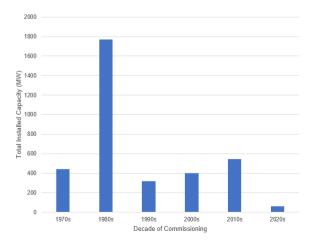


Figure 3: Total installed USA geothermal capacity as a function of decade of original plant commissioning

3.3 Geothermal Electricity Policy Support

Though the geothermal energy industry has historically been at a consistent disadvantage with lagging policy support - reflecting the widespread de-emphasis on the importance of geothermal power in the US energy mix - the tide has very recently begun to turn. Between the summer of 2021 and the end of 2022, as the market began to take notice of the premium value that 24/7 carbon-free baseload energy can provide, so too did policy makers begin to take an increased interest in what the industry might need in order to scale.

The US-based geothermal industry has experienced wins and substantial progress in both federal and state realms that have paved the way for significant forward momentum in the years ahead.

3.3.1 Federal Highlights

At the very end of 2021, President Biden signed an Executive Order directing federal facilities to achieve 100% carbon-free electricity by 2030, including 50% on a 24/7 basis, clearly delineating geothermal as an eligible source. Though the geothermal industry had hypothesized that the federal government would eventually ramp up their renewable power procurement efforts, an order of such magnitude exceeded expectations in terms of the value that Biden administration has placed on firm, clean power.

In a piece of truly historic energy and climate legislation, the federal government passed into law the Inflation Reduction Act (IRA) during the summer of 2022. The single largest investment by the US government in the history of clean energy and climate change, the IRA elevated geothermal tax incentives to an unprecedented level, finally putting the industry on a level playing field with other renewables. Under the IRA, geothermal tax incentives will have unprecedented longevity and be generally transferable, allowing companies to sell some tax credits to other entities directly. The legislation has specific provisions tied to labor requirements, environmental justice, domestic sourcing, and preferential siting for entities to earn tax credits; fortunately, geothermal projects are generally well-suited to meet these requirements.

Although the IRA legislation has a first focus on the short term (for projects that begin construction before 2025), this important legislation restores federal tax credits to the full rate for new renewable energy projects for 2025 and beyond in the Clean Energy Investment Tax Credit (CEITC) and the Clean Energy Production Tax Credit. The CEITC provides a two-tier investment tax credit equal to the eligible costs of qualified facilities (including geothermal) placed in service after December 31, 2024 at rates corresponding to the 30% ITC (6% "base"/30% maximum). For electricity produced at qualified facilities that are placed in service after December 31, 2024 and sold to unrelated taxpayers (like a utility), the CEPTC provides a two-tier, inflation-adjusted tax credit equal to the corresponding PTC amounts of 0.3 cents/kWh "base"/1.5 cents/kWh maximum, as adjusted for inflation (which for taxable year 2022 is equal to 2.6 cent/kWh). Both tax credits will phase down to 75% of the relevant credit amount for projects that begin construction in the second year following the later of (i) 2032 or (ii) the calendar year in which Treasury determines that the annual greenhouse gas emissions from the production of electricity in the United States are equal to or less than 25% of those emissions for calendar year 2022. A further reduction to 50% of the credit amount will occur in the following year and no credits will be allowed for projects that begin construction thereafter. Both credits are also subject to prevailing wage and apprenticeship requirements, and could benefit from incremental credit amounts if one or more of the domestic content, the energy community, or the low-income community rules are met.

In addition to historic tax legislation, the geothermal industry saw a record increase in federal appropriations and attention focused on facilitating the permitting process for geothermal projects. The Bipartisan Infrastructure Law (BIL) dedicated \$84 million to funding geothermal demonstration projects, and the Geothermal Technologies Office saw an eight percent increase in topline funding, expanding the annual budget to \$118 million.

There has been additional emphasis placed on leasing and permitting reform for geothermal projects. With much of the nation's quality geothermal resources existing under federal lands, the leasing and permitting processes can be key gating factors to the success of geothermal developments. This year, a much greater emphasis was placed on solving the challenges associated with leasing and permitting geothermal energy projects on federal lands, and geothermal leasing and permitting was mentioned in the Enhancing Geothermal Production on Federal Lands Act, the Public Land Renewable Energy Development Act, the Transparency and Production of American Energy Act, and the Committing Leases for Energy Access Now Act. All of this legislation represents positive progress from a permitting perspective, and the industry is optimistic about near-term resolution on this issue.

3.3.2 State Highlights

In the summer of 2022, Western Governors Association (WGA) Chair Jared Polis launched the Heat Beneath Our Feet (HBOF) as the leading annual initiative for the Association. Through the initiative, the WGA will examine opportunities for and barriers to the increased deployment of geothermal energy technologies for both electricity generation and heating and cooling systems in the Western US. With the launch of this initiative, the leaders of those states with some of the highest geothermal potential on the globe indicated the priority focus on geothermal energy for both electricity generation and building heating and cooling.

Another important initiative at the state level is the aforementioned California CPUC ruling that mandated that all California LSEs (as a group) must procure 1 GW of firm, non-weather dependent, clean power by 2028. Geothermal power is perfectly suited to provide what the CPUC requires, and US geothermal developers (particularly in California and Nevada) are actively responding.

4. FEDERAL GEOTHERMAL RESEARCH & DEVELOPMENT INITIATIVES

4.1 Introduction

The primary federal agency responsible for geothermal R&D initiatives is the U.S. Department of Energy's Geothermal Technologies Office (DOE-GTO), whose mission is to drive research and development (R&D) and manufacturing solutions to address technical challenges and support widespread development and deployment of innovative, clean, geothermal energy technologies. Technological innovation will help reduce the costs and risks in converting geothermal resources into useful energy services.

4.2 Recent DOE-GTO Programs

DOE GTO supports projects across the geothermal spectrum; major programs during the last few years are presented below.

4.2.1 Frontier Observatory for Research in Geothermal Energy (FORGE)

DOE-GTO's flagship FORGE initiative is a dedicated site where scientists and engineers will be able to develop, test, and accelerate breakthroughs in EGS technologies and techniques. FORGE is a critical step toward creating a commercial pathway to EGS because it will promote transformative and high-risk science and engineering through the development and testing of cutting-edge technologies, which the private sector is not financially equipped to undertake. FORGE will bridge lessons learned from past DOE-funded and international EGS field demonstrations, and R&D portfolios, and with broad collaboration among academia, industry, and DOE National labs, facilitate optimization and validation of EGS technologies. Initiated in FY 2015, the FORGE initiative has been rolled out in three phases:

- 1) Planning
- 2) Site Characterization and Selection (the site in Milford, Utah was selected)
- 3) Technology and Evaluation

Since 2020, the Utah FORGE Team has undertaken a series of activities that have included extensive community outreach, conceptual resource modeling, installation of a seismic monitoring network, drilling several seismic monitoring wells, and drilling full-diameter wells, including the doublet that that has been subjected to well testing and stimulation, and extensive numerical reservoir modeling.

In February 2021, DOE awarded \$49 million to 17 research and development (R&D) projects. In addition, Utah FORGE has made several technology solicitations, as shown in Figure 3. In April 2022, the first hydraulic stimulation of the first full-diameter well was successfully conducted, and the second full-diameter well of the doublet was completed in mid-2023. Both wells are deviated, achieving angles of up to 60° from vertical. The doublet is a testing ground for various EGS tools and technologies. Progress made at Utah FORGE to date can be found at the Utah FORGE website (https://utahforge.com/laboratory/), which also has extensive links to information in the Geothermal Data Repository (GDR).

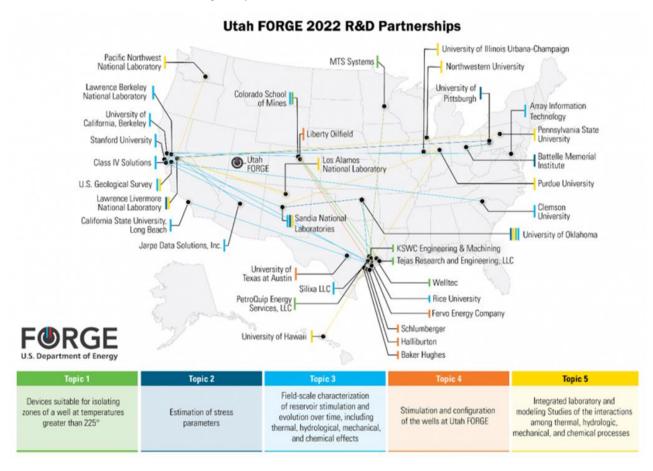


Figure 3: 2022 R&D topics and partnerships at Utah FORGE (https://utahforge.com)

4.2.2 Geothermal Energy from Oil and Gas Demonstrated Engineering (GEODE)

DOE-GTO has taken an important step with the GEODE project, which will facilitate the natural synergies between two closely adjacent sectors: oil and gas and geothermal. In May 2023, this project was awarded to a consortium that includes Project InnerSpace, the Society of Petroleum Engineering International (SPE) and Geothermal Rising (GR), and many partner entities. The first phase of GEODE provides \$10 million to identify barriers and develop a roadmap to advance geothermal using expertise from the oil and gas sector. The second phase (5 years) will provide up to \$155 million more to address technical, workforce and public engagement challenges, with the goal of reducing development costs and expanding geothermal power projects at a rapid pace.

4.2.3 American-Made Geothermal Prize

The United States Department of Energy's American-Made Challenges prize program (https://americanmadechallenges.org/) was launched in 2018 to support US entrepreneurship and innovation in clean energy. To date, DOE has awarded about \$100 million in cash and incentives to competitors in more than 30 prizes spanning solar, water, geothermal, buildings, hydrogen, energy storage,

transportation, technology transitions, manufacturing, and more. In April 2022, a new Geothermal Geophone Prize was announced, offering \$3.65 million in incentives to develop high-temperature seismic sensors (geophones) that collect real-time data on subsurface changes during EGS stimulations.

4.2.4 Community-Scale Geothermal Heating and Cooling Systems

Although this paper focuses on geothermal power projects, DOE-GTO has a recent focus on geothermal heating and cooling. In May 2022, DOE-GTO announced a new Funding Opportunity Announcement (FOA) that speaks directly to using geothermal energy for decarbonizing heating and cooling, noting that more than half of US home energy use is for heating. The goal: reducing CO2 emissions by eliminating fossil fuels for heating and cooling by replacing it with geothermal energy at the community scale, using coalitions that include community, workforce, design/analysis, and deployment expertise to implement clean and renewable heating and cooling systems.

4.2.5 Geothermal Collegiate Competition

This US DOE program is promoted to university students to learn more about geothermal energy, consider new career opportunities, learn geothermal skills, and connect to communities. As part of the competition, students assumed the role of project developers, working with communities across the U.S. to identify local energy challenges and explore geothermal energy solutions. In addition to technical research, teams conducted an economic feasibility analysis, crafted a strategy for local stakeholder engagement, and created geothermal education modules in partnership with local schools. Students from the University of Oklahoma team won first place and \$10,000 in prize funding. The university students designed a system for repurposing six abandoned oil and gas wells in Oklahoma that would provide clean, renewable geothermal energy for more than 730,000 square feet of educational and municipal buildings, including sites in the jurisdictions of the Shawnee Tribe and Potawatomi Nation.

5. SUMMARY

During the previous three years, the installed geothermal power capacity increase by approximately 100 MW. The pace is increasing now in response to the CPUC mandate, and the United States will experience an uptick in the pace of geothermal installations through 2028. The combination of state initiatives, increasing focus on the strategic value of mineral recovery and interest in leveraging geothermal power from deep basins that host existing oil and gas fields should drive the rate of capacity addition to several hundred MW per year. The US geothermal industry - in combination with the oil and gas industry - has an unprecedented opportunity to use their combined capabilities to increase geothermal deployment across a spectrum of resource types. It will be critical to capitalize on these advantages now to solidify geothermal's reputation in the United States as a preferred baseload source of clean electricity, and an important source of co-produced strategic minerals.

6. ACKNOWLEDGEMENTS

The authors are indebted to the operators of geothermal projects in the United States for their input to this paper, which is significantly more informative because of their contributions. In addition, the authors are grateful for the permission of their respective employers to spend time preparing this USA Country Update for geothermal power generation.

REFERENCES

- Allis, R., Moore, J., Blackett, B., Gwynn, M., Kirby, S., and Sprinkel, D. 2011. The potential for basin-centered geothermal resources in the Great Basin, Geothermal Resources Council Transactions, Vol 35.
- Beard, J., and Jones, B. (eds.). 2023. The future of geothermal in Texas. Mitchell Foundation. Available from https://repositories.lib.utexas.edu/bitstream/handle/2152/117203/FullReport.pdf (accessed March 2023).
- California Energy Commission (CEC), 2022. California geothermal energy statistics and data. California Energy Commission. Available from https://ww2.energy.ca.gov/almanac/renewables-data/geothermal/index-cms.php (accessed November 2022).
- Cestari, N., 2022. Transitional Energy. CORE Knowledge Podcast. Aired September 13, 2022. Available from https://core-knowledge-podcast-Z6y0OJVb (Accessed February 2023).
- CPUC. 2021. Administrative law judge's ruling seeking comments on proposed preferred system plan. California Public Utilities Commission. Available from https://docs.cpuc.ca.gov/PublishedDocs/Efile/G000/M399/K450/399450008.PDF (Accessed March 2023)
- Department of Energy (United States). 2019. GeoVision: Harnessing the Heat Beneath Our Feet. Published by the Office of Energy Efficiency and Renewable Energy (EERE); available at https://www.energy.gov/eere/geothermal/downloads/geovision-harnessing-heat-beneath-our-feet (accessed March 2023).
- EIA. 2022. Electric Power Annual. U.S. Energy Information Administration. Available from https://www.eia.gov/electricity/annual/ (accessed November 2022).
- Maedomari, J. and Avery, J., 2011. Turbine upgrades for Geysers geothermal power plant. GRC Transactions, Vol. 35. 2011.
- National Petroleum Council, 2022. Principles, and Oil & Gas Industry Initiatives and Technologies for Progressing to Net Zero. Available from https://www.npc.org/ (accessed January 2023).
- Robertson-Tait, A., Harvey, W., Hamm, S., and Boyd, L. 2020. The United States of America country update 2020 power generation. Proceedings of the World Geothermal Congress; 2021 October 24-27; Reykjavik, Iceland.
- Siratovich, P., Blair, A., Marsh, A., Buster, G., Taverna, N., Weers, J., Siega, C., Urgel, A., Mannington, W., Cen, J., Quinai, J., Watt, R., Akerley, J., 2022. GOOML Real world applications of machine learning in geothermal operations. GRC Transactions, Vol. 46, 2022.

- ThinkGeoEnergy. 2023. CTR taps Fuji Electric for Hell's Kitchen geothermal project. Available from https://www.thinkgeoenergy.com/ctr-taps-fuji-electric-for-hells-kitchen-geothermal-project/ (accessed March 2023).
- ThinkGeoEnergy. 2022. Ormat chosen as EPC contractor for Unalaska geothermal project. Available from https://www.thinkgeoenergy.com/ormat-chosen-as-epc-contractor-for-unalaska-geothermal-project/ (accessed June 2022).
- ThinkGeoEnergy. 2022. 12.5 MW Star Peak geothermal project connected to grid in Nevada. Available from https://www.thinkgeoenergy.com/12-5-mw-star-peak-geothermal-project-connected-to-grid-in-nevada/?utm_source=linkedin&utm_medium=social&utm_campaign=news (accessed August 2022)
- ThinkGeoEnergy. 2022. Baseload and Orcan Energy commission oilfield waste heat project. Available from https://www.thinkgeoenergy.com/baseload-and-orcan-energy-commission-oilfield-waste-heat-project/ (accessed November 2022).
- Williams, C., Reed, M., Mariner, R., DeAngelo, J., and Galanis, S., 2008. Assessment of moderate- and high-temperature geothermal resources of the United States. U.S. Geological Survey. Available from https://pubs.usgs.gov/fs/2008/3082/ (accessed March 2023).