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ABSTRACT  

A robust and reliable numerical model for fracture initiation and propagation, which includes the interactions among propagating 

fractures and the coupling between deformation, fracturing and fluid flow in fracture apertures and in the permeable rock matrix, 

would be an important tool for developing a better understanding of fracturing behaviors of crystalline brittle rocks driven by 

thermal and (or) hydraulic pressure gradients. In this paper, we present a physics-based hydraulic fracturing simulator based on 

coupling a quasi-static discrete element model (DEM) for deformation and fracturing with conjugate lattice network flow model for 

fluid flow in both fractures and porous matrix. Fracturing is represented explicitly by removing broken bonds from the network to 

represent microcracks. Initiation of new microfractures and growth and coalescence of the microcracks leads to the formation of 

macroscopic fractures when external and/or internal loads are applied. The coupled DEM-network flow model reproduces realistic 

growth pattern of hydraulic fractures. In particular, simulation results of perforated horizontal wellbore clearly demonstrate that 

elastic interactions among multiple propagating fractures, fluid viscosity, strong coupling between fluid pressure fluctuations within 

fractures and fracturing, and lower length scale heterogeneities, collectively lead to complicated fracturing patterns. 

1. INTRODUCTION  

The advancement of EGS greatly depends on our understanding of the dynamics of the strongly coupled thermo-hydro-mechanical 

(THM) processes and our ability to reliably predict fracturing process of low permeability crystalline rocks under stimulation and 

production conditions [1]. During the past a few decades, a number of hydraulic fracturing models have been developed and 

reported in literature, including classic Perkins–Kern–Nordgren (PKN) and Khristianovich–Geertsma–DeKler (KGD) models 

[2,3,4] that require assumptions such as bi-wing planar fracture growth, elliptical fracture geometry, and homogeneous rock 

mechanical properties. In recent years, a number of e new numerical hydraulic fracture propagation models, largely based on the 

variations of finite element models (FEM) such as extended FEM (XFEM) and cohesive zone FEM methods were also developed 

too [5-8] to handle mechanical deformations and fracture propagation, and coupled them with various continuum flow models. 

Many of the current hydraulic fracturing models still handle only simple fracture geometries, or require using empirical failure 

criteria and post-failure mechanical/hydraulic constitutive laws, and simplified fluid-solid coupling methods.  Despite of that many 

progress have been made and important knowledge were obtained regarding to hydraulic fracturing, it still remains a challenging 

task for developing a reliable and robust hydraulic fracture model that appropriately account for (1) random initiation of fractures; 

(2) strongly nonlinear coupling among deformation, fracturing and fluid flow in fracture apertures and leakage into porous rock 

matrix; and (3) interactions between propagating fractures and heterogeneities at various scales, including natural fractures 

In this paper, we present a physics-based rock deformation and fracture propagation simulator by using a quasi-static discrete 

element model (DEM) to describe the fracturing and a network flow model to simulate fluid flow in both fractures and porous rock. 

This paper details the methodology of the DEM for fracturing and how a network flow model is coupled with the DEM model. 

Numerical simulation results of the hydraulic fracturing process from a horizontal wellbore will be presented. 

2. METHODOLOGY 

2.1. Quasi-static discrete element model (DEM)  

The discrete element model (DEM), originally introduced by Cundall and Strack [10] over 30 years ago, has been widely used to 

model the mechanical deformation and fracturing of polycrystalline rocks at various scales in geotechnical engineering community, 

ranging from grain-scale microcracks to large scale faults associated with earthquakes. In DEM models, illustrated by Figure 1, a 

volume of rock is represented by a network of nodes (also referred as particles) of variable sizes connected by elastic beams. The 

force and moment exerting on a node i by a neighboring node j are given by 

,    (1) 

.    (2) 

Here  is the distance between the centers of two DEM nodes (the centers of the corresponding particles), i and j, 

and  is the initial equilibrium (stress free) distance, where  is the radius of the ith particle.  and  are the 

unit vectors parallel and perpendicular to the center line connecting nodes i and j,  is the rotation angle in the local frame of the 
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beam,   is the unit vector parallel to the tangent of the bent beam at node i.  and  are the normal and shear force constants. 

If a regular square [11] or triangular [9] lattice is used in the simulation,  and  are related to the macroscopic Young’s 

modulus , shear modulus  and Poisson’s ratio  by ,  and 

, where A is the cross-section area of the elastic beam and I is the geometric part of its moment of inertia. 

Since a random DEM network was used in our simulations (to avoid the effects of the lattice symmetry on the fracturing pattern), 

 and  must be calibrated against the desired  and . At mechanical equilibrium, the total force and moment acting on 

every DEM node must vanish, giving rise to the Cosserat elasticity equations in the continuum limit. 

Once a mechanical load is applied (in our problem the load is imposed by the injection of fluids), an over-relaxation algorithm is 

used to relax the DEM network to a new state of mechanical equilibrium in which the net forces and moments are zero for all the 

DEM particles. If a beam satisfies the von Mises failure criterion 

 ,     (3) 

it is irreversibly removed from the DEM network, giving rise to crack initiation and growth. Here  is the longitudinal strain of the 

beam, and  is the critical longitudinal tensile strain (the maximum tensile strain that the bond can sustain), and  is the critical 

rotational angle above which the bond will break, even in the absence of tensile strain. Typical values for  and  range from 

~10-3 to ~10-2 for rocks and many other polycrystalline brittle solids. After a beam has broken stress is transferred throughout the 

system by the long range elastic interactions, but mainly to neighboring beams, and they are likely to break immediately or after a 

short lapse in time. A sequence of “coupled” beam breaking events mimics the fracture propagation process, and this unique feature 

makes DEM models a powerful method for studying the random initiation and subsequent propagation of cracks. 

  

Figure 1. Illustration of a 2-dimensional (2D) DEM model: (a) a discrete element network generated by random packing of 

particles of variable sizes with a uniform size distribution; and (b) a bent elastic beam connecting nodes i and j used 

for DEM model (modified from [9]) 

2.2.  Conjugate network flow model  

The governing equation for fluid flow is taking the following form 

,     (4) 

where n is the porosity of porous medium,  is the density of fluid, is the formation permeability,  is the fluid viscosity, P 

is fluid pressure, and Q is the volumetric injection rate. Using the definitions for fluid compressibility c f =
1

r f

¶r f

¶P
 and rock 

matrix bulk compressibility (inverse of bulk modulus) cn =
1

n

¶n

¶P
, the term on the left hand of eq. (4) can be rewritten as 

¶ nr f( )
¶t

= r fnc f +r fncn( )
¶P

¶t
.     (5) 

Substituting eq. (5) into eq. (4), defining total compressibility , and then rearranging terms, we obtain 
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By choosing a characteristic length L* and a characteristic time t*, eq. (6) can be rewritten in a dimensionless form  
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By further normalizing the fluid pressure P by Young’s modulus E and dropping the prime sign in eq. (7), we finally reach a 

dimensionless fluid pressure diffusion equation 

,       (8) 

with dimensionless pressure , dimensionless injection rate  and dimensionless pressure diffusivity 

.   

 

Figure 2. The concept of conjugate lattice (blue lattice) for network flow modeling and coupling with the DEM network 

(white lattice). 

As illustrated in Figure 2, a network flow model using a lattice conjugate to the DEM lattice is used to discretize eq. (8) by a finite 

volume scheme: 

,    (9) 

where  is the control volume associated with flow node i,  is the distance between nodes i and j,  is the cross section 

area between nodes i and j. The discretized equations are solved by a multigrid solver. 

The fluid pressure gradient exerts forces on individual elements of the discrete element network through the following form: 

,    (10) 

,           (11) 

where  is the fluid pressure gradient acting on individual DEM particle, which can be obtained from the nodal pressure values 

on its neighbor conjugate flow lattice. As fluid pressure (and pressure gradient) increases due to fluid injection during hydraulic 

stimulation, the force exerted on the DEM particles also increases and deforms the mechanical bonds and breaks them if the 

deformation reaches a prescribed threshold value, thereby initiating fracturing. As shown in Figure 2, each mechanical bond 

intersects with the flow network. When a mechanical bond is broken, a microfracture perpendicular to the bond initiates and 

connects the two associated fluid nodes of the flow network with a new permeability in the form 

k = b2 12
     

  (12) 

Here b is the aperture of the microfracture (same as the separation distance of the two neighbor DEM particles subject to 

fracturing). The new permeability is then used to recalculate the hydraulic diffusivity  in eq. (9). 

The simulation of coupled DEM-network flow model consists of interleaved fluid flow, mechanical relaxation of the DEM network 

and beam breaking steps. During each time step, the new fluid pressure field (in both fractures and matrix) is obtained first by 
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solving eq (9). Then the new fluid pressure field is applied to DEM network according eqs. 10-11, and the DEM network is relaxed 

to a new mechanical equilibrium. The beam that most exceeds the failure criteria, which is usually near a crack tip, is then removed 

from the DEM network and the network is again relaxed into a new state of mechanical equilibrium. The mechanical relaxation and 

beam breaking are repeated a number of times during each time step, mimicking crack initiation and propagation, until no 

additional beam-breaking occurs, and the simulation then proceeds to a new time step. This quasi-static approach to modeling 

hydraulic fracturing is reasonable, since stress build up and relax associated with hydraulic fracture propagations often exhibit 

quasi-static behaviors. 

It is also worth noting that our coupled DEM-network flow model accounts for both flow in fractures and flow into the rock matrix, 

unlike most other network flow models that typically only account for fluid flow in fractures. This unique feature allows our model 

to evaluate the leakage of fracturing fluid into the porous matrix. 

3. DEM MODEL CALIBRATION 

The DEM model parameters , , and  must be calibrated to accurately represent the mechanical properties of brittle 

rocks such as the Young’s modulus , Poisson’s ratio , tensile strength  and compressive strength . The calibration of 

DEM model parameters was performed by simulating uniaxial tensile/compression tests as shown in Figure 3. For this purpose a 

model domain of size 50 x 100 (dimensionless) was discretized by using a random packing algorithm with 6,143 DEM nodes 

(circular discs) of variable radii selected from a uniform random distribution with an average radius of 0.5 and maximum to 

minimum radius ratio of 2. The dimensionless force constants  were selected randomly from a Gaussian distribution with a 

mean of  = 1.0 and a standard deviation of  = 0.1. A constant  ratio of 0.2 was used in all simulations.  and  

jointly determine the macroscopic Young’s modulus  and Poisson’s ratio . The critical tensile strains  of the beams were 

selected randomly from a Gaussian distribution with a mean of  = 0.3% and a standard deviation of  = 0.03%. The critical 

rotation angles  were also selected from a Gaussian distribution with  = 0.5% and  = 0.05%. The beam failure parameters  

and  jointly determine the macroscopic tensile and compressive strength of the rock. During the numerical uniaxial tension (or 

compression) test, DEM particles near both ends move uniformly in opposite directions at a specified strain rate in order to mimic 

uniaxial tensile (or compressive) loading condition. At each loading stage, the averaged axial stress and lateral strain within the 

sample were calculated by volume averaging in order to generate stress-strain curves. Figures 3a and 3b show the vertical stress 

fields prior to macroscopic failure under tensile and compressive loads. On average, the stress field is homogeneous, only in a 

statistical sense. The stress varies locally, which plays an important role in the random nucleation of microcracks. Figures 3c and 3d 

show the vertical stress fields as well as macroscopic failure patterns under tensile and compressive loads. As shown in Figure 3c, 

an irregular macroscopic tensile crack that fluctuates about the direction perpendicular to tensile loading direction was formed. 

Compressive loading generates much more complex fracture patterns, as shown in Figure 3d, but the development of major shear 

planes due to the compressive load can be clearly seen. The sample failed (in a macroscopic sense) by shear, which is often 

observed in laboratory core tests. 

 

Figure 3.  DEM Model calibration through numerical uniaxial tension and compression test: (a) vertical stress 

(dimensionless) distribution prior to tensile failure of the sample; (b) the vertical stress field (dimensionless) prior to 

compressive failure of the sample; (c) vertical stress (dimensionless) distribution right after the tensile failure of the 

sample; and (d) the vertical stress field (dimensionless) right after the compressive failure of the sample. 

Figure 4 shows the simulated stress-strain curves for both the tensile (Figure 4a) and compressive tests (Figure 4b). The simulated 

rock sample behaved like a linear elastic solid before the loads reached their peak failure values, corresponding to the linear parts of 

the stress-strain curves shown in figures 4a and 4b. When the loads reached their peak (failure) values, the sample failed suddenly 

and stresses were released rapidly. This behavior is typical for brittle rocks. Both stress-strain curves give the same (dimensionless) 

Young’s modulus (average slopes of the linear parts of the curves) of , and Poisson ratio of  (determined from 

the ratio between lateral strain and axial strain, not shown here). The simulated sample has a macroscopic critical tensile strain of 

0.175% and critical compressive strain of 1.4%, which are in the range of many polycrystalline brittle rocks. The corresponding 

peak tensile strength  and compressive strength  are 2.74e-3 and 2.20e-2, respectively. These dimensionless critical tensile 

and compressive stresses can then be rescaled to the dimensional macroscopic, measurable, critical tensile strength of the rock (by 

multiplying with ).  
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Figure 4. Simulated stress-strain curves for the calibration tests: (a) uniaxial tension and (b) uniaxial compression tests. 

By broadening the random distributions for  and , the DEM model can produce ductile behavior. However, issues such as the 

effects of particle size distribution and the widths of the distributions of the mechanical properties of the beams are beyond the 

scope of this study and information about such issues can be found in [12] and references therein. The calibration results shown in 

figures 3 and 4 clearly demonstrate the unique strength of the DEM model for simulating the random initiation, propagation and 

coalescence of microcracks, and eventual macroscopic failure. This modeling approach allows cracking processes to be 

investigated in a systematic manner, which would be difficult or impossible to do experimentally because of sample-to-sample 

variability and challenge of preparing a series of materials with different, but accurately known mechanical properties under a wide 

range of well-controlled conditions.  

4. NUMERICAL RESULTS 

Here we present a few two-dimensional hydraulic fracturing simulation examples to illustrate the strength of the coupled DEM-

network flow model to capture important physics and the effects of injection rates, fluid viscosity and heterogeneity on fracturing 

patterns. 

 

Figure 5. Model setup for single well injection with hydrostatic confining stress state 

 

4.1 Hydraulic fracturing from a vertical well  

As shown in Figure 5, an injection well is placed at the center of the model domain. In the simulation, a fluid node on the flow 

network located in the center of the domain is chosen to be the injection source. The matrix has a dimensionless hydraulic pressure 

diffusivity l  of ~10-8, corresponding to tight formations with extremely low permeability on the order of 10-19 m2 and high-

viscosity fracking fluid with viscosity of ~10-2Pa.s, about 10-100 times greater than that of clean water. A hydrostatic stress state is 

considered in this example.  

Figure 6 shows the simulated fracture propagation patterns at two different injection rates. As shown in Figure 6a, under hydrostatic 

confinement condition and higher injection rate, fracture growth appears to have a dendrite-type growth pattern, branching along 

the previous generated fractures in a random way, a geometric property that is typically observed for self-similar (fractal) 

structures. The simulated fracture growth pattern is very similar to experimental observations using Hele-Shaw cells and other 

laboratory fracturing experiments. Branching of fractures is resulted from a complex interplay between the fluid pressure losses 

along fractures due to viscous friction and the growth of fractures. It is interesting to note that branching always occur somewhere 

kn ec
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along previous fractures and behind their tips. At smaller injection rate (in this example, the injection rate is reduced by a factor of 

2), as shown in Figure 6b, multiple fractures can still be initiated around the injection wellbore and continue to grow for a long 

distance without branching (we expect branching will eventually occur as long as the domain is larger and injection continues, but 

at later time). This is due to the fact that at smaller injection rate, fluid velocity in fractures is smaller, thus leading to smaller 

pressure drop from the wellbore to crack tips. Therefore sufficient stress is transmitted to near the crack tips allowing those cracks 

to continuously grow.  

 

Figure 6. Comparison of simulated fracturing patterns using two different injection rates: (a) high injection rate and (b) 

small injection rate. Fractures are colored by their apertures (dimensionless). 

 

Also as shown in Figure 6, the crack apertures closer to the injection well are generally the largest and decrease with the distance 

from the injection well. It’s also obvious in the simulation results that higher injection rate leads to larger apertures on average than 

does small injection rate, which is not surprising and consistent with laboratory and field observations.  

Fluid viscosity is an important parameter in hydraulic fracturing. Therefore, we performed another simulation under the same 

conditions as those shown in Figure 6a, but with a much smaller fluid viscosity, ~100 times smaller than that used in previous 

example (comparable to the viscosity of water). This is done conveniently by simply increase the dimensionless hydraulic 

diffusivity l . Figure 7 shows the comparison of the simulated fracturing patterns. 

 

Figure 7. Comparison of fracturing patterns using fracking fluid of different viscosities: (a) high viscosity and (b) low 

viscosity. Color scales with the fluid dimensionless fluid pressure (normalized by Young’s modulus). 

 

It is obvious that high viscosity fluid leads to dendrite-type fracturing patterns involving branching at different stages due to the 

larger fluid pressure loss from the wellbore to fracture tips. However, when fluid viscosity is small, as shown in Figure 7b the fluid 

pressure loss is small along newly opened fracture, which keeps driving the newly opened fracture continuously propagating into a 

greater distance, resulting in much less number of fractures: often a single long discrete fracture.  This might have negative impact 

to the recovery rate. 

(a) (b) 

(a) (b) 
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Figure 8. (left) Model set up for a multi-stage horizontal wellbore with maximum compressive stress in vertical direction 

and minimum compressive stress in horizontal direction and (right) the details of perforations. Assuming symmetry 

condition on either side of the wellbore, the actual simulations are only using the upper half of the conceptual model 

domain. 

4.2 Hydraulic fracturing from a perforated horizontal wellbore 

The calibrated DEM model was then used simulate propagations of hydraulic fractures from a perforated horizontal wellbore. 

Figure 8 shows the model setup. The matrix has a dimensionless hydraulic pressure diffusivity l  of ~10-10, corresponding to tight 

formations with extremely low permeability on the order of 10-19 m2 and fracking fluid with viscosity of 0.8Pa.s, about ~1000 times 

greater than that of clean water. Fracking fluid is injected at constant rate into one stage (plugged on both ends) of a horizontal 

wellbore, which has initial 6 perforations. It is worthy noting that these initial perforations have some random perturbations in their 

sizes and depths into the formation, which come out naturally from our DEM model as a result of a random packing procedure used 

to construct the model. The maximum confining compressive stress applied to the model corresponds to a value of ~80MPa 

(~11,000psi) along the vertical direction, with a maximum to minimum (horizontal) ratio of 2. 

 

 

Figure 9. The simulated fracture propagation process from a horizontal wellbore with multiple perforations using high 

viscosity fluid. Color scales with fluid pressure (dimensionless). 

Figure 9 shows the snapshots of the fracture propagation process. A single crack is initiated first and starts to propagate into a 

certain distance (Figure 9a). However, the fluid pressure loss along the fracture is significant due to high fluid viscosity. Therefore, 
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as the crack length increases, the growth speed also slows down, thus the wellbore pressure continues to build up, a second crack 

then starts to initiate and propagate simultaneously along with the previous crack, as shown in Figure 9b. As the two cracks 

continue to grow simultaneously, the shorter crack turns toward the longer crack (Figure 9c), and eventually terminates, while the 

longer crack continues to grow. It is at this stage, a third crack from another perforation starts to grow too, but quickly turns and 

terminates at previous crack. As injection continues (Figure 9d), another new crack is initiated and grow simultaneously with the 

previously formed longer crack, but at a faster speed primarily due to its shorter length that leads to smaller fluid pressure loss 

along that crack. It is obvious that under the same conditions, the higher viscosity fluid leads too much more complicated fracturing 

patters than the low viscosity fluid does. 

5. CONCLUSIVE REMARKS 

The simulation results of hydraulic fracture propagation and growth patterns clearly demonstrate the strength of the coupled DEM-

network flow modeling approach, which could lead towards better understanding of the complex behaviors of coupled flow and 

fracturing processes during hydraulic stimulation of reservoirs. While the behavior of two-dimensional and three-dimensional 

systems are quantitatively different, two dimensional simulations like in this study provide valuable insights into this complex, 

coupled flow-fracturing problem. 

 

The simulated crack patterns are drastically different from the idealized fracture patterns that typically assume more-or-less 

parallel, straight cracks propagating nearly uniformly from all perforations, or bi-wing straight crack. In general, the complicate 

fracturing patterns observed in our simulations (which are very likely to be the case in the field) can be explained by two types of 

interactions among cracks: (1) crack-crack interaction through elastic stress/strain field, a stress shadow concept and (2) crack-

crack interaction through fluid pressure variations and dissipation in fracture networks. While the first type of crack-crack 

interaction has been known for a long time and studied extensively, the second type of crack-crack interaction is less well 

understood. In low and ultralow permeability formations, the fluid pressure variations in one crack can be rapidly diffused back to 

the wellbore, thus propagate into all other cracks, which in turn will change the stress concentrations at the tips of all other cracks 

and affect propagations of all fractures. These interactions require the hydraulic fracturing models to account for these effects in 

order to make meaningful predictions.   
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