
Proceedings World Geothermal Congress 2015  

Melbourne, Australia, 19-25 April 2015 

1 

Characterisation of Fracture Network Realisations for Geothermal Reservoir Flow 

Modelling 

Marc K. Elmouttie, Brett Poulsen and Greg Krahenbuhl 

CSIRO Earth Science and Resource Engineering 

Marc.elmouttie@csiro.au 

 

Keywords: Discrete fracture network modeling, Monte Carlo simulation, uncertainty quantification 

ABSTRACT 

Characterisation of fractured reservoirs is required for prediction of the economic viability of geothermal projects. However, 

accurate characterisation is often not possible mainly because of the uncertainties associated with fracture properties such as 

location, size, orientation and aperture. Modelling of fluid flow in geothermal reservoirs often requires explicit representation of the 

fracture network as only a minority of the fractures may be responsible for the majority of the flow. To account for the uncertainty, 

stochastic methods are used and multiple fracture network realisations are generated.  

Given the computation time associated with performing a fluid flow analysis, only a subset of these fracture network realisations 

can be analysed. We have investigated the use of fast-to-compute geometry based metrics to characterise individual fracture 

network realisations prior to selection of a sub-set for explicit fluid flow analyses, the goal being to select realisations that 

accurately represent both conservative and aggressive scenarios. To assess the success of the metrics, we used a fluid flow solver 

utilising a pipe network generator to represent the fracture networks as connected 1-dimensional flow elements. We find that the 

success of such metrics depends on the complexity of the fracture network. 

1. INTRODUCTION 

The goal of any rock mass modelling is to capture the salient features of the rock for the purposes of the analysis to be undertaken. 

Heterogeneity of the rock mass results in both model uncertainty and stochastic uncertainty. The former results from our limited 

understanding of the geology, hydrogeology, discontinuities and rock matrix present in the field. The latter is present even if our 

understanding is accurate because many of the properties of interest (e.g. fracture diameter and aperture) can only practically be 

considered to be stochastic variables. 

The effective fracture network permeability of a geothermal reservoir is clearly subject to both types of uncertainties. Stochastic 

modelling approaches can be used to quantify the uncertainty in estimation of reservoir properties and performance however 

computational methods must be efficient enough to support timely analysis and ideally allow the engineer to use an iterative 

approach to refine and confirm an understanding of the reservoir. The work described in this paper attempts to at least partially 

address this requirement by providing a method to efficiently quantify the uncertainty associated with geothermal reservoir flow 

modelling. 

Modern computing facilities mean that modelling of complex physics associated with geothermal and enhanced geothermal 

systems is now possible. Sophisticated physics, coupled processes, complex geologies and stochastic processes can all be evaluated 

given enough computing time. The parameters associated with the modelling process can be divided into 3 spaces: model 

size/scale, physics complexity and representation of uncertainty. The latter refers to both model uncertainty and stochastic 

uncertainty. Figure 1 shows a schematic representation of these parameters. 

 

Figure 1 The parameters associated with the modelling process  
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Very often, the representation of uncertainty is neglected in an attempt to model the most sophisticated physics and detailed 

geometry possible. However, the heterogeneity of the rock mass is often crucial in many areas of rock mechanics, including slope 

stability, reservoir characterisation, blasting and rock processing. Explicit representation of the rock mass heterogeneity facilitates 

the representation of uncertainty. 

For understanding fluid flow through fractured rock, the heterogeneity of the fracture network needs to be captured accurately. 

There are alternate ways to represent this and the two fundamentally different approaches can be labelled stochastic continuum 

methods using effective porous medium (EPM) and stochastic discrete methods using discrete fracture networks (DFN).  

In EPM modelling, the simulation volume is discretised into gridded blocks and the properties of the rock mass in each block are 

averaged out. Most reservoir modelling of fractured rock masses use this approach but implement what is known as a dual-porosity 

model (i.e. dual referring to the fracture network versus the rock matrix). This modelling is valid for rock masses with high fracture 

frequencies and well connected networks so that the fracture properties can be averaged out over a grid block. Clearly, this 

approach is of limited use for reservoirs where the flow occurs predominantly through a small number of fractures in the network. 

In DFN modelling, fractures are individually represented in the model allowing the simulation process to account for the individual 

fracture properties (orientation, size, location, aperture etc) and ensemble properties (density, connectivity etc). However, explicit 

representation of fractures and rock mass defects imposes very significant computational costs in both processing time and memory 

consumption. This is especially true for complex DFN modelling where hundreds of thousands of individual fractures may be 

required. Moreover, for stochastic modelling, hundreds or thousands of DFN realisations may need to be generated and used in the 

modelling process to determine confidence intervals for model predictions.  

In practice, the computer codes capable of numerically modelling the fluid flow through even a single DFN realisation for simple 

scenarios is computationally expensive and therefore it is only practical to numerically model a small subset of DFN realisations. 

The flow response of individual DFN realisations can differ markedly so guidance is required in the choice of which realisations to 

use in the modelling process. Figure 2 shows an analysis of fracture network connectivity associated with two realisations of a 

geothermal reservoir. Clearly some apriori knowledge of the properties of individual realisations as they pertain to fluid flow 

through the reservoir would assist the choice of realisations for numerical modelling. 

  

Figure 2 Example of two different predictions of fracture network connectivity associated with two realisations of a 

geothermal reservoir. Fractures with black outline indicate the conducting part of the network. 

These two modelling approaches with their specific advantages need not be exclusive if the anisotropic fluid flow properties 

required as an input property for the EPM are estimated based on DFN modelling. This approach is further optimised if an estimate 

can be made of the realisations place in the parameter space, for example if the overall permeability is at the 50th, 70th or 90th 

percentile of the distribution of realisations. 

The aim of this paper is to address the computational issues by providing techniques to identify which DFN realisations should be 

selected for modelling to accurately characterise the confidence intervals. By doing so, the number of numerical simulations can be 

drastically reduced. DFN based analysis for reservoir modelling, predominantly in the hydrocarbon industry, has a long history. 

The analysis of fluid flow properties of fractured reservoirs is based on connectivity analysis associated with percolation theory of 

porous media (Berkowitz 1995). The concept of the percolation threshold can be adapted to fracture networks as follows. 

Consider a lattice with clusters - groups of interconnected bonds or sites. For a finite lattice, the probability that a site belongs to a 

cluster that connects opposing faces of the lattice (percolating or spanning cluster- see Figure 3) is defined as p. There is also the 

concept of the backbone which indicates the conducting part of the percolating cluster, or in other words, the subset of fractures 

required to maintain the flow through the cluster (Figure 3c). Note that the backbone need not include all the fractures belonging to 

the percolating cluster. Graph theory is used to identify fractures belonging to the backbone, and fractures which link to the 

backbone but do not provide connectivity back to it will be marked as not part of the backbone. Note that the definition of a 

backbone in 2D is much more trivial than in 3D. For example, Priest (1993, chapter 6) presents a discussion of the removal of 

unused fractions of fractures from the backbone, a process that makes sense in 2D but not in 3D were partially intersecting fractures 

are possible. The connectivity of a synthetic fracture network is also sensitive to the assumptions used in the generation process. 

For example, Bonneau et. al. (2013) have shown that the planar fracture assumption can lead to a significant under-estimation of 

connectivity.   
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Percolation theory dictates that the probability of locating larger clusters increases with increasing p. In a finite lattice, there will be 

some p value large enough to ensure at least one spanning cluster is present and this value is termed the critical occupation 

probability, pc. This is indicative that the lattice is at the percolation threshold. Values of p below and above pc indicate the regimes 

below and above the percolation threshold respectively.  

 

Figure 3 A fracture network, percolating cluster and backbone in 2-dimensional space. Taken from Figure 1 of Odling et. 

al. (1999). For low fracture density (a), no spanning clusters are formed. Increasing the density (b) results in a 

percolating cluster and the backbone for this is shown in (c).  

The individual DFN realisations may yield vastly different predictions of fracture network connectivity and therefore fluid flow, 

depending on the statistical properties of the DFN. Previous work analysing the use of DFN based methods to predict the 

uncertainty in reservoir properties is mainly focussed on petroleum reservoirs. However, work on geothermal reservoirs includes 

Ezzedine (2010; 2011), who describes the use of stochastic DFN modelling to estimate the impact of parameter uncertainties on 

flow, heat and mass transport for geothermal energy reservoirs.  

Hurxkens (2011) has studied the sensitivity of predictions of 3D connectivity of DFN to various parameters for a particular 

fractured reservoir in south-western Jordan. Three parameters were investigated, namely fracture orientation, fracture polygon 

shape and the aspect ratio of the polygons. For the network under investigation, he found the aspect ratio had the greatest impact on 

the percolation probability. 

Juliussion (2012) developed methods for characterizing well-to-well connections in fractured geothermal reservoirs. The methods 

were based on production data and it was shown that both molecular diffusion and hydrodynamic (fracture network induced) 

dispersion made difficult the interpretation of tracer return curves for the analysis of individual fractures or fracture distributions.  

Fluid flow modeling using DFN 

Discrete fracture network models used for solving flow and transport equations in 3D networks require some form of discretisation 

scheme. Jing (2003) provides a review of the discretisation schemes used to model fluid flow in 3D fracture network models. 

A variety of numerical techniques for the solution of flow fields for individual fracture elements using closed-form solutions are 

available. These include the finite element model, the boundary element model (BEM), the pipe model and the channel lattice 

model. Closed-form solutions exist for planar, smooth fractures with parallel surfaces of regular shape for steady-state flow (Long, 

1983). For fractures with general shapes, numerical solutions must be used. The finite element method (FEM) discretisation has 

been used in the DFN codes and imposes a numerical mesh over the individual discs representing fractures to solve the flow 
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equations. The BEM discretisation requires only the disc boundaries and fracture intersections be represented, a dimensional 

reduction that has advantages in reducing pre-processing complexities.  

The simple pipe model represents a fracture as a pipe of equivalent hydraulic conductivity starting at the disc centre and ending at 

the intersections with other fractures, based on the fracture transmissivity, size and shape distributions (Cacas, 1990). The channel 

lattice model is an extension of the simple pipe model and represents the entire fracture by a network of regular pipe networks. 

These pipe models lead to a simpler representation of the fracture system geometry, but may have difficulties to properly represent 

systems of a number of large fractures. 

The channel lattice model is more suitable for simulating the complex flow behaviour inside the fractures, such as the ‘‘channel 

flow’’ phenomena (Tsang and Tsang, 1987), and is computationally less demanding than the FEM and BEM models since the 

solutions of the flow fields through the pipe elements are analytical. The numerical method used in this paper to validate the metrics 

is similar to the channel lattice model, which is also known as the equivalent pipe method. Long et al (1985) and Dershowitz & 

Fidelibus (1999) present a detailed description of pipe network generation. 

In this work, we have used Itasca’s Slope Model software which contains a pipe network generator developed by Itasca. Slope 

Model is a numerical code developed as part of the Large Open Pit (LOP) project (Read & Stacey 2009) for the simulation of slope 

stability. Fluid flow within fractures and the rock matrix is represented in Slope Model and can be coupled to the mechanical rock 

mass response or studied in isolation. The program accepts a general DFN consisting of multiple discs or arbitrarily shaped joints 

that overlay the predefined lattice discretisation of the modelling domain. 

In Slope Model, fluid flow along fractures is solved using a flow geometry consisting of a network of fluid nodes and pipes 

automatically created based on the fracture network and underlying lattice. The resolution of the flow geometry is therefore 

uniform and based on the lattice node spacing defined by the user. Implications for the flow geometry resolution of fractures from 

this approach will be discussed in detail later in this paper. 

In the fracture flow model implemented in Slope Model, fluid pressures are stored in the fluid nodes that are connected by pipes or 

one-dimensional flow elements. When coupled to the rock mechanical response, fluid interacts with the rock mass in the calculation 

of effective stresses on joint planes and in turn the rock mass interacts with fluid flow by changing the joint effective aperture and 

by evolution of the flow geometry with the creation of micro cracks within the rock mass. 

Scope and goals of this work 

The objectives of this work were to determine if geometry based, fast-to-compute metrics of the fracture network realisations could 

be used to predict which realisations would lead to vastly different outcomes in DFN fluid flow modelling. The analysis was 

limited to the static production scenario of a reservoir consisting of sub-horizontal fractures, where it is assumed the pre-existing 

fracture network geometry remains unchanged (i.e. no fracture propagation). Given the initial assessment of performance of the 

flow simulator being used, the number of fractures per DFN realisation was limited to 100. This number is chosen so that 

sufficiently complex fracture network geometries can be analysed whilst limiting the simulation time per realisation to less than a 

day. In each realisation, the fracture fluid flow properties (aperture, permeability) were identical. This will focus the analysis on 

fracture network connectivity. In all modelling presented in this paper, fracture apertures have been set to 1mm. No mechanical or 

thermal coupling physics was investigated.  

Section 2 presents a validation of the metrics being assessed using simple DFN geometries and section 3 tests the most successful 

metric against more realistic DFN geometries. 

2. VALIDATION OF METRICS 

2.1 Modifications to flow modelling software 

A variety of codes was investigated in varying degrees of detail in order to satisfy the scope and goals of this work. Once the final 

decision to use Slope Model was made, several modifications were implemented by Itasca including the ability to monitor flow 

inflow/outflows on specific boundaries; the ability to represent domains of arbitrary size and the ability to define the magnitude of 

gravitational acceleration (set to zero for this work). 

2.2 Metrics considered for this work 

Based on the theory of fluid flow through fractured networks, several geometry based metrics were considered for this work, 

namely:  

 Minimum intersection trace length per backbone 

 Sum of intersection trace lengths per backbone 

 Sum of backbone areas 

 Flow solution using simple pipe network (labelled Qsum) 

The ‘intersection trace’ is defined as the line segment defining the intersection between two fractures.  

The DFN generator used in this work was that developed for the Siromodel probabilistic slope stability analysis software developed 

for the LOP project (Read & Stacey 2009). All metrics utilised code developed for this work by CSIRO to extract the cluster and 

backbone properties of the individual DFN realizations. The last metric will now be explained in more detail. 

2.3 Flow solution using simple pipe network 

The metrics being considered in this work all relate to the geometry (areas and lengths of intersecting traces) of the fractures 

associated with the percolating backbone. The pipe network generators available in third party codes such as Slope Model use this 
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geometry to generate the equivalent pipe network properties (connectivity and pipe conductances). A significant computational cost 

is associated with solving for the flow patterns on each individual fracture based on the geometry of the intersection traces on that 

fracture. We have investigated the significance of neglecting this aspect of the flow solution and simply solving for the flow 

assuming a constant head pressure at each fracture. Further, to keep computation times down, we have developed a simple pipe 

network generator which utilises the intersection trace data (lengths, relative separation on a given fracture) to assign pipe 

conductances (Figure 4). In this figure, the thicknesses of the pipes qualitatively represent relative conductances. The equivalent 

pipe conductances are calculated assuming parallel plate theory with plate width being the average of the trace lengths and plate 

length given by the separation of the trace centroids.  

 

Figure 4 Pipe network generator developed for this work takes fracture intersection traces on a given fracture (left) and 

uses the trace centroids and separations to assign pipe conductances (right). Thicker lines indicate higher 

conductance. Face topology is explicitly accounted for. 

As shown in the figure, if a fracture is completely partitioned by a trace then the pipe network is constrained accordingly and no 

pipes are generated across that trace. This was implemented to approximate the flow scenario where such a persistent trace must 

affect the flow. We name this aspect of the algorithm accounting for face topology. A normalisation factor is also determined to 

ensure that the sum of the pipe ‘areas’ does not exceed the area of the original fracture – such an absurdity would not otherwise be 

prevented because the trace connectivity does not fully respect the spatial locations of the traces on the fracture (or, more formally, 

the flow within the fracture is not being solved). 

Once the pipe network has been generated, we assume that the flow Q along the pipe is driven by the head loss P and that the flow 

is proportional to the conductance C of the fluid through the pipe, that is: 

𝑄 = 𝐶𝑃          (1) 

Moreover we assume laminar flow and parallel plate flow, so that the conductance between two connected nodes denoted by i and j 

is given by: 

𝐶𝑖𝑗 =
𝑎𝑖𝑗

3

12𝜇

𝑊𝑖𝑗

𝐿𝑖𝑗
          (2) 

where a, W and L represent the fracture aperture, width and length respectively and µ represents the dynamic viscosity of the fluid. 

If there is conservation of mass at each node (i.e. no nett gain/loss of fluid), then the pressure at node j can be expressed as the sum 

of the flows to/from its neighbours 

𝑄𝑖𝑗 = 𝐶𝑖𝑗(𝑃𝑖 − 𝑃𝑗)         (3) 

  

To simplify, the problem is reformulated so that the pressure at the central node is defined in terms of those at its neighbours. The 

pressure at the central node is then determined by summing the weighted neighbour pressures normalized by the sum of the 

conductances. We also define a parameter dij which represents the weighted conductances at the internal nodes. 

We then solve for the pressures at the internal nodes given the constraints at the boundary nodes using the following matrix 

formulation 

𝐴𝑥 = 𝐵           (4) 

where x represents the pressures Pi and A represents the symmetric, sparse matrix constructed for internal nodes with  
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𝐴𝑖𝑗 = {
−1 𝑖𝑓 𝑖 = 𝑗
𝑑𝑖𝑗  𝑖𝑓 𝑖 ≠ 𝑗

0 𝑒𝑥𝑡. 𝑛𝑜𝑑𝑒𝑠

        (5) 

For external nodes, we construct the B matrix 

𝐵𝑖 = − ∑ 𝑑𝑖𝑗𝑗 𝑃𝑗         (6) 

 

Figure 5 A representation of a simple network consisting of a node (white) connected to four nodes 

Using this formulation, one can solve for the pressures at the internal nodes.  

2.4 Validation DFN geometries 

A number of simple DFN geometries were used to validate the metrics and compare their performances. Geometries were chosen 

for which analytical solutions could be derived for investigating the performance of the flow solver. A summary of the DFN 

geometries is presented in Table 1. From these simulations a number of decisions were made regarding the reliability of the flow 

solver for this work. A lattice resolution of 7.5m (relative to the model dimensions of 1000x x 1000m x 500m) was chosen as a 

compromise between model resolution and computing requirements, and it was anticipated that the error between solved flows and 

actual flows would be of the order of 10%. The error includes resolution errors (i.e. a finer mesh is generally more accurate), 

location errors (where the spatial location of the fracture influences the result) and boundary incompatibility errors (due to 

limitations of using uniform boundary pressures in this solver). 

The results are presented in Figure 6 and Figure 7. From the study of the four metrics, it was observed that a metric based on the 

geometry of the DFN can be used to predict the relative permeabilities of simple DFN geometries at least in a qualitative sense. For 

realisations with geometries conducive to parallel flow, a metric based on a simplified solution of the flow equations shows the 

most promise. 

 

1 2 

j 
n 

i 
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Table 1 Validation simulations and Slope Model results 

SIM ID DESCRIPTION SCHEMATIC MODELLED FLOW 
(M3/S) 

THEORY 
(M3/S) 

031 Single XY 
persistent 

     0.34 * 

031b Two XY 
persistent 

     0.61 * 

031c Three XY 
persistent 

     0.95 * 

031d Six XY 
persistent 

     1.84 * 

033 Ten XY 
persistent 

     3.23 * 

034 Single 50% 
wide in Y 

     0.0397 0.042 

035 Three 25%, 
50% & 75% 
wide in Y 

     0.1247 0.125 

036 Fully 
intersecting 
connector 

     0.0362 0.034 

037 50% 
Partially 
intersecting 
central 

     0.0310 0.030 

038 25% 
Partially 
intersecting 
central 

     0.0218 0.023 

039b Five fully 
intersecting 
connectors 

    0.0507 * 

039c Ten fully 
intersecting 
connectors 

    0.0537 * 

*No analytical solution determined due to complex boundary conditions or DFN geometry 
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(a) 

 

 
(b) 

  
(c) 

 
(d) 

Figure 6 Metrics versus Slope Model predictions of outflow. Sum of minimum intersection traces for cluster backbones (a), 

sum of backbone areas (b), sum of intersection traces within backbones (c), and flow calculation based on simple 

pipe network (d) shown. Linear fits shown in red. Region close to the origin is shown in more detail in Figure 7. 

 

3 REALISTIC SIMULATIONS 

A series of increasingly realistic DFN geometries were used to investigate the performance of the metrics against the predictions of 

the flow solver. 

3.1 2.5D simulations – orthogonal fracture sets, variance of single fracture size 

A number of simulations were conducted using a constrained problem space to determine the applicability of the metrics confirmed 

in section 2. A ‘2.5D’ approach was used in the sense that fracture locations were constrained to a single plane (XZ) but with 3-

dimensional forms (i.e. 3D polygons). This ensured only flows through the east-west boundaries required monitoring and 

intersection traces were all oriented in the same direction (north-south), assisting in the interpretation of results.  

Initially, three realisations were generated each with 9 fractures (hexagons). The boundary fractures were 500m wide, six of the 

fractures were 300m wide but the central fracture in each realisation had a width of 300, 200 and 150m respectively. The third 

realisation is shown in Figure 8 and represents the ‘touching’ case such that from a geometrical point of view, no further decrease 

in fracture size would permit flow. Of course, given the finite lattice resolution used in numerical modelling tools such as Slope 

Model, the discretisation process would alter these characteristics. Figure 8(b) shows this effect and it is clear that the spatial 

resolution of the pipe network changes the connectivity characteristics of the central fracture with its neighbours significantly.    
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(a) 

  
(b) 

 
(c) 

 
(d) 

Figure 7 Data from Figure 6 but limited to simulations 34 to 39c. Linear fits shown in red. 

 

 (a) 
 (b) 

Figure 8 The third of a series of 3 realisations of two orthogonal fractures sets. Figure (a) shows the DFN geometry and (b) 

shows the pipe network. 

Figure 9 shows the relationship of the three metrics for each of the three simulations (referred to as 111, 222 and 333) to Slope 

Model predictions. Further, two simulations labelled 444 and 555 were also generated with minimum sized interior fractures and 

minimum sized interior and boundary fractures respectively. Other simulations discussed in the next section are also shown. The 

correlation seen in the validation simulations described in section 2 is confirmed although simulation 333 suffers from lattice 

resolution effects (discussed in section 3.5).  

3.2 2.5D simulations – orthogonal fracture sets, variance of multiple fracture sizes 

The analysis described in the previous section was extended but this time, all seven fractures interior to the bounding fractures had 

sizes generated randomly. A uniform distribution was used with limits of 150m (i.e. the limiting case for connectivity) to 300m. 

Using these parameters, thirty simulations were generated with a percolation probability of around 70%. Figure 9 shows the results 

from this analysis for several of the realisations from the set of thirty. One can see reasonable correlation with the Slope Model 

predictions for all four metrics, but it is the sum of summed intersection trace lengths and the flow solution using simple pipe 

network whose linear fit is most accurate. The latter has a more noticeable offset from the origin, and this is presumed to be a result 
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of the discretisation effect that is very apparent in the Slope Model data. Note that some simulation identifications have been shown 

in red to indicate that at least one intersection trace lengths is below the recommended resolution threshold of the lattice/pipe 

network (roughly 3 to 4 lattice resolutions). These results were promising and encouraged investigation of more realistic DFN. 

 

 (a) 

 

 (b) 

  
(c) 

 
(d) 

Figure 9 (a) Sum of minimum intersection trace lengths versus Slope Model predictions for several of the realisations of two 

orthogonal fractures sets with randomly sized interior fractures,  (b) sum of backbone areas (c) sum of summed 

intersection trace lengths and (d) flow solution using primitive pipe network versus Slope Model predictions. 

Simulation identifications shown in red indicate the present of intersection trace lengths below the recommended 

lattice resolution threshold. Linear trends shown in red. 

 

3.3 2.5D simulations – parallel fluid flow paths 

Another two realisations were generated to investigate the metrics’ ability to deal with parallel fluid flow paths within the context 

of the 2.5D simulations. The realisations were labelled 666 and 777 and were based on realisation 111 but with a secondary set of 

fractures (see Figure 10). The minimum trace length metric shown in Figure 9a does not discriminate between realisations 111 and 

666/777, however the remaining metrics perform better and the Qsum metric performed the best.  
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 (a) 
 (b) 

Figure 10 Geometry for the parallel flow path realisations 666 and 777 

 

3.4 2.5D simulations – Sub-horizontal fractures, random centroids 

The analysis was further extended to another set of 2.5D simulations using a more realistic DFN geometry with more closely 

packed, sub-horizontal fractures providing both series and parallel flow paths. Table 2 shows the DFN properties used for these 

simulations. Sub-horizontal fractures were generated so as to approximate the geometry of the full 3D simulations described in 

section 3.5. After some trials, the number of fractures per realisation was set to 25 to ensure percolating backbones formed for the 

flow simulations to be meaningful (percolation probability was 93%). 

Table 2 DFN properties for the 2.5D simulations 

Parameter Value 
Number of fractures 25 
Size / distribution 400±100m (lognormal) 
Orientation dip and dip direction / distribution 0.0±11.5/90.0±0.0 (normal) 
Fracture representation decagon (approximating circles) 
Percolation Probability 93% 

 

An example DFN realisation is shown in Figure 11.  

 

Figure 11 Example DFN realisation from the 2.5D simulations 

The use of sub-horizontal fractures further increased sensitivity to the finite resolution of the lattice / pipe network used in Slope 

Model. One realization which was assessed as non-percolating based on the geometric analysis was rendered percolating due to the 

‘welding’ of closely spaced fractures in the spatial discretisation process. Another effect of the lattice discretisation is the ‘offset’ 

seen in the horizontal axis intercept of the plots comparing various metrics to the Slope Model predictions. When only small flow 

simulations are used, the apparent offset of the curve as well as the gradient increase. This is a limitation of the current 

experimental method as it will prevent confirmation of the metric’s validity for more realistic / dense fracture networks. In fact, it 

may be the case that because of this coarse lattice resolution, for most of the realisations the entire DFN percolates, meaning the 

concepts of percolating cluster and backbone do not apply. Although some attempt has been made to identify which realisations are 

incompatible with the lattice resolution, this has been limited to an analysis of intersection trace lengths. In general, other fracture 

network properties that require interrogation include fracture separation, fracture size (although not so relevant in these DFN 

realisations as the size distribution was constrained) and fracture proximity to the boundaries of the model. 

 

Figure 12 shows the distribution of backbone areas and minimum intersecting trace lengths per backbone for the 30 realisations. 
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(a) 

 (b) 

 (c) 

Figure 12 Distribution of (a) minimum trace lengths, (b) backbone areas and (c) Qsum flows using simple pipe networks for 

all 30 realisations. 

There was insufficient time to analyse every 2.5D realisation using Slope Model, so a selection representative of the various 

backbone areas and minimum trace lengths were used. The results are shown in Figure 13. Although there is some evidence for a 

trend in the metrics, the scatter is significant and the correlations are generally poor. However, the Qsum metric based on a solution 

of the flow equations using the simplified pipe network shows generally good correlation. 
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(a) 

  
(b) 

  (c)  (d) 

Figure 13 (a) Sum of minimum intersection trace lengths versus Slope Model predictions for the selected 2.5D realisations, 

(b) sum of backbone areas (c) sum of summed intersection trace lengths and (d) solution of flow equations using 

simple pipe network versus Slope Model predictions. Simulation identifications shown in red indicate the present of 

intersection trace lengths below the recommended lattice resolution threshold. Linear trends shown in red. 

3.5 Full 3D simulations - Realistic geometry 

Finally, and notwithstanding the limitations identified in the 2.5D simulations, analysis of a DFN geometry that more accurately 

captures the heterogeneity in a geothermal reservoir was performed. Justification for the geometry chosen was based on literature 

describing fracture networks in DFN reservoirs consisting predominantly of sub-horizontal fractures in both pre- and post 

stimulation phases (e.g. Xu et. al. 2012). The choice of orientation and size parameters for the DFN generation was motivated 

primarily to achieve percolating clusters for flow analysis without the need to model fracture propagation. The properties are shown 

in Table 3. 

The pressure boundary conditions for these simulations were set for all three axes. Slope Model did not accommodate specification 

of gradients in boundary pressures and therefore incompatible conditions were present on three of the edges that join low and high 

pressure boundaries. As discussed in section 2, simplified simulations designed to investigate errors associated with these boundary 

conditions concluded the errors were around 10%.  

After some trials, the number of fractures per realisation was set to 100 to ensure around 100% of realisations generated percolating 

backbones across at least two opposing domain boundaries. 

Table 3 Properties for full 3D fracture flow simulations 

Parameter Value 
Number of fractures 100 
Size / distribution 400±100m (lognormal) 
Orientation dip and dip direction / distribution 0.0/0.0 (fisher K = 50) 
Fracture representation decagon (approximating circles) 
Percolation probability 100% 

 

Figure 14 presents various views of the first DFN realisation from this series of 30 realisations.  
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Figure 14 A DFN realization for the full 3D simulations with the backbone of one of the two spanning clusters identified 

(fractures with edges shown)  

Note that due to the 3-dimenional nature of these DFN, the number of spanning clusters was not necessarily unity for each 

realisation.  

Figure 15 shows the distribution of backbone areas and minimum intersecting trace lengths per backbone for the 30 realisations. 

   (a) 

   (b) 

 (c) 

Figure 15 Distribution of minimum trace lengths (a), (b) backbone areas and (c) Qsum flows using simple pipe network for 

all 30 realisations. 

As with the 2.5D simulations, not all realisations could be simulated within Slope Model. Therefore, a selection of realisations, 

which were reasonably representative of the various backbone areas and minimum trace lengths of all 30 realisations, were used. 
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The results are shown in Figure 16. There is almost no correlation in that case and note that all simulations are identified as having 

minimum intersection trace lengths within their percolating backbones that are below the lattice resolution threshold.  

 
(a) 

  
(b) 

  
(c) 

 
(d) 

Figure 16 (a) Sum of minimum intersection trace lengths versus Slope Model predictions for the selected 3D realisations, (b) 

sum of backbone areas and (c) sum of summed intersection trace lengths versus Slope Model predictions. Simulation 

identifications shown in red indicate the presence of intersection trace lengths below the recommended lattice 

resolution threshold. Linear trends shown in red. 

Figure 17 shows visualisations of an example realisation and aside from a handful of fractures that bridge boundaries with 

incompatible pressures, the agreement is reasonable. Therefore, notwithstanding the poor correlations between metrics and Slope 

Model results seen for full 3D simulations, re-analysis of this problem using a numerical code and computational facilities capable 

of both finer discretisation and more control over boundary conditions seems promising. 
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  (a)  (b) 

Figure 17 A comparison of visualisations from Slope Model (a) and Qsum (b) fluid pressures shows good agreement. Note 

that Qsum has coloured the isolated fractures at the top (green) and middle (light blue) differently to Slope Model as 

these fracture join two boundaries with incompatible boundary conditions. 

 

5 CONCLUSIONS 

This paper has presented a method to select DFN realisations for uncertainty quantification of geothermal reservoir permeability. 

Geometry based metrics can successfully predict relative permeability in a qualitative sense for simple fracture networks. For more 

complex networks with backbones consisting of parallel pathways, a flow solution is required. The one used in this report was 

based on a simple pipe network representation and it performed well for both simple and complex 2.5D realisations. Validation of 

the technique for more complex 3D DFN within a realistic spatial domain and with larger variance in fracture parameters such as 

orientation and variance has not been demonstrated in this work. The spatial resolution of numerical code used to model fluid flow 

has been a limitation. In this work, we have assumed the fracture network is well above the percolation threshold. Further, we have 

assumed that all fractures belonging to a backbone are permeable. Work by Molebatsi et. al. (2009) and others has shown that 

deviation from this assumption can result in significantly different estimation of the percolation threshold. Future work should 

investigate the implications of fractured reservoirs near the percolation threshold (connectively speaking) with variance in fracture 

permeability.  
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