Country Update of Japan

Kasumi Yasukawa¹, Ayaka Abe¹, Kazuki Tsushima¹, Shota Oda¹ and Masakatsu Sasada²

¹Japan Oil, Gas and Metals National Corporation (JOGMEC), 2-10-1 Toranomon, Minato-ku, Tokyo, 105-0001 Japan

²Geo-Heat Promotion Association of Japan (GeoHPAJ), 5-29-20 Ogikubo, Suginami-ku, Tokyo, 167-0051 Japan

yasukawa-kasumi@jogmec.go.jp

ABSTRACT

Located along the Circum-Pacific Volcanic Belt "Ring of Fire," Japan is blessed with an abundance of geothermal energy. Japan has a national target to increase geothermal power capacity to be 1500 MW by 2030. However, the installed capacity by 2021 is merely 546MW in spite of a wide range of supporting measures by the government. The Ministry of Economy, Trade and Industry will continue its support to fulfill the target even if some delay may be admitted. Beside promotion of geothermal developments, the ministry supports geothermal R&D. A highlight of current national research project is subduction origin super critical geothermal resources development which has a target year of 2040 for pilot a plant operation. Use of ground source heat pump (GSHP) has been increasing, but its increase rate is declining recent years. For its promotion, The Ministry of Environment has been providing subsidies for its demonstration projects. The detailed trend and technology development will be presented in this paper.

1. INTRODUCTION

The Japanese Islands are located at the eastern end of the Eurasian Plate at the junction of the Pacific and Philippine Sea Plates. Its archipelago is considered to have been built by the subduction activities such as accretion, metamorphism, magmatism and volcanism. Thus, its geology is composed mainly of accretionary complex, metamorphic rocks, plutonic and volcanic rocks and surface sediments. Under such geological settings, Japan has 111 active volcanoes, including newly added three volcanoes in 2011 and 2016, that is 7% of the volcanoes on the earth (JMA, 2017). Therefore, most of promising geothermal resources in Japan has volcanic origin.

Japan is blessed with geothermal energy with theoretical potential to a depth of 3 km of over 20 GW_e (Muraoka et al., 2008). In spite of this fact, the use of geothermal energy in Japan is still limited (Table 1). No new geothermal development had been done for more than a decade since year 2000 mainly because of legal, social and socio-economic barriers. The three major barriers were; 1) regulations on natural parks, 2) development risk and cost, and 3) social acceptance. However, the former two problems have been largely mitigated after the nuclear accident in 2011 by the federal government, changing several regulations on natural parks and putting new economic incentives to promote geothermal development. The third one may not be easily mitigated in a situation that negative campaigns to geothermal developments by hot spring owners are so influential that geothermal projects have been delayed or even stopped in several cases. Nevertheless, the government has begun several actions to raise social acceptance of geothermal development. Given such support from the government, private sectors moved toward geothermal development drastically.

Installation of ground source heat pump (GSHP) systems increased steadily in Japan. Although the number of installations is still limited to few thousand yet, the annual installation is increasing exponentially. The government gives incentives in installation of GSHP system mainly from environmental aspects. On the other hand, conventional direct use has not increased significantly (Table 2). This paper provides status of Japan in 2022 for geothermal power generation, conventional direct use, and GSHP separately.

2. GEOTHERMAL POWER GENERATION

Table 2 shows the present status of geothermal power plants in Japan (as of March 2021). Because of high FiT price for small geothermal power, numerous local companies begin small geothermal businesses applying binary systems to high temperature hot spring wells. Therefore, it is quite difficult to collect data from these very small power plants and several such plants may be missing in Table 2. Many of small power plants does not provide power generation data so that the power generation is left blank for these power plants in Table 2. Therefore, the total amount of power generation must be slightly bigger than shown in Table 2.

Due to long leading time of geothermal power plants in Japan, no "full-scale" geothermal power plant had been commissioned for many years after the new economic incentives by the government has been set since 2012. Finally in 2019, two flush-type power plants started operation at Matsuo-Hachimantai (7.499 MW) in Iwate prefecture and at Wasabizawa (46.199 MW) in Akita prefecture. Several other full scale power plants are planned, such as Oyasu (to be 15 MW in 2024) in Akita prefecture.

The Ministry of Economy, Trade and Industry (METI) is providing various supports for geothermal development. Feed in Tarif (FiT) mechanism, public acceptance activities, and certain technology developments are directly supported by METI while most technology developments and subsidies are done by METI's funding agencies such as Japan Oil Gas and Metal Company (JOGMEC) and New Energy and Industrial Technology Development Organization (NEDO). Currently NEDO is conducting a long-term project "Subduction origin super critical geothermal resources" targeting power generation by super critical geothermal resources in 2050. JOGMEC develops technology for cost reduction/speed-up of geothermal development and sustainable geothermal power generation

such as exploration technology, drilling technology, EGS technology and monitoring technology. Beside technology development, JOGMEC also provides economic incentives to private developers through low-interest loan, exploration and drilling subsidies, etc.

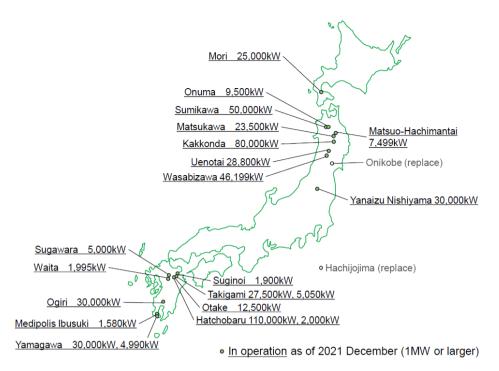


Figure 1: Major geothermal power plants in Japan as of December 2021 (TNPES, 2021)

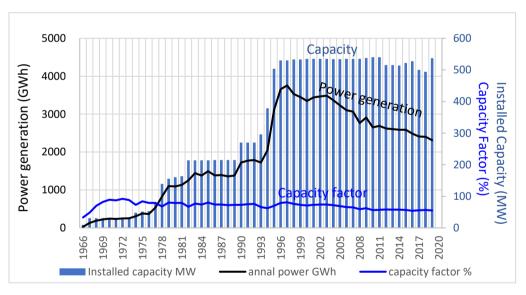


Figure 2: Geothermal power in Japan: total installed capacity, power generated, and capacity factor (TNPES, 2021)

A topical thing for 2021 is changes of legal frameworks for geothermal drilling in hot spring law as well as in natural park law.

Toward a carbon neutral society, in early 2021 a taskforce under the cabinet of Japan reviewed laws which prevent deployment of renewable energy. For geothermal power generation, the taskforce requested amendment of a guideline and a notification under hot spring law and natural park law, respectively. Therefore, MOE conducted these amendments in September 2021 as described below.

In Japan, permission of a geothermal-well-drilling is given by local government (prefecture) following "hot spring low" which guideline describes cautions on drilling of a new well to protect already existing hot spring wells. Under this low, many prefectures set regulation on spacing or density of drillings. However, such regulations are not appropriate for geothermal drillings, in which multiple well drilling from an identical drilling base is common. Also, permission for each well is not appropriate from a viewpoint of reservoir management. Therefore, amendment in 2021 was concentrated to change the guideline from "well to well control" to "reservoir control." MOE ordered local governments to withdraw regulation that limits spacing or density of geothermal drillings. Under the new guideline, drilling permission of the second or later wells into an identical reservoir by identical geothermal developer

should be given easier than before only if a proper reservoir evaluation is done. On the other hand, drillings into an identical reservoir by another developer or drillings without reservoir evaluation may not be permitted. Thus, the new guideline must encourage larger geothermal development but discourage "overfishing."

Natural parks in Japan (national parks and prefecture parks) are divided into five zones from more protected zone to less protected zone as follows: special protection zone, special zone 1, special zone 2, Special zone 3 and normal zone. Among them, special zones 2 & 3 and normal zone are used for residence and commercial activities. Geothermal power generation in special zones 2 & 3 and normal zone, and directional drilling toward special zone 1 are allowed under some conditions as described in notification of natural park law. However, the conditions such as "not disturbing the scenery" or "with special caution on environment" are not very specific so that the judgement by the local authority have not been uniform. Furthermore, since the prescription of the notification clarifies as "geothermal power generation is basically prohibited in natural parks," most geothermal projects in natural parks have been rejected although they might have satisfied the conditions. By the regulation easing in 2021, the very sentence in the prescription is deleted and a new sentence "Geothermal power generation with special caution on environment should be encouraged" is inserted. Many good examples of geothermal projects "not disturbing the scenery" and "with special caution on environment" are added into the notification to specify the conditions.

3. DIRECT HEAT USE

Table 3 shows the summary of direct use geothermal heat in Japan. There is no new census for conventional direct heat use. Therefore, the same value as the paper in WGC2020 is used to compile data for Table 3.

The census on GSHP in Japan is conducted every other year by MOE and the latest data "census 2020" was released in 2021 (MOE, 2021). The installation of GSHP in Japan has been increasing in recent years, although the total number is still rather small (Figure 3). The total number of facilities using GSHPs is 2,994 (2,662 in "census 2018") including 2,511 (2,314) closed-loop, 460 (327) open-loop, and 22 (21) using both^{4,6}. No data is shown for capacity and energy use in the census 2020. According to a report based on the census 2018, installed capacity of all the GSHPs is 163 MW $_t$, and annual energy use is 765 TJ/yr (Yasukawa et al., 2021).

Many systems have been installed in the northern regions including Hokkaido where heating needs are intensive, indicating the economic predominance of GSHPs when they replace an old oil boiler with a GSHP. GSHPs are also widely used in other parts of Japan; cooling needs are quite high in the middle to south-western Japan and GSHP with high performance COPs for cooling are contributing to electricity savings.

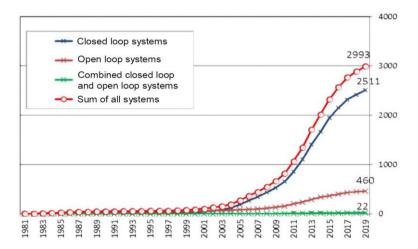
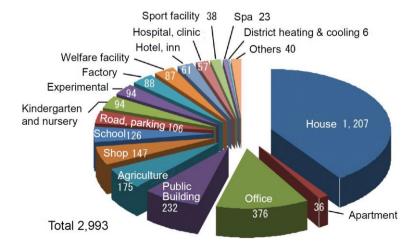



Figure 3 Cumulative installations of GSHP systems in Japan (MOE, 2021)

Figure 4 The number of facilities using GSHP system (MOE, 2021)

Figure 4 shows the cumulative number of GSHP systems by different facilities category (MOE, 2020). The largest share is individual houses, followed by offices and public buildings. There are 36 installations for apartments which was zero in the former census in 2018.

4. RESEARCH HIGHLIGHT

4.1 Geothermal Power

Two METI funded agencies; JOGMEC and NEDO (New Energy and industrial technology Development Organization), started projects in 2013 developing geothermal technology. NEDO began research on subduction-origin supercritical geothermal resources with a target year of 2040 for a pilot plant to be operational. This is one of the NESTI2050 projects, which is looking to contribute to the 2050 CO₂ reduction targets set by the Cabinet of Japan in 2017. The NEDO work is focusing on geothermal technologies that are to be realised in the longer term whilst JOGMEC is focusing on surveys, technologies and support that are effective in the short term.

In order to promote geothermal development, JOGMEC has undertaken a survey program to acquire basic data for the evaluation of some geothermal prospects since 2013. The program currently consists of airborne helicopter geophysical survey, land-based geological and geophysical surveys, and slim-hole drillings for subsurface temperature survey. The acquired data is published and used by private companies to develop their new exploration projects. By the end of 2021, airborne surveying had been conducted in 19 regions, land-based survey in 18 regions, and slim-hole drilling in 17 regions.

JOGMEC has four technology development R&D project themes with the specific projects under these themes: (A) Technology for Exploration of Geothermal Reservoirs, (B) Drilling Technology, (C) Drilling Technology, and (D) Innovative Geothermal Technology. Currently innovative technology includes (i) EGS technology development using supercritical Carbon Dioxide and (ii) Closed circuit heat exchange technology.

Since 2017, NEDO has been conducting an R&D project "Development of subduction-origin supercritical geothermal resources" to utilize 400 to 500°C supercritical fluid at a depth shallower than 5km. Earlier surveys suggested supercritical geothermal resources may exist in/around many of the volcanic zones in Japan with total potential possibly of several tens of giga-watts. 2040 is targeted for the operation of a pilot plant (Asanuma et al., 2021).

To overcome problems with acid fluid in supercritical conditions, the project covers various fundamental scientific studies in; rock mechanics, material science, geo-science, as well as technology development, numerical simulation and drilling. The basic studies are being led and conducted by the National Institute of Advanced Industrial Science and Technology (AIST) and Kyoto University. The first phase of the project was completed in 2020 and the second phase began in 2021 to select a region for deep drilling in the 3rd phase.

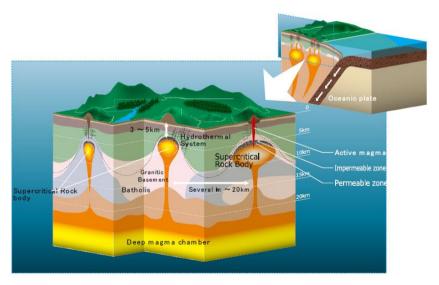


Figure 5 Conceptual Model of Supercritical Geothermal Resources in Northeast Japan (Asanuma et al., 2021)

4.2 GSHP

Japan has been developing GSHP system suitability mapping based on groundwater flow modelling in basins and plains. The study funded by NEDO, was initiated by AIST and several universities and companies have subsequently become involved.

In Quaternary basins and plains consisting of unconsolidated sediments in monsoon Asia, effective thermal conductivity of shallow underground rocks largely differs from one place to another due to both the existence of aquifers and the advection effect of groundwater flow. Since saturated rock has a higher thermal conductivity, existence of a shallow aquifer raises the heat exchange rate so that information on the water table becomes important. Also, since higher water velocity gives higher heat exchange rates, information on 3D groundwater flow is useful for designing subsurface heat exchangers.

Water table and flow velocity information is indispensable for open loop system design.

Groundwater studies based on field surveying and numerical simulation have been used to prepare separate suitability maps for open and closed loop systems. Separate maps for only heating demand, and heating and cooling demand, have been prepared based on subsurface temperature data. Shrestha et al. (2018) shows good example of separate suitability maps for closed loop and open loop systems in the Aizu Basin. This identifies suitability for open or closed loop systems according to the site location.

Based on the study results, eleven municipals in Japan have compiled GSHP suitability maps from their own budget resources and opened the information up to their citizens seeking to increase the use of GSHP in their municipalities; with benefits from energy saving and environmentally friendly technology.

5. OTHER NATIONAL ACTIVITIES

5.1 Promotion of Geothermal Development

METI began a program in 2013 to raise social acceptance of geothermal power generation amongst local residents. It is a subsidy scheme for general public educational activities undertaken by local governments and/or private sector organization. Seven projects were adopted in 2021 (8 in 2020).

Every year since 2013, JOGMEC has held a Geothermal Symposium promoting geothermal power generation amongst the general public, seeking to increase the knowledge and the understanding of geothermal energy use. In 2021, the symposium was held in Aizuwakamatsu city, Fukushima as a hybrid event (in person meeting and live stream). More than 1600 people accessed the symposium from all over Japan and 64 people, including local citizens and members of the Diet, local parliament and local government, attended at the venue.

A wide technical knowledge gap exists between geothermal business people and local government officials, making it difficult for the officials to moderate local opinions with local social acceptance being quite important for geothermal projects. Aiming at bridging this gap, JOGMEC established in June 2016 a third-party expert organization, the "Advisory Committee for Geothermal Resources Development". Matters of consultation from eight municipals were discussed in FY2021.

5.2 International collaboration and human capability development

Human resource development is an important issue in the international geothermal community. The Japan International Cooperation Agency (JICA) is organizing training courses for geothermal specialists from developing countries. The program is basically provided by Kyushu University and supported by lecturers from other universities, institutes and private companies in order to cover all aspects of a geothermal energy development. JICA has also been active in conducting Official Development Assistance (ODA) projects in geothermal development in Asian, African and Latin American continents for many decades.

JOGMEC and GNS Science (New Zealand), have a memorandum of understanding for collaboration in geothermal technology. A joint online seminar "Carbon neutral geothermal" was held on 10 December 2021, in addition to four past workshops held in Japan and in New Zealand on scaling, community acceptance, reservoir engineering and geothermal geology.

For domestic capability development, JOGMEC has been providing a three-week-long geothermal training course every year. In 2021, it was held from late November to mid-December in Kosaka city, Akita and in Tokyo. It covers the basics of geothermal energy including technical, economic and social aspects of geothermal energy projects. This course is valuable for private developers, many of whom have little experience in geothermal business.

REFERENCES < HEADING 1 STYLE>

Asanuma, H., Mogi, T., Tsuchiya, N., Watanabe, N., Naganawa, S., Ogawa, Y., Fujimitsu, Y., Kajiwara, T., Osato, K., Shimada, K., Horimoto, S., Sato, T., Yamada, S., and Watanabe, K. (2021): Japanese Supercritical Geothermal Project for Drastic Increase of Geothermal Power Generation in 2050, Proceedings World Geothermal Congress 2020+1, Reykjavik, Iceland.

METI (2021): Statics of Electric Power Assessment 2020 (in Japanese), Energy Agency, The Ministry of Economy, Trade and Industry.

METI (2022): Energy White Paper 2022 (in Japanese), Energy Agency, The Ministry of Economy, Trade and Industry.

MOE (2021): 2020 Assessment result on usage of GSHP in Japan (in Japanese), The Ministry of the Environment.

TNPES (2021): The Present State and Trend of Geothermal Power Generation of Japan in 2019 (in Japanese) Thermal and Nuclear Power Engineering Society.

Shrestha et al. (2018): Assessment of the Installation Potential of a Ground Source Heat Pump System Based on the Groundwater Condition in the Aizu Basin, Japan, Energies 2018, 11, 1178.

Yasukawa, K., Nishikawa, N., Sasada, M., and Okumura, T. (2021): Country Update of Japan, Proceedings World Geothermal Congress 2020+1, Reykjavik, Iceland.

Table 1. PRESENT PRODUCTION OF ELECTRICITY (METI, 2022 for Gross Electrical generation, METI, 2021 for Installed Capacity and TNPES, 2021 for geothermal)

	Geot	hermal	Other Renewables (specify)		Nuclear		Fossi	l Fuels	Other	Total		
Energy	Installed Capacity (MWe)	Gross Electrical generation GWh/yr										
In operation in March 2021	546	2,661	16,630	117,239	33,080	38,800	170,260	763,700	49,680	78,400	270,196	1,000,800

Table 2. GEOTHERMAL POWER FIELDS, PLANTS AND UNITS IN THE COUNTRY (TNPES, 2021)

		Geotherm	al Field			Power	· Plant	Power Unit						
(1) Name	(2) Field operator	(3) Wells in operation	(4) Depth of deepest production well (m)	(5) Reservoir type	(6) System type	(7) Name or number	(8) Plant operator	# of units	(14) Type of unit	(15) Year of commi ssion	(16) Status	(17) Turbine manufacturer	(18) Installed Capacity (MW)	(20) NEP (GWh/year)
Mori, Hokkaido	Hokkaido Electric Power Co., Inc	16	3250	Hydrotherm al	Two-phase, liquid- dominated: Medium enthalpy	Mori	Hokkaido Electric Power Co., Inc	1	2F	1982	Operating	Toshiba	25.000	127.541
Onuma, Akita	Mitsubishi Materials Co,	8	2030	Hydrotherm	Two-phase, liquid- dominated: Low enthalpy	Onuma	Mitsubishi Materials Co,	1	1F	1974	Operating	Mitsubishi	9.500	39.914
Sumikawa, Akita	Mitsubishi Materials Co,	25	2634	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Sumikawa	Tohoku Electric Power Co., Inc.	1	1F	1995	Operating	Mitsubishi	50.000	281.115
Matsuo- Hachimantai, Iwate	Iwate Geothermal Co., Ltd.	5	2050	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Matsuo- Hachimanta i	Iwate Geothermal Co., Ltd.	1	1F	2019	Operating	MHPS	7.499	data not
Matsukawa, Iwate	Tohoku Sustainable & Renewable Energy Co.Inc	9	1600	Hydrotherm al	Two-phase, vapour- dominated	Matsukawa	Tohoku Sustainable & Renewable Energy Co.Inc		Dry Steam	1966	Operating	Toshiba	23.500	79.377

Kakkonda, Iwate	Tohoku Sustainable & Renewable			Hydrotherm	Two-phase, liquid- dominated: High enthalpy	Kakkonda	Tohoku Electric Power Co., Inc.							
	Energy Co.Inc	46	2818	al				1	1F	1978	Operating	Toshiba	50.000	125.274
Kakkonda, Akita	Tohoku Sustainable & Renewable Energy Co.Inc	28	3000	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Kakkonda II	Tohoku Electric Power Co., Inc.	1	1F	1996	Operating	Toshiba	30.000	81.766
Uenotai, Akita	Tohoku Sustainable & Renewable Energy Co.Inc	16	2228	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Uenotai	Tohoku Electric Power Co., Inc.	1	1F	1994	Operating	Toshiba	28.800	173.051
Wasabizawa, Akita	Yuzawa Geothermal Co., Ltd.	11	1800	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Wasabizaw a	Yuzawa Geothermal Co., Ltd.	1	2F	2019	Operating	Toshiba	46.199	341.092
Onikobe, Miyagi	J-POWER	0	-	Hydrotherm al	Two-phase, liquid- dominated: Medium enthalpy	Onikobe	J-POWER	1	1F	1975	Not operating temporarily	Kawasaki	14.9 MW to be replaced	341.072
Yanaizu- Nishiyama, Fukushima	Okuaizu Geothermal Co., Ltd.	18	2300	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Yanaizu- Nishiyama	Tohoku Electric Power Co., Inc.	1	1F	1995	Operating	Toshiba	30.000	132.177
Hachijojima, Tokyo		0	3031	Hydrotherm al	Two-phase, liquid- dominated: Low enthalpy	Hachijojima			1F	1999	Not operating temporarily	Fuji	3.3 MW replaced to 4.4MW	
Beppu, Oita	Suginoi Hotel	5	300	Hydrotherm al	Hot water	Suginoi	Suginoi Hotel	1	1F	1981	Operating	Fuji	1.900	-
Kuju, Oita	Makinoto Co.	1	_	Hydrotherm al	Hot water	Kuju	Makinoto Co.	1	1F	2000	Operating	Mitsubishi	1.995	0
Otake, Oita	Kyushu Electric Power Co., Inc.	9	2084	Hydrotherm al	Two-phase, liquid- dominated: Medium enthalpy	Otake	Kyushu Electric Power Co., Inc.	1	2F	1967	Operating	MHPS	14.500	67.431
Hatchobaru, Oita	Kyushu Electric Power Co., Inc.	23	3031	Hydrotherm al	Two-phase, liquid- dominated: High enthalpy	Hatchobaru	Kyushu Electric Power Co., Inc.	1	2F	1977	Operating	Mitsubishi	55.000	251.79

Yasukawa et al.

Hatchobaru, Oita	Kyushu Electric				Two-phase, liquid-	Hatchobaru II	Kyushu Electric							
	Power Co., Inc.			Hydrotherm al	dominated: High enthalpy		Power Co., Inc.	1	2F	1990	Operating	Mitsubishi	55.000	304.829
Hatchobaru, Oita	Kyushu Electric Power Co.,			Hydrotherm	Two-phase, liquid- dominated:	Hatchobaru Binary	Kyushu Electric Power Co.,							
	Inc.	0	_	al	High enthalpy		Inc.	1	B-ORC	2006	Operating	Ormat	2.000	0
Takigami, Oita	Idemitsu Oita				Two-phase, liquid-	Takigami	Kyushu Electric							
	Geothermal Co., Ltd.	11	2707	Hydrotherm al	dominated: Low enthalpy		Power Co., Inc.	1	1F	1996	Operating	Mitsubishi	27.500	187.512
Takigami, Oita	Idemitsu Oita Geothermal			Hydrotherm	Two-phase, liquid- dominated:	Takigami Binary	Idemitsu Oita Geothermal							
g 0:,	Co., Ltd.	0	-	al	Low enthalpy	G.	Co., Ltd.	1	B-ORC	2016	Operating	Fuji	5.050	31.174
Sugawara, Oita	Kuju Town			Hydrotherm	Hot water	Sugawara Binary	Kyuden Mirai Energy Co.,					MHPS-		
***	**** 1 1	3	870	al	**	***	Ltd.	1	B-ORC	2015	Operating	Turboden	5.000	42.53
Waita, Kumamoto	Waita-kai Co., Ltd.			Hydrotherm	Hot water	Waita	Waita-kai Co., Ltd.							
0	>**********	5	619	al		0	77 1	1	1F	2015	Operating	Toshiba	2.145	15.393
Ogiri, Kagoshima	Nittetsu Mining Co., Ltd.			Hydrotherm	Two-phase, liquid- dominated: Medium	Ogiri	Kyushu Electric Power Co., Inc.							
		17	2695	al	enthalpy			1	1F	1996	Operating	Mitsubishi	30.000	178.653
Yamagawa, Kagoshima	Kyushu Electric Power Co.,	16	2105	Hydrotherm	Two-phase, liquid- dominated:	Yamagawa	Kyushu Electric Power Co.,	1	15	1005	Operating	Mitaukiaki	20,000	152.20
Yamagawa, Kagoshima	Inc. Kyushu Electric	16	2105	al	High enthalpy Two-phase, liquid-	Yamagawa Binary	Inc. Kyuden Mirai	1	1F	1995	Operating	Mitsubishi	30.000	153.39
Kugosiiina	Power Co., Inc.	0	_	Hydrotherm al	dominated: High enthalpy	Dinary	Energy Co., Ltd.	1	B-ORC	2017	Operating	Fuji	4.990	39.275
Ibusuki, Kagoshima	Medipolis Energy Co., Ltd.			Hydrotherm	Two-phase, liquid- dominated:	Medipolis Ibusuki	Medipolis Energy Co., Ltd.							data not
	Z.c.	2	1500	al	Low enthalpy		Zita.	1	B-ORC	2015	Operating	JFE-Ormat	1.580	open
Teshikaga, Hokkaido	KOKUSHO KANKOK AI INC.	1		Hydrotherm al	Hot water	Mashuko onsen-netsu	KOKUSHO KANKOK AI INC.	1	B-ORC	2016	Operating	Access Energy	0.125	
Toyako, Hokkaido	Toyako Onsen Community	1		Hydrotherm al	Hot water	Toyako onsen KH-1	Toyako Onsen Community	1	B-ORC	2017	Operating	KOBELCO	0.072	0
Okushiri, Hokkaido	Koshimori Oil Electric Business	1		Hydrotherm al	Hot water	Okushiri GPP	Koshimori Oil Electric Business	2		2017		Daiichi Jitsugyo	0.250	1.331

Naruko, Miyagi	Naruko			Hot water	Naruko	Naruko								1
	Onsen		Hydrotherm		onsen	Onsen								
	Community	1	al		binary	Community	1	B-ORC	2018	Operating	Anest-Iwata	0.065	-	
Tuchiyu, Fukushima	Tsuchiyu Onsen			Hot water	Tuchiyu onsen	Genki-up Tsuchiyu								
rukusiiiiia	Community		Hydrotherm		No.16	Co. Ltd.								
	Community	1	al		binary	Co. Liu.	1	B-ORC	2015	Operating	JFE-Ormat	0.440		2.835
Nasu, Tochigi	Hotel Sun	1	u u	Hot water	Hotel Sun	Hotel Sun	-	B one	2013	operating	JI L Office	0.110		2.033
, 8	Vallery		I Izz dua th ausa		Vallery	Vallery								
		2	Hydrotherm al		binary	,	1	B-ORC	2015	Operating	IHI	0.020		0.01
Takayama,	Yamagoya		ai	Hot water	Shichimi	Yamagoya	1	D-ORC	2013	Operating	1111	0.020		0.01
Nagano	Solar Llc.			Tiot water	Onsen	Solar Llc.								
Tuguito	Solar Ele.		Hydrotherm		Hotel	Boim Lie.								
		1	al		binary		1	B-ORC	2014	Operating	IHI	0.020	-	
Tokamachi,	The Earth			Hot water	Community	Matsunoya								
Niigata	Llc.				Power: the	ma Onsen								
			Hydrotherm		Matsunoya	Llc.		В-						
01 111 010	01 111	1	al		ma onsen	61 111	1	Kalina	2021	Operating		0.210	-	
Okuhida, Gifu	Okuhida Natural			Hot water	Ichiegane No. 2	Okuhida Natural								
	Eneregy				No. 2 Binary	Eneregy								
	Llc.		Hydrotherm		(Okuhida	Llc.								
	Lic.	1	al		1st Binary)	Lic.	1	B-ORC	2017	Operating		0.079	_	
Okuhida, Gifu	Okuhida			Hot water	Okuhida	Okuhida				- p		0.0.7		
,	Natural				2nd Binary	Natural								
	Eneregy		Hydrotherm			Eneregy								
	Llc.	1	al			Llc.	2	B-ORC	2021	Operating		0.250	-	
Okuhida, Gifu	Kitsune			Hot water	Kitsune	Kitsune								
	Power Llc.		Hydrotherm		(Fox)	Power Llc.		D ODG	2020	o .:		0.045		
Okuhida, Gifu	Okuhida	1	al	Hot water	Power Takenaka	T-11	1	B-ORC	2020	Operating		0.045		
Okumaa, Gilu	Onsen			Hot water	Okuhida	Takenaka Co.								
	community		Hydrotherm		Okumda	Co.								
	,	1	al				1	B-ORC	2021	Operating		0.045	-	
Shimoda,	JX Nippon			Hot water	Shimoda	JX Nippon								
Shizuoka	Mining &		Hydrotherm		onsen	Mining &								
	Metals Co.	no data	al		binary	Metals Co.	1	B-ORC	2017	Operating		0.110		0.583
Shin-onsencho,	Shin-	2		Hot water	Yakushiyu	Shin-				-		3.1.10		
Hyogo	onsencho				Onsen	onsencho								
	town	_	Hydrotherm		binary	town	2	D ODG	2014	0	1111	0.040		0
Yurihama,	Togo Onsen	2	al	Hot water	Vyoryashii-	Vyoveahila		B-ORC	2014	Operating	IHI	0.040		0
Yurinama, Tottori	Co., Ltd.			not water	Kyowachik en	Kyowachik en								
1011011	Co., Ltd.		Hydrotherm		Consultant	Consultant								
		2	al		Yurihama	Co., Ltd.	1	B-ORC	2015	Operating	IHI	0.020	_	
Obama,	First			Hot water	Obama	First		3		- 1				
Nagasaki	Obama				Onsen	Obama								
=	Binary PP		Hydrotherm		binary	Binary PP								
	Llc.	1	al			Llc.	1	B-ORC	2015	Operating	Access Energy	0.135	-	

Yasukawa et al.

Beppu, Oita	West Japan Geothermal			Hot water	Goto-en	West Japan Geothermal							
	Power Co.,		Hydrotherm			Power Co.,							
	Ltd.	1	al			Ltd.	2	B-ORC	2014	Operating	KOBELCO	0.144	_
Beppu, Oita	West Japan	1	ui ui	Hot water	Yuyama	West Japan		D ORC	2014	Operating	ROBLECO	0.144	
Doppu, orac	Geothermal			1100 Water	1 ay ama	Geothermal							
	Power Co.,		Hydrotherm			Power Co.,							
	Ltd.	1	al			Ltd.	2	B-ORC	2014	Operating	KOBELCO	0.144	-
Beppu, Oita	Nippon			Hot water	Tatara	Japan							
	Chinetsu				Daiichi	Geothermal							
	Kogyo Co.,		Hydrotherm			Kogyo Co.,							
	Ltd.	1	al			Ltd.	1	B-ORC	2014	Operating	KOBELCO	0.072	-
Beppu, Oita	Chinetsu			Hot water	Kamenoi	Chinetsu							
	World		II do- dh- an			World							
	Koryo. Co., Ltd.	1	Hydrotherm al			Koryo. Co., Ltd.	1	Other	2015	Operating	Turboblade	0.011	
Beppu, Oita	Beppu Spa	1	ai	Hot water	Cosmotech	Cosmotech	1	Other	2013	Operating	Turbobiade	0.011	-
верри, Опа	Service Co.,		Hydrotherm	Tiot water	Beppu	Co., Ltd.							
	Ltd	1	al		binary	Co., Liu.	4	B-ORC	2014	Operating	Access Energy	0.500	2.251
Beppu, Oita	Beppu Spa			Hot water	Fino binary	Fino Binary				o promise g	1		
	Service Co.,		Hydrotherm			PP Llc.							
	Ltd	1	al				2	B-ORC	2015	Operating	Access Energy	0.250	-
Beppu, Oita	Beppu Spa			Hot water	PPSN	PPSN Co.,							
	Service Co.,		Hydrotherm		binary	Ltd							
	Ltd	1	al				1	B-ORC	2016	Operating	Access Energy	0.125	-
Beppu, Oita	Beppu Spa			Hot water	SUMO	Sumo							
	Service Co.,		Hydrotherm		Power	Power Co.,					1		
D 01	Ltd	1	al	**	arra p	Ltd.	1	B-ORC	2016	Operating	Access Energy	0.125	-
Beppu, Oita	Beppu Spa		77 1 4	Hot water	SNS Power	Sns Power							
	Service Co., Ltd	1	Hydrotherm al			Co., Ltd.	1	B-ORC	2016	Operating	Access Energy	0.125	
Beppu, Oita	Beppu Spa	1	ai	Hot water	Makino	Makino-	1	B-OKC	2010	Operating	Access Ellergy	0.123	-
верри, Она	Service Co.,		Hydrotherm	110t water	Wakiiio	kaiun Co.,							
	Ltd	1	al			Ltd	1	B-ORC	2017	Operating	Access Energy	0.125	_
Beppu, Oita	Jet System			Hot water	BLD	BLD Power				- promise			
11,	Co., Ltd.				(Beppu	Stations co.,							
					Tsurumi	Ltd.							
			Hydrotherm		Power								
		1	al		Station)		2	B-ORC	2017	Operating		0.250	-
Beppu, Oita	Beppu Spa			Hot water	Chiba	Chiba Co.,							
	Service Co.,		Hydrotherm			Ltd	_	D 0D =	201-			0.250	
D 01	Ltd	1	al	**	G1 '1 ***	CI 'I	2	B-ORC	2017	Operating	Access Energy	0.250	-
Beppu, Oita	Beppu Spa			Hot water	Chiba HD	Chiba							
	Service Co.,	1	Hydrotherm			Holdings	2	D ODG	2017	On one time	A aggregation	0.250	
Dames Oite	Ltd	1	al	Hot water	CDACE	Co., Ltd. GRACE	2	B-ORC	2017	Operating	Access Energy	0.250	-
Beppu, Oita	Beppu Spa Service Co.,		Hudrothama	not water	GRACE	Co., Ltd							
	Ltd	1	Hydrotherm al			Co., Liu	1	B-ORC	2017	Operating	Access Energy	0.125	_
	Liu	1	aı			1	1	D-OVC	2017	Operating	Access Energy	0.123	_

Beppu, Oita	Beppu Spa Service Co.,		Hydrotherm	Hot water	Kijyu	Kijyu Co., Ltd							
	Ltd	1	al				1	B-ORC	2017	Operating	Access Energy	0.125	-
Beppu, Oita	Beppu Spa Service Co., Ltd	no data	Hydrotherm al	Hot water	Jetsystem No.1	Jetsystem Co., Ltd.	1	B-ORC	2017	Operating	Access Energy	0.220	_
Beppu, Oita	Beppu Spa	no data	ai	Hot water	Jetsystem	Jetsystem	1	D-ORC	2017	Operating	Access Energy	0.220	
Верра, Опа	Service Co., Ltd	1	Hydrotherm		No.2	Co., Ltd.	1	B-ORC	2017	Operating	Access Energy	0.125	_
Beppu, Oita	Beppu Spa	-		Hot water	VEP	VEP		D ONC	2017	operating	Tiecess Emergy	0.120	
Берри, оли	Service Co., Ltd	1	Hydrotherm al	Trot water	Energy PP	Energy Co., Ltd.	1	B-ORC	2017	Operating	Access Energy	0.125	-
Beppu, Oita	Beppu Spa Service Co., Ltd	1	Hydrotherm al	Hot water	RE-Energy GPP	RE Energy Community	1	B-ORC	2017	Operating	Access Energy	0.125	_
Beppu, Oita	Beppu Spa Service Co.,		Hydrotherm	Hot water	Renavis PP	Renavis Co., Ltd.							
	Ltd	1	al				1	B-ORC	2017	Operating	Access Energy	0.125	-
Beppu, Oita	Beppu Spa Service Co., Ltd	1	Hydrotherm	Hot water	Rena PP No.1	Rena Co., Ltd.	1	B-ORC	2017	Onavetina	A cooss Emergy	0.250	
Beppu, Oita	Beppu Spa	1	aı	Hot water	P-Power PP	PPSN Co.,	1	D-OKC	2017	Operating	Access Energy	0.230	-
верри, Опа	Service Co., Ltd	1	Hydrotherm	Hot water	r-rowei rr	Ltd	1	B-ORC	2017	Operating	Access Energy	0.250	_
Beppu, Oita	Beppu Spa	1	ui ui	Hot water	NIS binary	Nis Binary		D ORC	2017	operating	riceess Energy	0.230	
FF,	Service Co., Ltd	1	Hydrotherm al		PP	PP Llc.	1	B-ORC	2017	Operating	Access Energy	0.250	-
Beppu, Oita	Beppu Spa Service Co., Ltd	1	Hydrotherm al	Hot water	i-BIO	i-BIO Co., Ltd.	1	B-ORC	2018		Access Energy	0.125	_
Beppu, Oita	Beppu Spa Service Co., Ltd	1	Hydrotherm al	Hot water	Dual energy binary	Dual Energy Binary PP No.1 Llc.	1		2018	Operating	Access Energy	0.250	-
Beppu, Oita	Beppu Spa Service Co., Ltd		Hydrotherm al	Hot water	Beppu Tsurumi onsen GPP Unit 1	Beppu Tsurumi onsen GPP Unit 1 Llc.	1	B-ORC	2019	0	A E	0.250	
Dommy Oito	Abe Naika	1		Hot water	Abe Naika	Abe Naika	1	B-ORC	2018	Operating	Access Energy	0.250	-
Beppu, Oita	Clinic	no data	Hydrotherm al		Clinic	Clinic	1	B-ORC	2015	Operating	IHI	0.020	-
Beppu, Oita	Sanko Denki Ltd.	1	Hydrotherm al	Hot water	Sanko Chinetsu Kaihatsu binary	Sanko Denki Ltd.	1	B-ORC	2016	Operating	ELECTRATHE RM	0.065	_
Beppu, Oita	Tsujita Kenki Ltd.	1	Hydrotherm al	Hot water	Enma	Tsujita Kenki Ltd.	1	B-ORC	2017	Operating		0.070	0
Beppu, Oita	Geothermal Developme nt Co., Ltd	no data	Hydrotherm al	Hot water	Beppu Lifetech onsen	Geothermal Developme nt Co., Ltd	1		2019			0.840	-

Yasukawa et al.

Beppu, Oita	I-bec Co.,		Hydrotherm	Hot water	i-bec Beppu	I-bec Co.,					ĺ		
	Ltd.	no data	al			Ltd.	2	B-ORC	2019	Operating		0.560	-
Kuju, Oita	Takafuji			Hot water	Kuju Noya-	Takafuji							
	Co. Ltd.		Hydrotherm		chiku	Co. Ltd.							
		1	al		binary		1	B-ORC	2017	Operating		0.050	-
Kuju, Oita	Ote Oita			Hot water	OTE Oita	Ote Oita							
	Co., Ltd.		Hydrotherm		Okue onsen	Co., Ltd.							data not
		no data	al		binary		1	B-ORC	2017	Operating	KOBELCO	0.072	open
Yufuin, Oita	Yufuin			Hot water	Yufuin	Yufuin							
	Forest				Forest	Forest							
	Energy co.,		Hydrotherm		Energy	Energy co.,							
	Ltd.	1	al		binary	Ltd.	1	B-ORC	2015	Operating	KOBELCO	0.125	-
Yufuin, Oita	Yufuin			Hot water	Yufuin	Yufuin							
	Forest				Forest	Forest							
	Energy co.,		Hydrotherm		Energy	Energy co.,							
	Ltd.	1	al		binary No.2	Ltd.	1	B-ORC	2017	Operating		0.070	-
Oguni,	Oguni			Hot water	Oguni	Oguni							
Kumamoto	Matsuya PP		Hydrotherm		Matsuya	Matsuya PP	2	D ODG	2014	0 4	11.11	0.000	
TT: 1:1 ·	Llc.	1	aı	TT .	/TT: 1 '1 '	Llc.	3	B-ORC	2014	Operating	IHI	0.060	-
Hishikari,	Sumitomo Metal			Hot water	(Hishikari	Sumitomo Metal							
Kagoshima	Mining Co.,		Hydrotherm		mine)	Mining Co.,							
	Ltd.	0	al			Ltd.		B-ORC	2021				
Kirishima,	Iwatech	0	aı	Hot water	Iwatech	Iwatech	_	D-ORC	2021				
Kagoshima	Co., Ltd.		Hydrotherm	110t water	No.1 Onsen	Co., Ltd.							
ragosiiina	Co., Eta.	1	al		PP	Co., Eta.	1	B-ORC	2018	Operating		0.013	0.538
Kirishima,	Kirishima			Two-phase,	Kirishima	Kirishima				1 1 1 1			
Kagoshima	Kokusai			liquid-	Kokusai	Kokusai							
	Hotel		Hydrotherm	dominated:	Hotel	Hotel				Decommiss		0.1MW	
		0	al	Low enthalpy				1F	1983	ioned	Fuji	retired	
Total values		324					93					545.744	2660.83

TABLE 3. SUMMARY OF GEOTHERMAL HEATING AND COOLING INSTALLATIONS IN THE COUNTRY

(1) Geothermal Application	(2) Total Installed Capacity (MWt)	(3) Total Energy produced (TJ/year)	(4) Total Energy used (TJ/year)	(5) Number of Installations
Agriculture and food processing	38.7	470.43	470.43	-
Industrial process heat	1.06	27.02	27.02	-
Health, recreation and tourism*	1999.42	24590	24590	_
Heating and cooling for buildings	203.34	4136.83	4136.83	-
Heating and cooling by GSHP	163	765	765	2994
Other uses	164.86	733.09	733.09	_
Total values	2570.38	30722.37	30722.37	-