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ABSTRACT 

Reinjection is a very important part of any geothermal development and it may become the key factor in the success or failure of 

the field. In 2010, we conducted a review of the worldwide experiences with injection in geothermal fields, based on information 

from 91 electric-power producing geothermal projects. In the present review, we have extended the database to include 126 field 

projects and added an additional five years of experience. In this updated review, various past and current reinjection strategies 

practised in the geothermal fields and the response of different types of geothermal reservoirs to these strategies were investigated. 

The location and amount of reinjection, as well as, problems and benefits associated with production were taken into consideration. 

This study shows that the design of reinjection is most often empirical and site-specific, because the effect of injection on 

production depends on the structure of the individual system. However, there are some generic similarities depending on whether 

the system is vapour-dominated, liquid-dominated or hot-water. Experience has shown that reinjection should be planned as early 

as possible in field development and it should be flexible, as it is likely to change with time. An optimum reinjection design should 

balance the requirements to sustain the reservoir pressure and to prevent early breakthrough of cold reinjected water. Also, the 

effects of reinjection on the natural hot recharge and, therefore, on energy recovery from the system may be important. 

1. INTRODUCTION  

A good understanding of past experience of reinjection practices is of high importance for the optimal development and 

management of a geothermal resource. In this work we have carried out an extensive literature survey of published data of electrical 

power development in the world to gather information on the worldwide experience of reinjection in geothermal fields. The work 

complements early results published by Kaya et al. (2011). In the present updated study we have extended the review to include 

most recent information about geothermal fields: such as their installed capacity, reservoir information, production and injection 

conditions, their reinjection strategies, and response of different types of geothermal reservoirs to these strategies. The reports and 

articles available in the open literature, mainly published after 2010, were the main sources of this review paper. Additional 

information is also reviewed to provide further details on these fields. This information includes data relevant to the steamfield (i.e. 

approximate distance between production and reinjection wells, type of the reservoir, reservoir temperature/enthalpy and reservoir 

depth), to the power plant (type of plants, installed capacity, annual electricity production, total and steam production rates) and to 

the type of reinjection (injection rate, strategy and response of the field to the reinjection strategy).  

1.1 Categories of geothermal systems 

The literature survey of worldwide reinjection presented in Kaya et al. (2011) indicates that the effect of injection on production 

depends on the structure of the individual system. To provide an optimum reinjection plan, geothermal systems should be evaluated 

according to their individual characteristics. However, there are generic similarities depending on the thermodynamic state, 

geological structure and hydrological setting.  

To decide on the best reinjection strategy for each type of system it is important to recognize the dominant depletion mechanisms.  

For the three main types of systems these mechanisms can be summarized as follows: 

a) Two-phase, vapour-dominated systems (VDS) run out of water while heat still remains in the rock matrix. Therefore it may be 

useful to reinject water infield, mainly above the depleted reservoir (e.g. The Geysers (Khan, 2010), Larderello (Arias et al., 2010), 

Kamojang (Saptadji and Artika, 2012, Suryadarma et al., 2010) and Darajat (Mahagyo et al., 2010)). 

b) In the two-phase, liquid-dominated systems (LDS) the pressure drop at the production wells is buffered by the boiling process. 

Therefore, in general these systems do not suffer from an excessive pressure decline. Also because these systems typically have 

good permeability they experience strong lateral recharge and do not run out of water. Rather they slowly cool down as boiling 

water and steam are extracted and are replaced by cooler recharge. However, reinjection in this type of system often results in 

adverse thermal breakthrough and a consequent move of reinjection away from the production zone (e.g. Bulalo (Capuno et al., 

2010), Tiwi (Menzies et al., 2010), Ohaaki (Brockbank and Bixley, 2011) and Ahuachapan (Monterrosa and López, 2010)).  

c) In hot-water systems (HWS) boiling does not take place before and/or after production; in this type of reservoir the pressure 

declines to the point where wells can no longer produce. Reinjection assists by providing an extra mass flow and boosting pressure.  

The ideal reinjection strategy requires the injection wells to be close enough to the production wells to provide pressure support but 

far enough to prevent premature flooding by cold water. In some fields, particularly those with a few large faults, thermal 

breakthrough has occurred rapidly, for example, Pauzhetsky (Kaya et al., 2011, Kiryukhin et al., 2010) and Brady Hot Springs 

(Faulds et al., 2010). 
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Due to these dominant depletion mechanisms, an optimum reinjection plan should be tailored to the individual characteristics of 

each system. To assist with the evaluation of reinjection effects, the classification by Kaya et al. (2011), shown in Table 1, was 

used in the present study. 

Table 1: Categories of geothermal systems. 

Category 

 

Temperature (T) Production enthalpy (h) 

Hot-water 

 

T < 220˚C h < 943 kJ/kg 

Two-phase, liquid-dominated 

Low-enthalpy 220˚C < T < 250˚C 943 kJ/kg < h < 1100 kJ/kg 

Medium-enthalpy 250˚C < T < 300˚C 1100 kJ/kg < h < 1500 kJ/kg 

High-enthalpy 250˚C < T < 330˚C 1500 kJ/kg < h < 2600 kJ/kg 

Two-phase, vapour-dominated 

 

250˚C < T < 330˚C 2600 kJ/kg < h < 2800 kJ/kg 

 

1.2 Location of reinjection wells 

The location of reinjection wells relative to production wells is probably the most important issue in the design of a reinjection 

system. As it is described in Kaya et al. (2011), infield reinjection refers to injection wells located close to the production wells and 

within the hot part of system (i.e. within the resistivity boundary). Outfield reinjection refers to the injection wells further away 

from the production wells (~2 km or more) and outside the hot part of system; direct hydrological connection to production 

reservoir may not exist. Unfortunately, these definitions are not very precise and distances cannot be given definitively. Some 

authors (e.g. SKM (2004)) have attempted to define infield reinjection and outfield reinjection in terms of how well the injection 

wells and production wells are connected measured by pressure communication, and some others (Axelsson, 2012) have defined 

them based on how reinjection wells are located relative to main production zone (infield: in-between production wells, and 

outfield: outside of the main production field). However, this classification requires information that is not usually available, 

particularly before the injection wells are drilled, and therefore may not be practically useful (Kaya et al., 2011). 

In addition, reinjection wells are designed to intersect feed-zones at a certain interval. The following options are possible: at the 

same level to the main production reservoir, above the main reservoir (at shallower levels) or below the main reservoir (at deeper 

levels).  

These locations are chosen depending on main objective of the reinjection (e.g. pressure support, water disposal). 

2. INFORMATION AVAILABLE 

The present study is based on publicly available information from 126 electric power generation geothermal fields around the 

world. The data gathered from the geothermal fields was focused on the following aspects: natural conditions of the reservoir (i.e. 

enthalpy/temperature); installed capacity/current generation; produced and injected mass flow rate; temperature of reinjection 

water; strategies and technology used during reinjection; impact of reinjection on power production and reservoir recharge; and 

main problems and obstacles associated with production and reinjection (e.g. cooling of production wells, silica or other types of 

scaling). 

The effect of reinjection is also analysed according to the classification presented in Table 1. The initial temperatures/enthalpies 

used for each field were those prior to exploitation. In some instances, a geothermal field was evaluated based on the geothermal 

power plants, as they produce different sectors of the same field and their production enthalpy varies. For example the Wairakei-

Tauhara field includes Poihipi, Te Mihi, Wairakei and Tauhara power plants (Newson, 2014). While the Poihipi plant mainly 

produces from a shallow vapour dominated zone, Tauhara produces mainly liquid from a low enthalpy zone. Therefore different 

reinjection strategies may be considered for the different sectors of the same field. At the same time, few fields from the previous 

analysis by Kaya et al. (2011) have been updated/changed as new information has become available, such as Lahendong, which 

was previously categorised as vapour-dominated but according to Brehme et al. (2014) it is a liquid-dominated reservoir. Figure 1 

reflects the present field categorisation based on the reported enthalpies.  
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Figure 1: Reservoir enthalpy for each field and type of system.  
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Figure 2 gives the installed power capacity in megawatts (MWe) per type of system. According to our review, the world’s total 

geothermal energy installed capacity up to date is approximately 12,280 MWe. Figure 2 shows that most of the geothermal power 

development comes from two-phase, liquid-dominated systems (67%), with 70 developed fields. However this data represents 

99.93% of the total installed capacity, since five fields were not able to categorise, and other fields contained more than one type of 

system. Figure 2 also reveals that, the two-phase, vapour-dominated fields have a high installed capacity, representing one quarter 

of the world’s installed capacity, even though the number of the geothermal fields is least for this type of systems (seven fields). 

 

Figure 2: Total installed capacity in MWe for the different types of geothermal systems. 

 

Figure 3 shows the capacity factors (percentage of generation from installed capacity) for each type of geothermal system. This 

analysis is based on publically available data from 89 active fields, representing 73.9% of the total installed capacity worldwide. In 

average, geothermal power plants operate within a range of 70% to 90% of their installed capacity, with higher capacity factors in 

two-phase, high- and low-enthalpy systems (90% and 88%, respectively). However, some fields run at lower ratings than the 

installed capacity of the plants, due to the availability of steam (Momotombo (Cuellar, 2013)) or variability of power demand in the 

energy market (Tongonan (Malibiran, 2014) and The Geysers (Sanyal and Enedy, 2011)), while others operate at full capacity 

(Tauhara (Newson, 2014) and Salavatli (Aksoy, 2014)). 

 

Figure 3: Capacity factors for the different types of geothermal systems. 

 

The mass flow rate of fluid extracted from the reservoir to produce 1.0 MWe varies from one type of system to the other due to 

their energy density differences. Figure 4(a) presents the produced mass (t/h) per unit of power (MWe) for each type of system, 

with an additional subdivision for projects of hot-water system with less than 5 MWe of installed capacity, since more fluid is 

needed for electricity production due to higher parasitic load. Because of the limited published data, the information used in Figure 

4(a) represents the data from 87 fields (accounting for 86 % of the total installed capacity), mostly using the corresponding actual 

power generation for given flow rates. Figure 4(a) show that the vapour-dominated systems require less fluid per MWe of power 

produced than any other system. In contrast, hot-water systems with 5 MWe or higher installed capacity need to have production 

rates that are approximately 11.5 times greater than a vapour-dominated system to generate 1.0 MWe of electricity, and about 40.5 

times more fluid in hot-water systems with less than 5 MWe of installed capacity.  

Figure 4(b) presents the contribution of each geothermal system to the total produced geothermal mass from the analysis of 87 

fields (86% of the total installed capacity). The study showed that 72% of the total extracted geothermal fluid is from two-phase, 

liquid-dominated systems, which are also the majority within amount of currently active geothermal fields. High rates of fluid 

extraction in hot-water systems presented in Figure 4(a) are balanced with a low geothermal-based power generation from these 

type of systems compared to the rest of the systems, nevertheless, our review showed that these systems account for about 21% of 

the global mass production.  
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 (a)       (b) 

Figure 4: (a) Produced mass (t/h) per MWe for each type of geothermal system  (b) total produced mass per type of system. 

 

Figure 5(a) presents the reinjection rate (t/h) per unit of power (MWe) for each type of geothermal system. The reinjected mass 

includes geothermal waste fluid (i.e. brine and condensates) and additional water, such as river water (Matsukawa (Hanano, 2003)), 

treated waste water (The Geysers (Sanyal and Enedy, 2011)) and supplementary water (Larderello (Cappetti et al., 1995)) injected 

to artificially recharge the system. In this case, available information from 78 fields (representing 84.3% of the worldwide installed 

capacity) was used, mostly using the actual power generation for given injection rates. Figure 5(a) shows that injected flow rate per 

MWe and produced flow rate per MWe follow a similar trend (see Figure 4(a)).  

 

(a)       (b) 

Figure 5: (a) Injected mass (t/h) per MWe for each type of geothermal system (b) total injected mass per type of system. 

 

The total reinjected mass per system is presented in Figure 5(b). This figure shows that the predominant injection percentage is 

from liquid dominated systems (65%) whilst hot-water systems are the major single contributor of reinjected water with 29% of the 

total reinjected mass, As expected low-enthalpy systems (i.e. hot-water and low-enthalpy, liquid-dominated systems) have a higher 

contribution to the total injected mass, compared to the total produced mass, since they have more wastewater available to reinject. 

Figure 6 presents the total produced mass flow rate compared to the total injected mass flow rate per type of system, using data 

from 69 fields (representing 78% of the total installed capacity). For this analysis, only geothermal projects with known production 

and injection rates, with their correspondent power generation, were used. The results in Figure 6 shows that vapour-dominated 

systems inject 58% of their mass withdrawal, which includes the external water added to cope with the relative low amount of 

residual fluid from production. For liquid-dominated, high-enthalpy systems, the percentage of produced mass reinjected back to 

the reservoir is around 53%, while medium- and low-enthalpy systems reinject 62% and 76% of their produced mass, respectively. 

Note that medium-enthalpy, liquid-dominated systems in Figure 6 have a low contribution of water production and reinjection 

because of the incompleteness of the information. Hot-water systems tend to reinject most of their production (92%) since many of 

them utilise closed loops binary systems. Within hot-water systems, those with installed capacity of ≥ 5 MWe reinject most of their 
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production (94%) since many of them utilise closed loop binary systems. On the other hand, many hot-water systems of < 5 MWe 

of installed capacity utilise full surface discharge, decreasing the proportion (over all hot-water systems) of reinjection. 

 

Figure 6: Produced flow rate mass (red) and reinjected flow rate mass (blue) in t/h for each type of geothermal system, and 

the percentage of injected mass in terms of produced fluid. The values shown in blue circles represent the percentage 

of mass reinjection. 

 

The analysis of percentage of injected fluid presented in Figure 6 slightly varies from the data reported by Kaya et al. (2011). These 

changes correspond to increasing reinjection rates reported in fields, such as Ahuachapan (Mayorga, 2012), Hatchobaru (Franco 

and Vaccaro, 2014), Salavatli and Kizildere (Aksoy, 2014). Another variation found is that the amount of produced and injected 

fluid is higher than previously reported. This difference is due to increasing power production and new plants commissioned in the 

last 5 years, together with the additional available data used in the present study. 

Figure 7 and Figure 8 present production and reinjection flow rate per unit of power generated by type of geothermal system on 

field-by-field basis. Data shows that there is a direct correlation between extracted and injected mass, together with the fact that 

fields producing from higher enthalpy systems require less fluid mass flow per MWe and inject less fluid per MWe than lower 

enthalpy systems. 
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Figure 7: Produced mass per MWe generated for each field. 
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Figure 8: Reinjected mass per MWe generated for fields with available data. 
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Figure 9 shows the surface discharge rate of some fields. Part of the information presented represents actual data given in the 

literature and the rest was estimated when this information was not available. To estimate the surface discharge rate in hot-water 

systems, the value was taken as the total waste fluid from production; while in liquid-dominated systems the wastewater rate was 

calculated as the sum of the separated brine, plus 20% of the produced steam rate (assuming that steam losses vary between 75 and 

90% (Kaya et al., 2011)), minus the reinjected fluid (if applicable). Comparing the information presented by Kaya et al. (2011), 

some fields changed their surface brine disposal scheme to full reinjection (Los Azufres (Flores-Armenta and Gutiérrez-Negrín, 

2011), Pico Vermelho (Carvalho et al., 2013) and Momotombo (Cuellar, 2013)). 

 

Figure 9: Wastewater discharged to the surface. 

 

As mentioned in the previous section, the location of the reinjection zone is an important aspect during the design and the 

management of a reinjection strategy. Table 2 presents the distance ranges and average distances between production and 

reinjection zones for each type of system based on the most recent reported data and field maps available in open literature. The 

average distances correspond to the arithmetic average of 64 geothermal fields. The data in Table 2 shows that there is not a fixed 

distance for each type of system, but rather a wide distance range for injecting fluid back to the subsurface. Also, the gathered 

information indicates that the range of distance between production and injection zones decreases as the system increases in 

enthalpy, possibly due to the nature of each category in terms of the extension of their permeable zones around the hot production 

areas.  

Table 2: Distance ranges and average distance between production and injection zones per field category. 

Category 
Distance range between production 

and reinjection zones (km) 

Average distance between production 

and injection zones (km) 

Hot-water 0.2 – 4.0 1.28 

Two-phase, 

liquid-dominated 

Low-enthalpy 0.2 – 5.0 1.45 

Medium-enthalpy 0.4 – 4.0 1.44 

High-enthalpy 0.2 – 2.0 1.13 

Two-phase, vapour-dominated Infield 

 

The temperature of injected fluid is another important parameter to consider for an optimal reinjection strategy. This property 

depends to a great extent on the scaling potential faced when reinjecting geothermal wastewater. Also, a proper selection of the 

temperature of injected fluid is vital since the fluid temperature can alter the thermo-mechanical properties of natural fractures, thus 

varying the injectivity of the formation, as reported in Hellisheidi (Gunnarsson, 2011). Table 3 presents the temperature ranges of 

injected fluids, categorised by type of geothermal system, as well as the arithmetic averages of the injectates temperatures and 

temperature difference between the reservoir and injectates from 26 fields.  
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Table 3: Reinjection fluid temperatures for the different types of systems. 

Category 
Temperature ranges 

of injectates (˚C) 

Average temperature 

of injectates (˚C) 

Average temperature difference 

between reservoir and 

injectates (˚C) 

Hot-water 50 - 100 76.5 54.94 

Two-phase, 

liquid-dominated 

Low-enthalpy 55 - 150 102.5 131.00 

Medium-enthalpy 30 - 175 109 185.61 

High-enthalpy 20 - 180 106 169.10 

Two-phase, vapour-dominated No data 

 

3. SUMMARY OF REINJECTION EXPERIENCE 

Based on worldwide reinjection experience in different type of geothermal reservoirs, we have distilled the following summary. 

The results presented in this summary agree with Kaya et al. (2011) and provide additional examples and conclusions from new 

field data and reported experience.  

1. Infield reinjection in two-phase, vapour-dominated systems (VDS) has an important role for maintaining steam 

productivity of the fields (e.g. Kamojang (Saptadji and Artika, 2012), Larderello (Arias et al., 2010), Matsukawa (Hanano 

et al., 1991) and The Geysers (Boyle and Majer, 2012)). However a few adverse effects have been reported when the 

production wells are too close to the injection wells (e.g. Darajat (Martiady et al., 2011), Matsukawa (Hanano, 2003, 

Hanano et al., 1991) and The Geysers (Boyle and Majer, 2012)). 

 

2. The optimum depth for infield reinjection in VDSs varies depending on reservoir structure. For example the reinjection 

depth is preferred to be deep at Kamojang (Suryadarma et al., 2010), on top of the reservoir at Larderello (Cappetti and 

Stefani, 1994) and at the same depth of the reservoir at The Geysers (Adams, 2011), in order to provide enough recharge 

and allow good residence time for injected fluid to heat up. This has been achieved by good naturally or induced fractured 

rocks (The Geysers (Dobson et al., 2006)), vertical permeability and high superheating conditions (Larderello (Cappetti 

et al., 1995, Cappetti and Stefani, 1994, Hanano et al., 1991)). Furthermore, Larderello is an example where excellent 

producers have been sought as good reinjection wells (Cappetti and Stefani, 1994). 

 

3. Most two-phase, high-enthalpy, liquid-dominated systems (HH-LDS) reinject infield at sites with lower temperatures 

than the production area (Uenotai (Butler et al., 2005), Yamagawa (Okadaa et al., 2000), Olkaria (Mariaria, 2012), Los 

Humeros (Urban and Lermo, 2013), and Mutnovsky (Kiryukhin et al., 2010)). This reinjection strategy has resulted in 

good pressure support in Olkaria (Mariaria, 2012), Mokai (Kaya et al., 2014) and Onuma (Horne, 1982), however an 

increase of water mass flow has been accompanied with this effect. Moreover, thermal and chemical breakthroughs have 

been experienced from infield reinjection in this type of systems (Krafla (Fridleifsson et al., 2006), Gunung Salak 

(Julinawati and Molling, 2013), Los Azufres (Barragán et al., 2011), Onikobe (Kaya et al., 2011), Sumikawa (Kumagai 

and Kitao, 2000) and Rotokawa (Hunt and Bowyer, 2007). Therefore infield reinjection in HH-LDS is often 

complemented with edgefield or outfield reinjection targets to reduce the aforementioned negative reinjection effects, as 

seen in Uenotai (Butler et al., 2005), Gunung Salak (Julinawati and Molling, 2013), Tongonan (Dacillo et al., 2010), 

Bulalo (Capuno et al., 2010, Vicedo et al., 2008) and Mindanao (Emoricha et al., 2010).  

 

4. HH-LDS tend to reinject at the reservoir depth or deeper (Krafla (Einarsson et al., 2010), Kakkonda (Arihara et al., 

1995), Los Azufres (Iglesias et al., 2010), Rotokawa (Sherburn et al., 2013), Lihir (O'Sullivan, 2014), Tongonan (Dacillo 

et al., 2010), Salton Sea (Brodsky and Lajoie, 2013), and Puna (Kaya et al., 2011)). The deep reinjection in Tongonan 

and Los Azufres has given good results as the deep reinjection allows better heat transfer. Reinjection at shallower depth 

than the production wells has been reported to complement the deep injection to dispose condensates (Hellisheidi 

(Hardarson et al., 2010)), to minimize brine returns to reservoir (The Philippines (Sarmiento, 2008)) and when deep 

injection capacity is limited (Nesjavellir (Zarandi and Ivarsson, 2010) and Hellisheidi (Gunnarsson, 2011)).  

 

5. Infield reinjection is common in many two-phase, medium enthalpy, liquid-dominated systems (MH-LDS), such as 

Amatitlan (Kaya et al., 2011), Reykjanes (trials) (Sigurdsson, 2010), Sibayak (Kaya et al., 2011) and Olkaria II 

(Axelsson et al., 2013). Yet a thermal breakthrough is often observed with this strategy (Berlin (Monterrosa and 

Montalvo, 2006), Ogiri (Itoi et al., 2010) and Momotombo (Porras and Bjornsson, 2010)). Some MH-LDS have opted to 

move further away the reinjection site (Hatchobaru (DiPippo, 2012, Kaya et al., 2011), Ohaaki (Brockbank and Bixley, 

2011), San Jacinto-Tizante (Randle and Ogryzlo, 2010), Tiwi (Menzies et al., 2010) and Palinpinon (Malate and Aqui, 

2010)) or have included edgefield or outfield reinjection wells (Blundell (Allis and Larsen, 2012)). Recovery of the field 

has been observed after moving the reinjection further away from the production wells (Kaya et al., 2011). 

 

6. For two-phase, low-enthalpy, liquid-dominated systems (LH-LDS), numerous cases of thermal breakthrough from infield 

reinjection have been reported (Miravalles (Ruiz, 2013), Las Pailas (Mora and Torres, 2013), Ahuachapan (Monterrosa 

and López, 2010), Svartsengi (Bjornsson and Steingrimsson, 1992), Otake (Horne, 1982), Mori (Hanano et al., 2005), 

Wairakei (Hunt et al., 1990) and Kizildere (Dünya and Dünya, 2010)). Moving reinjection wells further from production 

or diverting some of the reinjected flow to edgefield wells has successfully reversed the negative effects of infield 
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reinjection in LD-LHS (Miravalles (Ruiz, 2013), Wairakei (Bixley et al., 2009) and Ahuachapan (Kaya et al., 2011, 

Monterrosa and López, 2010)). 

 

7. Different results are sought when varying the depth of reinjection in LH-LDS. Injection of fluid at reservoir depth has 

reported to give pressure support for the field (Dixie Valley (Kaya et al., 2011, Rose and Clausen, 2014) and Tauhara 

(Contact Energy, 2010)), while a shallower reinjection has been considered to control subsidence (Tauhara (Contact 

Energy, 2010) and Takigami (Oka et al., 2012)). 

 

8. Positive gravity changes near reinjection sites have been recorded in Rotokawa (Hunt and Bowyer, 2007), Kamojang 

(Sofoyan et al., 2010), Yanaizu-Nishiyama (Yamazawa et al., 1999), Mutnovsky (Kiryukhin et al., 2014), Takigami (Oka 

et al., 2012) and Sumikawa (Tosha and Sugihara, 1997). This can be translated to mitigation of subsidence in the field. 

Also, reinjection rates can be determinant in ground deformation as such operations can lead to ground inflation 

(Mutnovsky (Kiryukhin et al., 2014), Heber (Kaya et al., 2011) and Empire (Eneva et al., 2011)). However, reinjection 

might trigger a subsidence effect due to contraction of ground by cold reinjection, as experienced in Mokai (Hole et al., 

2007), where gravity gain happened afterwards as a two-phase zone was replaced by a cooler liquid zone (Kaya et al., 

2011). 

 

9. The reinjection strategy for most hot-water systems (HWS) is to return the produced fluid near the production zone, i.e. 

infield (Landau (Evans et al., 2012), Salavatli (Serpen and Aksoy, 2010), Desert Peak (Swyer and Davatzes, 2013), 

Steamboat Hills (Kaya et al., 2011), Soda Lake (U.S. Department of the Interior Bureau of Land Management Carson 

City District, 2009), and Casa Diablo (Kaya et al., 2011)) or edgefield (Empire (Kaya et al., 2011), Beowawe (Garg et 

al., 2007), Pauzhetsky (Kiryukhin et al., 2010) and Neustadt-Glewe (Evans et al., 2012)). There are records of HWS 

fields switching from an outfield reinjection to a closer site in order to reduce pressure drawdown. This can prevent cold 

groundwater infiltration into the reservoir (Beowawe (Dickey et al., 2011, Garg et al., 2007)) and/or decrease production 

losses (Brady Hot Springs (Krieger and Sponsler, 2002)). However, thermal effects in HWS are commonly experienced 

(Pauzhetsky (Kaya et al., 2011), Casa Diablo (Kaya et al., 2011), East Mesa (Kaya et al., 2011), Steamboat Springs 

(Kaya et al., 2011), Soda Lake (Echols et al., 2011), Brady Hot Springs (Kaya et al., 2011) and Chena Hot Springs 

(Holdmann, 2007)). 

 

10. Shallow reinjection in HWS has shown a higher degree of thermal breakthrough than deeper injection (Casa Diablo 

(Kaya et al., 2011) and Brady Hot Springs (Kaya et al., 2011)). Shallow injection also can lead to ground inflation 

(Empire (Eneva et al., 2011)). Injecting within the range of production depth has proved in Steamboat Springs to reduce 

the severity of thermal breakthrough (Kaya et al., 2011). Furthermore, reinjection deeper than production depth has 

allowed the injected water to heat up before rising up to the pay zone in the Salavatli field (Gurbuz et al., 2011, Serpen 

and Aksoy, 2010). 

 

11. Partial reinjection is mainly implemented in two-phase, liquid dominated systems (LDS) such as Krafla (Ágústsson et al., 

2012), Nesjavellir (Zarandi and Ivarsson, 2010), Yanaizu-Nashiyama (Asanuma et al., 2014), Olkaria (Mariaria, 2012), 

Cerro Prieto (Flores-Armenta and Gutiérrez-Negrín, 2011, García-Gutiérrez et al., 2012, Kaya et al., 2011), Bulalo (Kaya 

et al., 2011), Tongonan (Dacillo et al., 2010, Kaya et al., 2011), Mutnovsky (Ilgen et al., 2011), Reykjanes (Andresdottir, 

2013, Hitaveita Sudurnesja HF, 2006), Kawerau (Teat, 2012), Ohaaki (New Zealand Geothermal Association, 2013), 

Yangbajing (Yi et al., 2005), Svartsengi (Kaya et al., 2011), Wairakei (Bixley et al., 2009), Kizildere (Aksoy, 2014) and 

Pauzhetsky (Franco and Vaccaro, 2014, Kiryukhina, 2010). Although some of these fields used to implement total 

surface discharge, environmental constraints (chemical and heat pollution) on geothermal fluids (Yangbajing (Yi et al., 

2005) and Wairakei (Bixley et al., 2009, Kaya et al., 2011)), and benefits from mass recovery (Cerro Prieto (García-

Gutiérrez et al., 2012)) and pressure support for the reservoir (Wairakei (Bixley et al., 2009)) have encouraged the 

gradual change of this water disposal scheme. 

 

12. Complete surface discharge is still common in small scale power plants (< 5 MWe) based in HWS (Birdsville (Ergon 

Energy Corporation Limited, 2013), Dengwu (Luo et al., 2012), Fang (Kaya et al., 2011), Honey Lake (Sanyal et al., 

2006) and Wabuska (Sapp, 2007)). 

 

13. The geothermal wastewater from power plants is often used for direct use applications (especially for residential heating 

and commercial bathing) before reinjection, (Suginoi (Taguchi et al., 1996), Hachijo-Jima (Yamashita et al., 2000), 

Hatchobaru (DiPippo, 2012), Kizildere (Aksoy, 2014) and Husavik (Verkis, 2013)).  

 

14. Supplementary surface water addition into reinjection system is common in VDS to cope with the disproportion in 

recharge compared to the required production mass (Darajat (Kaya et al., 2011, Mahagyo et al., 2010), Matsukawa 

(Hanano, 2003), Kamojang (Sofoyan et al., 2010) and The Geysers (Khan, 2010),). This strategy is also seen in LDS and 

HWS, where this practice is used to maintain reservoir pressure (Dixie Valley (Kaya et al., 2014)), or to sustain surface 

features (Ngawha (Watson, 2013)). Furthermore, this operation can have a multiple benefits since the reinjection system 

can help with the disposal of municipal wastewater (e.g. The Geysers (Sanyal and Enedy, 2011) and Steamboat Hills 

(Kaya et al., 2011)). 

 

15. Unproductive or old production wells have been utilised for reinjection purposes with good results in VDS (The Geysers 

(Khan, 2010), Kamojang (Suryadarma et al., 2010), and Larderello) and LDS (Olkaria (Mariaria, 2012), Las Tres 

Virgenes (Barragán et al., 2010) and Ribeira Grande (Kaplan et al., 2007)). This methodology brings savings in the cost 

and time associated with the drilling of new wells during early development. However, the negative effects of infield 

reinjection must be considered when the reinjection wells are located close to production wells (Ahuachapan (Kaya et al., 
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2011), Tiwi (Menzies et al., 2010) and The Geysers (Kaya et al., 2011)). Monitoring and evaluation of the response of 

production to reinjection is highly recommended in this case (Kaya et al., 2011, Suryadarma et al., 2010). 

 

16. Reinjection rate control is an effective tool for reservoir management used in many fields to mitigate thermal fronts 

(Bulalo (Capuno et al., 2010) and Mahanagdong (Kaya et al., 2014)), to reduce injection returns (Mindanao (Aragon and 

Sambrano, 2010) and Palinpinon (Malate and Aqui, 2010)), and to increase productivity (Gunung Salak (Acuña et al., 

2008) and Tiwi (Menzies et al., 2010)). For example, in Tiwi and Gunung Salak, injection rates are decreased to lower 

the reservoir pressure, thus increasing the enthalpy of the system and the energy recovery (Acuña et al., 2008, Menzies et 

al., 2010). Moreover, in Tongonan (Dacillo et al., 2010), a rate variation is critical for mitigating side effects in 

reinjection sites near production or with good connectivity to production wells . Establishing rate limits in certain wells 

(Tiwi (Menzies et al., 2010)) and monitoring water chemistry (Mori (Hanano et al., 2005)) can complement rate 

management. 

 

17. Retention tanks or ponds are commonly used prior to reinjection in LDS as a way to mitigate the problem of scaling by 

polymerization of the silica before reinjection (Bacman (Panopio et al., 2008), Nesjavellir (Zarandi and Ivarsson, 2010), 

Dieng (Pambudi et al., 2014), Hatchobaru (DiPippo, 2012) and Cerro Prieto (Miranda-Herrera, 2012)). In Kawerau, the 

retention pond is used when the modified pH level of the separated water is not adequate for reinjection. This allows the 

silica to precipitate before reinjecting (McPherson and Koorey, 2013). Furthermore, the stored wastewater can also be 

used for other purposes, such as drilling operations (Olkaria (Mariaria, 2014)). 

 

18. Cold reinjection has shown positive effects by increasing the injection capacity of the formation (Uenotai (Hisatani et al., 

2000), Ohaaki (Clotworthy, 2000), Palinpinon (Bermejo, 2013), Liubei (Xin et al., 2012) and Hellisheidi (Gunnarsson, 

2011)). Nevertheless, at the same time it can increase the risk of thermal breakthrough (Cerro Prieto (Cárdenas and 

Rodríguez, 2011) and Olkaria (Mariaria, 2011)). In such situation, prompt actions should be taken when cold reinjection 

returns are observed, such as moving cold reinjection further away from production wells (Uenotai (Hisatani et al., 

2000)), performing cold reinjection intermittently (Olkaria (Ofwona, 2011)), or using cold reinjection only for emergency 

cases (Tiwi (Villaseñor and Calibugan, 2011)). 

 

19. Changes in the reinjection strategy have been extensively reported in all types of fields in response to production 

behaviour: from hot reinjection to cold reinjection for avoiding silica scaling (Hellisheidi (Gunnarsson, 2011) and Dieng 

(Pambudi et al., 2014)); from infield to outfield reinjection to reduce thermal and chemical breakthrough (Brady Hot 

Springs (Krieger and Sponsler, 2002), Ohaaki (Brockbank and Bixley, 2011), Tiwi (Menzies et al., 2010), Palinpinon 

(Malate and Aqui, 2010), Miravalles (Ruiz, 2013), Ahuachapan (Kaya et al., 2011, Monterrosa and López, 2010) and 

Mori (Hanano et al., 2005, Kaya et al., 2011)); and from shallow to deeper reinjection depths for decreasing 

thermodynamic changes (Rotokawa (Hunt and Bowyer, 2007, Quinao et al., 2013), Sumikawa (Kaya et al., 2011, 

Kumagai and Kitao, 2000) and Casa Diablo (Kaya et al., 2011)). On the other hand, relocating the production site away 

from the reinjection point has been reported in Otake (Taguchi et al., 2006) and Pauzhetsky (Kiryukhin et al., 2007). 

 

20. The geological setting of the reinjection site play an important role in the effectiveness of reinjection as it can increase the 

negative thermal effects in the reservoir (The Geysers (Goyal, 1995, Khan, 2010), Hatchobaru (Yahara and Tokita, 2010), 

Momotombo (Porras and Bjornsson, 2010), Otake (Hayashi et al., 1978) and Brady Hot Springs (Faulds et al., 2010)). 

Faults can also act as barriers between reinjected fluids and hot reservoir (Hellisheidi (Gunnarsson, 2011), Gunung Salak 

(Acuña et al., 2008), Takigami (Jalilinasrabady et al., 2011) and Otake (Hayashi et al., 1978)). 

 

21. There is a direct correlation between reinjection and micro-earthquakes (MEQ) in some geothermal fields, especially in 

VDS and HH-LDS (Darajat (Pramono and Colombo, 2005), Larderello (Bolognesi, 2011), The Geysers (Altmann et al., 

2013), Krafla (Evans et al., 2012), Hellisheidi (Gunnarsson, 2011), Yanaizu-Nishiyama (Asanuma et al., 2014), 

Kakkonda (Tosha and Sugihara, 1997), Los Azufres (Noé et al., 2013), Los Humeros (Urban and Lermo, 2013), 

Rotokawa (Sherburn et al., 2013), Nga Awa Purua (Sherburn et al., 2013), Salton Sea (Brodsky and Lajoie, 2013) and 

Puna (Kenedi et al., 2010)). It has been reported that the seismic activity has possibly increased the porosity in the 

reservoir (Darajat (Pramono and Colombo, 2005)), enhanced the permeability (Larderello (Bolognesi, 2011)), and 

induced stress changes in rock (Los Azufres (Noé et al., 2013)). 

 

22. Enhanced Geothermal Systems (EGS) or hydraulic stimulations have been successfully utilised in a few conventional 

geothermal fields: The Geysers (Garcia et al., 2012), Landau (Evans et al., 2012), Desert Peak (Richter, 2013) and Raft 

River (Plummer et al., 2014). At Desert Peak, the EGS program has successfully added 1.7 MWe of extra power 

production to the plant. 

 

23. Chemical stimulation has been used to improve the injectivity of some reinjection wells (Mt. Amiata (Scali et al., 2013), 

Los Azufres (Tello-López and Torres-Rodríguez, 2010) and Salavatli (Serpen and Aksoy, 2010)). 

 

24. Pressure support from reinjection activities has been reported to aid in the contingency of cold-water inflow to the 

reservoir by creating or maintaining a pressure barrier between the cold inflow and the reservoir (Tongonan (Dacillo et 

al., 2010), Beowawe (Dickey et al., 2011) and Mori (Hanano et al., 2005)). However, when the pressure support is not 

properly managed, a pressure differential between the production and the reinjection sites can induce cold injectates to 

flow into the reservoir (Hatchobaru (DiPippo, 2012)). 

 

25. Reinjection provides low-gas working fluid to reservoir compared to the higher gas content from the natural deep fluid. 

This can result in improved plant efficiency with less gas in the geothermal steam going through the turbines. A lower 

steam/non-condensable gas (NCG) ratio has been reported when external fresh water has been added to the reinjection 
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system (Larderello (Arias et al., 2010) and The Geysers (Sanyal and Enedy, 2011)), thus increasing the efficiency of the 

power plant. Additionally, a higher steam/NCG ratio has been experienced whilst only geothermal wastewater is 

reinjected (Wairakei (Contact Energy, 2010) and Coso (Kaya et al., 2011)). 

 

26. Reinjection wells have been successfully converted into production wells after a period of heat up in some fields, 

(Uenotai (Butler et al., 2005, Nakao et al., 2007), San Jacinto-Tizante (Randle and Ogryzlo, 2010), Palinpinon (Malate 

and Aqui, 2010) and Miravalles (Ruiz, 2013)).  
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