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ABSTRACT 

An obstacle for further commercial utilization of deep geothermal resources is the high cost for deep drilling in regard to the 

productivity risk of a well.  Minimizing the risk by optimizing the location of a well is thus a question of primary importance. For a 

given geological model of a reservoir, we demonstrate how this problem may be tackled by a mathematical optimization approach 

called optimal experimental design. We show how this problem can be mathematically derived, numerically formulated, and 

practically implemented using distributed computing. We discuss an example for a sedimentary geothermal reservoir with multiple 

lithological units. We show how optimized positions of boreholes can be determined such that uncertainty of estimating the 

hydraulic permeability of a target rock unit from temperature measurements is minimized. 

1. INTRODUCTION  

Optimal experimental design (OED) refers to a set of methods developed in statistics since the 1970s. These techniques are also 

known as design of experiments; see Atkinson and Donev (1992), Pronzato (2008) and Pukelsheim (2006) for a thorough 

introduction to these methods.  In general, OED can be understood as a technique to extract the most useful information from data 

to be collected. Therefore, it is considered to be a central method in occasions where unknown quantities are estimated and the 

choice for estimation is open. Even so the method has been developed originally in the field of mathematical statistics, application 

to problems governed by differential equations are quite recent. Many open problems are still to be discussed, in particular for 

complex flows. 

In the present extended abstract, we apply OED to obtain “good” model-based parameter estimates. Thus, the main objective of 

OED is to present a reliable (and at least for simple problems provable) method to minimize errors in the parameter estimation. To 

explain the basic procedure we first formulate an abstract problem in Section 2 before turning to a particular geothermal forward 

problem in Section 3. In Section 4, we formulate an OED problem that is based on this forward problem. Finally, we draw some 

conclusions in Section 5. 

2. OPTIMAL EXPERIMENTAL DESIGN (OED) 

In an abstract setting, we consider a mathematical model A that depends on unknown parameters θ and further on experimental 

conditions F. The output of the model is denoted by the symbol y and therefore we may formally write  

),( FAy 
.          

Here, we assume that we observe the output without any error. Suppose now that there are some experimental conditions F* given. 

Suppose further that the output of the model A under these experimental conditions y* is known. Then, the classical parameter 

estimation problem is given by 

),(min
**

FAy 



.         

Assume that this parameter estimation problem has a solution θ. Then those parameters are the optimal ones under the experimental 

condition F*. The OED problem tries to answer the following question: Suppose you can choose the experimental condition F 

freely. Suppose further that the model output y is only available up to some unknown error. Which experimental condition F should 

be chosen such that the resulting error in determining the parameter θ is minimal? 

One possibility to answer the previous question is to study the variation of the model output y with respect to the experimental 

conditions F. Mathematically, this is described by certain measures of the Fisher matrix  
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where ),( FAy  . A typical example of a measure of the Fisher matrix is the so-called D-optimality design, which is given by 

the optimality criterion 
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))),(log(det(),( FMFD  
.        

Other possibilities for optimality criteria include computing eigenvalues of or traces of the Fisher matrix M. Finally, OED answers 

the previously raised question as follows: The optimal experimental conditions F are given as the solution to the min-max problem 

),(maxmin FD
F


 .         

In this extended abstract, we consider the D-optimality design criterion for a particular geothermal OED problem. For this problem, 

we obtain similar results for other optimality criteria. 

3. A PARTICULAR GEOTHERMAL FORWARD PROBLEM 

Before discussing an OED problem we introduce the underlying forward model. The mathematical model A describes geothermal 

processes in a geological reservoir. Parameters θ of the model include the hydraulic permeability κ, the thermal conductivity λ, and 

the porosity ψ. Furthermore, the subsurface model includes several different layers. We assume for simplicity that, within each 

layer, the previous mentioned parameters are constant, but unknown. The model describes the evolution of the temperature 

distribution T(t, x) at a three-dimensional position x and time t > 0 as well as the evolution of the hydraulic pressure P(t, x). We use 

the following notations. Let ρf denote the fluid density. The symbols α and β are used for compressibilities of rock and fluid phase, 

respectively. The symbol μf denotes the fluid viscosity whereas (δc)e and (δc)f are used for the heat capacity of the porous medium 

and fluid, respectively. The symbol g stands for the gravitational constant. Then, the model A is given by the following coupled 

system of differential equations: 
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Here, W and H are source terms due to inflowing water and possible heat, respectively. The model is numerically solved using 

appropriate initial and boundary conditions. To this end, we use the software package SHEMAT-Suite; see Bartels, Kühn, and 

Clauser (2003) and Rath, Wolf, and Bücker (2006). The subsurface model including the different layers is depicted in Figure 1 

where each color represents a different geophysical layer with possibly different parameters. 

 

Figure 1: Multilayer geothermal model where different colors refer to different permeability values. This figure shows a 

two-dimensional cut in the x2 (location) and x3 (depth) direction. 

 

4. A PARTICULAR GEOTHERMAL OED PROBLEM 

Even so more general computations are possible we consider an OED problem under the following additional assumptions: We 

assume that only the hydraulic permeability in zone j is an unknown parameter, hence θ = κj. Here, the symbol κj refers to the 

permeability in the fault zone. Furthermore, the experimental condition F is the location of the borehole on the surface (ζ1, ζ2) in the 

two-dimensional space. Different experimental conditions therefore correspond to different possible boreholes or drilling locations. 

Finally, as model output, we consider only the temperature along the depth of the reservoir at terminal time τ within the single 

borehole described by F, i.e., located at coordinates (ζ1, ζ2). Hence, the model output is given by y = T(τ, ζ1, ζ2, ∙) and we may 

formally write y = A(θ, F) where the evaluation of the model A for given parameter θ = κj and given experimental condition F 

described by the location (ζ1, ζ2) requires to solve the coupled system of differential equations. 

Finally, we numerically solve the min-max problem introduced in Section 2. Note that every evaluation of the D-optimality 

criterion D(θ, F) corresponds to at least solving the coupled system of differential equations and the numerical evaluation of the 

gradient. The latter is obtained using a combination of numerical and automatic differentiation. More precisely, we compute the 

derivatives of the model with respect to the experimental condition, ∂y/∂F, via automatic differentiation and approximate the mixed 

second-order derivatives, ∂2y/(∂F ∂θ), using divided differences on the code generated automatically via automatic differentiation.  
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Due to the highly nonlinear structure, a direct method to solve the min-max problem is not yet available. The evaluation of equation 

using only a one-dimensional unknown parameter and borehole positions with fixed coordinate x1 is computationally expensive. 

Therefore, we employ the EFCOSS framework for the solution of OED problems; see Rasch und Bücker (2010). EFCOSS uses a 

combination of distributed and parallel computing which is capable of reducing the computing time to a reasonable limit. A graph 

of the function  

),(max)( FDFO 



         

for varying borehole position x2 is shown in Figure 2. When solving the min-max problem we are interested in the minimum of the 

graph with respect to x2. The permeability θ = κj in the fault zone j is unknown. A borehole location can be freely chosen, but only 

along the x2 direction. We observe that the minimum is located in between the interval x2 = 7 km to 10 km. This coincides well with 

the intuition since the fault zone is precisely in this area. 

 

Figure 2: Plot of the function O(F) := maxθ D(θ, F) for varying experimental conditions F. 

 

5. CONCLUSIONS 

Finding the location of a borehole is an important task in geothermal engineering. We formulate this task mathematically using 

concepts from optimal experimental design. Here, the solution of the underlying forward problem is already computationally 

expensive. We showed that the solution of a corresponding optimal experimental design problem, which is even more time-

consuming, is indeed possible and computationally feasible. Moreover, the borehole location computed by this approach is 

physically plausible and coincides with the intuition of a geothermal engineer. 
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