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ABSTRACT 

According to thermodynamics, the equilibrium constant of a chemical or isotopic fractionation reaction is a state function and in 

general is a function of two state variables (e.g. temperature and pressure). Depending on the type of species involved in the 

reaction, it can be used as geothermometer and/or geobarometer. Using these thermodynamic concepts, the chemical and isotopic 

geothermometers: silica solubility, cation-exchange, methane breakdown, and oxygen-18 in dissolved sulfate and water are revised. 

The cation exchange geothermometer is a violation of laws of chemistry and thermodynamics, and is not used in this study. The 

Los Azufres reservoir temperature is in the range 190-310°C with an uncertainty of ±20°C and the vapor fraction is 13-85% with 

uncertainty of ±2%. This suggests the existence of liquid-vapor phase segregation within the reservoir. 

1. INTRODUCTION  

Geochemical study of geothermal system contemplates an understanding of mechanisms of physical-chemical processes 

responsible for its origin and evolution. The chemical compositions of fluids (separated vapor and water), collected from fumaroles, 

hot springs and drilled wells at the Earth surface are determined in the laboratory (Verma, 2002a). In the geothermal industry, the 

estimation of deep reservoir temperature is essential for proper mining and utilization of geothermal heat. Consequently, various 

geothermometers have been proposed: silica solubility geothermometers, cation exchange geothermometers, gas geothermometers 

and stable isotope geothermometers. This article describes the chemical and isotopic geothermometers from the thermodynamic 

point of view and presents their application in determining the reservoir characteristics of Los Azufres geothermal system, Mexico. 

2. AN OVERVIEW ON THERMODYNAMICS 

Human being has invented various types of machines to convert different types of energies into work for making life more 

comfortable. In these energy conversion processes, the mankind has learnt the existence of some rules of nature which are known as 

the laws of thermodynamics: 0th law: definition of temperature, 1st law: conservation of energy and 2nd law: direction of 

spontaneous process. Thermodynamic laws were well established by the end of nineteenth century and various excellent textbooks 

were written in the twentieth century to describe these laws from different points of view (Verma, 2006).The intensive parameters 

(i.e. molar quantity in the case of extensive parameters) are here used to avoid the consideration of mass factor. 

1. Temperature (T), pressure (P), volume (V), internal energy (U), enthalpy (H), entropy (S), Gibbs free energy (G), 

Helmholtz energy (A), conductivity, solubility, equilibrium constant of a chemical reaction, etc. are state functions. 

2. Any two state functions are sufficient and necessary to define completely a pure homogeneous system in a phase.  

3. The variation of a state function between two points is independent of trajectory (path) and the past history of the 

substance. 

4. If Z is a dependent state function of two state variables X and Y, it should fulfill the following relations of a mathematical 

exact function. 
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If one independent variable (say Y) is constant, the equation 2 reduces to  

(
𝜕𝑋

𝜕𝑍
) (

𝜕𝑍

𝜕𝑋
) =  1          (3) 

These properties of exact functions (i.e. equations 1 to 3) show clearly that there cannot be maximum-minimum (i.e. multi-valued 

functions) in the behavior state functions. If the same value of Z exists for two values of X (say x1 and x2) at constant Y, there 

should be at least one minimum or maximum in the behavior of Z or the same value of Z for any value of X between x1 and x2. 

Figure 1 shows various possible behaviors of Z. At the minimum or maximum (say at the maximum point m), one can write 

∆𝑋 = ±𝑣𝑒, ∆𝑍 = 0, (𝜕𝑍
𝜕𝑋⁄ ) = 0 and (𝜕𝑋

𝜕𝑍⁄ ) = ∞. Thus (𝜕𝑍
𝜕𝑋⁄ )(𝜕𝑋

𝜕𝑍⁄ ) = 0 × ∞. (i.e. indeterminate, but not equal to 1). 

Figure 2 presents the impermissible behavior of state function Z, considering X as independent and Y as constant. Figure 2a shows 

multiple-values of Z or X. Similarly, the crossing of tendencies implies multiple values (Figure 2b). In Figure 2c there is a point of 

inflexion in the tendencies between X and Z while Y is constant, which indicates a discontinuity in the derivate of X with Z and 

vice-versa. Additionally, there should not be any crossing on either side of the point of inflexion and the plots for different values of  
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Figure 1: Hypothetical behaviors of a state function Z as a function of independent state variable X, if there is same value of 

Z for two values of X at points a and b (Verma, 2006). 

 

 

Figure 2: Impermissible behaviors of a state function in a pure phase: (a) multiple values, (b) crossing of tendency and (c) 

point of inflexion (Verma, 2006). 

 

Y should be approximately parallel (i.e. independent of Y). Otherwise, if these tendencies are re-plotted between X (or Z) and Y at 

constant Z (or X), there will be a crossing in the behavior of state functions X (or Z) and Y. 

Thermodynamics does not impose any restriction on the behavior of a state function (say Z) with respect to independent state 

variables (say X and Y) for a system. However, if we know the behavior of X with Y and the behavior of Z with X (or Y), we can 

predict the behavior of Z with Y (or X) according to equation 2. For example, in the case of an ideal gas system at constant V, T 

increases with increasing P. If V increases with T, it should decrease with P. Similarly, on considering T and P as independent 

variables, V is uniquely defined. That is true in case of ideal gas. 

3. GEOTHERMOMETRY 

In the geothermal industry, the estimation of deep reservoir temperature is essential for proper mining and utilization of geothermal 

heat. Figure 3 shows the conceptual diagram of geothermal system with n-separators (Verma, 2012a). The last separator in the 

separation cycle (i.e. the weir box) is considered as the first separator. For geochemical calculations with the propagation of 

analytical uncertainty, the liquid and condensed vapor samples are generally collected at the first and second separators, 

respectively. The first separator pressure may be different from the atmospheric pressure. If the separation pressure is higher than 

the atmospheric pressure, the separated liquid is passed through a cooling coil attached to the separator in order to collect the 

sample. Using the geothermometers and mass, energy and alkalinity conservation, the chemical concentrations are converted to the 

reservoir conditions to predict the state of water-rock interaction and reservoir processes like boiling, condensation, mixing with 

other fluids, mineral dissolution-precipitation, etc. Various geothermometers have been proposed: silica solubility 

geothermometers, cation exchange geothermometers, gas geothermometers and stable isotope geothermometers. The derivation of 

these geothermometers from the thermodynamic point of view including the propagation of analytical uncertainty (error) in each 

algorithm is presented here.  

3.1 Silica Geothermometry 

The development of silica geothermometry commenced with the pioneer work of White et al. (1956) as the silica concentration in 

hot springs at Steamboat, Nevada was very close to the experimental solubility of amorphous silica. Silica exists naturally in many 

stable phases including quartz, chalcedony, tridymite, cristobalite, coesite, stishovite and amorphous silica. The dissolution-

precipitation equilibration of such multi-phase minerals depends upon the solution-mineral contact time, and it requires an 

understanding of mineral solubility kinetics (Stumm and Morgan, 1981). 

Numerous geothermometers have been proposed on the basis of solubility data along the saturation curve of quartz, chalcedony, 

Cristobalite and amorphous silica (Fournier, 1977a; Fournier and Potter, 1982; Verma and Santoyo, 1997; Gunnarsson and 

Arnorsson, 2000; Verma, 2002a, 2003a; Verma and Betzler, 2013). We will focus here on the extreme phases (i.e. quartz and 
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amorphous) silica solubility geothermometers, which have applicability to the geothermal reservoir and natural manifestation 

fluids, respectively. 

The silica dissolution results in the formation of silicic acid according to the following reaction 

 

Figure 3: Schematic diagram of a geothermal system to illustrate the extraction of geothermal fluid from a well and its 

separation into vapor and liquid in n-separators. The last separator in the separation cycle (i.e. the weir box) is 

considered as the first separator (after Verma, 2012a). The first step of the geochemical calculation procedure is the 

reconstruction the reservoir fluid characteristics (i.e. pressure (P), temperature (T), fraction of liquid (yl) and vapor 

(yv), and concentration  of chemical and isotopic species in the liquid and vapor phases. 

 

𝑆𝑖𝑂2 + 2𝐻2𝑂 =  𝐻2𝑆𝑖𝑂4           (4) 

The equilibrium constant for chemical reaction (equation 4) is expressed as  

𝐾𝑆𝑖𝑂2
= 𝑒𝑥𝑝 (

−∆𝐺𝐹
𝑇,𝑃

𝑅𝑇
) =

𝑎𝐻4𝑆𝑖𝑂4

𝑎𝑆𝑖𝑂2∙𝑎𝐻2𝑂
≅ 𝑎𝐻4𝑆𝑖𝑂4

≅ [𝐻4𝑆𝑖𝑂4]       (5) 

where GF
T,P is the difference in the Gibbs free energy of formation of the participating species (i.e. products minus reactants) at 

any temperature (T) and pressure (P), subscript F stands for formation, R is the gas constant, and ‘a’ is the activity of respective 

species. If we assume water and solid silica as pure phases, the equilibrium constant is equal to the activity of H4SiO4. Further, on 

assuming the activity coefficient for H4SiO4 as unity, the equilibrium constant (𝐾𝑆𝑖𝑂2
) reduces to the molal concentration of H4SiO4. 

There exist various dissociated species of silica acid in solution and their concentration depends on the solution pH. In the case of 

natural aqueous solutions the undissociated form (i.e. H4SiO4) is the dominating species, therefore the total dissolved silicic species 

concentration (SiO2(aq)) is equal to [H4SiO4] and the equation 5 may be written as 

log 𝑆𝑖𝑂2(𝑎𝑞) =
1

2.303
(

−∆𝐺𝐹
𝑇,𝑃

𝑅𝑇
) =

1

2.303
(

−∆𝐻𝐹
𝑇,𝑃

𝑅𝑇
) +

1

2.303
(

∆𝑆𝑇,𝑃

𝑅
)      (6) 

At lower temperatures, the values of Gibbs free energy (GF
T,P), or enthalpy (HF

T,P) and entropy (ST,P) are constant for the first 

order approximation and the variation of log K with 1/T is a straight line; however, there could be small deviation from the linear 

behavior of silica solubility at high temperature and pressure as GF
T,P or HF

T,P and ST,P are function of T and P. This 

approximation is only valid if the solid and liquid species are involved in the chemical reaction. In case of gaseous species the 

equilibrium constant of chemical reaction is always a function of T and P. 

Along the liquid-vapor saturation curve, P is defined by T and vice-versa; however, P (or T) is not constant. Therefore, Verma 

(2003a) suggested the fitting the quartz solubility data in a quadratic equation of 1/T and P of the following form 

log 𝑆𝑖𝑂2(𝑝𝑝𝑚) = 𝑎 + 𝑏 1
𝑇(𝑖𝑛 𝐾)⁄ + 𝑐 𝑃(𝑀𝑃𝑎) + 𝑑 1

𝑇2⁄ + 𝑒 𝑃
𝑇⁄ + 𝑓 𝑃2     (7) 

The equation 1 (i.e. the first constraint of exact function) was internally fulfilled in the above polynomial. However, Verma and 

Betzler (2013) improved the polynomial fitting with implementing the second constraint (i.e. equation 2) of exact function, which is 

rewritten as 

(
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)

𝑃
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)

𝑇
=  −1, where 𝐶𝑆 = log 𝑆𝑖𝑂2 (𝑝𝑝𝑚)       (8) 
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The values of (
𝜕𝑃

𝜕𝑇
)

𝐶𝑆
 at a given T and P are obtained from steam tables. With differentiating equation 7 with respect to T and P, we 

can calculate the values of (
𝜕𝑇

𝜕𝐶𝑆
)

𝑃
 and (

𝜕𝐶𝑆

𝜕𝑃
)

𝑇
. On substituting them in equation 8, we get 

− 1
𝑇2⁄ 𝑏 + (

𝜕𝑃

𝜕𝑇
)

𝐶𝑆
𝑐 − 2

𝑇3⁄ 𝑑 + ((
𝜕𝑃

𝜕𝑇
)

𝐶𝑆

1

𝑇
−

𝑃

𝑇2
) 𝑒 + 2𝑃 (

𝜕𝑃

𝜕𝑇
)

𝐶𝑆
𝑓 = 0     (9) 

 

Figure 4(a): Quartz solubility experimental data along the liquid-vapor saturation curve together with the plot of various 

polynomials for quartz solubility given in Table 1. 

 

 

Figure 4(b): Plot of F with temperature for the quadratic polynomials of quartz solubility data, derived without and with 

implementing the constraints (i.e. equations 1 and 2) of exact function. The line (F=-1) is shown with dashed line.  

 

Table 1: Quartz and amorphous silica solubility regression equations 

Equation* Type 

Quartz 

𝑇 = 230.952 + 0.28831 𝑆𝑖𝑂2 − 3.6686 × 10−4𝑆𝑖𝑂2
2 + 3.1665 × 10−7𝑆𝑖𝑂2

3

+ 77.03 log 𝑆𝑖𝑂2 

Polynomial of SiO2 (Fournier & Potter, 

1982) 

log 𝑆𝑖𝑂2 = −29.41 + 197.47
𝑇⁄ − 5.851 × 10−6𝑇2 + 12.245 log 𝑇 Polynomial of T (Gunnarsson & Arnórsson, 

2000) 

log 𝑆𝑖𝑂2 =  
−1117.34(±13.05)

𝑇⁄ + 4.78(±0.03) 
Linear of 1/T (Verma, 2002a) 

log 𝑆𝑖𝑂2 = 6.1393 − 2031.11
𝑇⁄ − 0.33262 𝑃 − 1.5305 × 105

𝑇2⁄ − 189.44 𝑃
𝑇⁄

− 3.6102 × 10−3 𝑃2 

Quadratic of 1/T and P (refitted after 

Verma 2003a) 

log 𝑆𝑖𝑂2 = 4.6970 − 1080.13
𝑇⁄ + 0.06808 𝑃 − 3295.02

𝑇2⁄ − 27.44 𝑃
𝑇⁄

− 2.200 × 10−3 𝑃2 

Quadratic of 1/T and P with exact function 

constraint (
𝜕𝑃

𝜕𝑇
)

𝑆
(

𝜕𝑇

𝜕𝑆
)

𝑃
(

𝜕𝑆

𝜕𝑃
)

𝑇
=  −1, where 

 𝑆 = log 𝑆𝑖𝑂2 (Verma & Betzler, 2013). 

Amorphous silica 

log 𝑆𝑖𝑂2 = −731
𝑇⁄ + 4.52 Linear of 1/T (Fournier 1977a) 

log 𝑆𝑖𝑂2 = 3.7983 − 225.10
𝑇⁄ − 0.1815 𝑃 − 8.6689 × 104

𝑇2⁄ + 92.943 𝑃
𝑇⁄

+ 3.874 × 10−3 𝑃2 

Quadratic of 1/T and P without exact 

function constraint (Verma, 2014) 

log 𝑆𝑖𝑂2 = 4.0930 − 409.25
𝑇⁄ + 0.0169 𝑃 − 5.7666 × 104

𝑇2⁄ − 9.192 𝑃
𝑇⁄

+ 5.539 × 10−4 𝑃2 

Quadratic of 1/T and P with exact function 

constraint (Verma, 2014) 

*Temperature (T) in K, Pressure (P) in MPa, and Silica (SiO2) in ppm. 
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Figure 5(a): Experimental data of amorphous silica solubility along the liquid-vapor saturation curve together with the plot 

of various polynomials for amorphous silica given in Table 1. 

 

 

Figure 5(b): Plot of F with temperature for the quadratic polynomials of amorphous solubility data, derived without and 

with implementing the constraints (i.e. equations 1 and 2) of exact function. The line (F=-1) is shown with dashed 

line. 

 

So, the equation 9 for all the values of measured silica concentration at given T and P must be included in the least square fitting of 

solubility polynomial (equation 7). 

3.1.1 Quartz Solubility Data 

In a geothermal reservoir the fluid residence time is sufficiently large to get the quartz solubility equilibrium. Verma (2000) 

compiled the experimental quartz solubility data along the saturation curve. These experimental quartz solubility data have been 

fitted to five different types of equations (Table 1): (i) temperature as a polynomial of SiO2 including logarithmic terms (Fournier 

and Potter, 1982), (ii) a polynomial of absolute temperature including logarithmic terms (Gunnarsson and Arnórsson, 2000) (iii) a 

linear equation relating log SiO2 to the inverse of absolute temperature (Verma, 2002a), (iv) a quadratic equation of 1/T and P 

(Verma, 2003) and (v) a quadratic equation of 1/T and P with the exact function constraint (Verma and Betzler, 2013). 

The equations together with the experimental quartz solubility data are plotted in Figure 4a. The data are divided in two groups: 

T≤300ºC and T>300ºC. It can be observed that the earlier equations (i.e. Fournier and Potter, 1982; Gunnarsson and Arnórsson, 

2000; Verma 2002a) do not fit the experimental data above 320°C. But both the quadratic polynomial equations, without (Verma, 

2003a) and with constraints (Verma and Betzler, 2013) of exact function (Table 1) fit well all the quartz solubility data (Figure 4a). 

Figure 4b shows the behavior of F (= (
𝜕𝑃

𝜕𝑇
)

𝐶𝑆
(

𝜕𝑇

𝜕𝐶𝑆
)

𝑃
(

𝜕𝐶𝑆

𝜕𝑃
)

𝑇
, where 𝐶𝑆 = log 𝑆𝑖𝑂2 (𝑝𝑝𝑚)) for the quadratic polynomial 

equations, without and with the constraints of exact function with temperature along the liquid-vapor saturation curve. According to 

the discussion presented above, it should be a straight line (i.e. 𝐹 = −1). It can be observed that the behavior of quadratic 

polynomial equation with the constraints of exact function fluctuates along the straight line. In other words, the implementation of 

the constraints of exact function is necessary for the curve fitting of thermodynamic data, although the development of quartz 

solubility geothermometers based on any of the polynomial equations will provide the geothermal reservoir temperature within the 

analytical uncertainty of silica concentration measurement as all the equations (Table 1) are very close together up to 300°C.  

3.1.2 Amorphous Silica Solubility Data 

The amorphous silica solubility data together with the polynomial equations (Table 1) are plotted in Figure 5a. The data are only up 

to 300ºC. Fournier (1977b) presented an extrapolation of amorphous silica solubility data based on the quartz solubility data. 

Verma (2013) demonstrated that the measurement of heat capacity of water at higher temperature has experimental difficulty due to 
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the existence of water vapor in the experimental setup. This is also true even for the silica solubility measurements. Thus the 

decrease in quartz solubility after 330ºC may be an artifact of experimental difficulties, which is needed to be verified with new 

experimental silica solubility data. 

Figure 5b shows the temperature behavior of F (= (
𝜕𝑃

𝜕𝑇
)

𝐶𝑆
(

𝜕𝑇

𝜕𝐶𝑆
)

𝑃
(

𝜕𝐶𝑆

𝜕𝑃
)

𝑇
, where 𝐶𝑆 = log 𝑆𝑖𝑂2 (𝑝𝑝𝑚)) for the quadratic 

polynomial equations for amorphous silica solubility data, without and with the constraints of exact function. The behavior of 

quadratic polynomial equation with the constraints of exact function fluctuates along the straight line (i.e. 𝐹 = −1). Again, the 

implementation of the constraints of exact function is necessary for the curve fitting of thermodynamic data. However, the 

development of amorphous silica solubility geothermometers based on any of the polynomial equations (Table 1) will provide the 

same temperature up to 300°C. 

3.1.3 Algorithm for Silica Geothermometer 

Verma (2008) presented an algorithm based on the conservation of enthalpy and silica to estimate temperature and vapor fraction in 

a geothermal reservoir. Verma (2012a) improved the algorithm with the propagation of analytical uncertainty in the measured 

parameters. The geothermal reservoir conditions are generally along the liquid-vapor saturation and there may be any proportion of 

vapor from 0 to 100% in the reservoir. Silica dissolves only in the liquid phase. In the development of silica geothermometry, the 

following assumptions are made here (Henley et al., 1984): (a) There is single feed zone to the geothermal well and no phase 

segregation in the reservoir and in the well. In other word there is homogeneous flow in the well, (b) The total discharge fluid from 

a well represents both the liquid and vapor phases in the reservoir i.e. the total discharge enthalpy is the reservoir enthalpy and (c) 

There is no adiabatic condensation. 

The first is the calculation of total discharge concentration.  

According to the conservation of enthalpy, the vapor fraction at the ith separator is expressed as 

𝑦(𝑖) =  
𝐻𝑙(𝑖+1)−𝐻𝑙(𝑖)

𝐻𝑣(𝑖)−𝐻𝑙(𝑖)
,    𝑖 = 1, 2, … 𝑡𝑜 … 𝑛𝑆𝑒𝑝 − 1        (10) 

where nSep is the total number of separators (Figure 3). H is enthalpy and subscripts l and v represent the liquid and vapor phases, 

respectively. The vapor fraction at the nSep- separator is calculated as  

𝑦(𝑛𝑆𝑒𝑝) =  
𝐻𝑟𝑒𝑠−𝐻𝑙(𝑛𝑆𝑒𝑝)

𝐻𝑣(𝑛𝑆𝑒𝑝)−𝐻𝑙(𝑛𝑆𝑒𝑝)
          (11) 

where 𝐻𝑟𝑒𝑠  is the measured reservoir enthalpy. The concentration of silica at separator 1 is the measured concentration of water 

sample. Thus the concentration at other separators is calculated as 

𝑆𝑖𝑂2(𝑖+1) =  {1 − 𝑦(𝑖)} 𝑆𝑖𝑂2(𝑖),    𝑖 = 1, 2, … 𝑡𝑜 … 𝑛𝑆𝑒𝑝 − 1       (12) 

The total discharged concentration is 

𝑆𝑖𝑂2,𝑇𝐷 =  {1 − 𝑦(𝑛𝑆𝑒𝑝)} 𝑆𝑖𝑂2(𝑛𝑆𝑒𝑝)         (13) 

Similarly, the measured uncertainty of silica in water samples is the uncertainty at the first separator. The uncertainty of measured 

silica concentration is propagated according to the following equation 

𝑆𝑖𝑂2𝐸𝑟𝑟(𝑖+1) =  {1 − 𝑦(𝑖)} 𝑆𝑖𝑂2𝐸𝑟𝑟(𝑖),    𝑖 = 1, 2, … 𝑡𝑜 … 𝑛𝑆𝑒𝑝 − 1      (14) 

The uncertainty of total discharged concentration is 

𝑆𝑖𝑂2𝑇𝐷𝐸𝑟𝑟 =  {1 − 𝑦(𝑛𝑆𝑒𝑝)} 𝑆𝑖𝑂2𝐸𝑟𝑟(𝑛𝑆𝑒𝑝)        (15) 

The second step is the geothermal reservoir temperature and vapor fraction with uncertainty propagation. The equation for the 

conservation of silica in the geothermal reservoir is written as 

𝑆𝑖𝑂2,𝑇𝐷 =  {1 − 𝑦𝑟𝑒𝑠} 𝑆𝑖𝑂2,𝑙          (16) 

where 𝑆𝑖𝑂2,𝑇𝐷 is the total discharge concentration of silica, 𝑦𝑟𝑒𝑠 is the reservoir vapor fraction and 𝑆𝑖𝑂2,𝑙 is the silica concentration 

in liquid phase in the reservoir. From equation 16, the fraction of vapor in the reservoir as 

𝑦𝑟𝑒𝑠 = 1 −
𝑆𝑖𝑂2,𝑇𝐷

𝑆𝑖𝑂2,𝑙
⁄           (17) 

Let the temperature in the reservoir be T. The value of T (and the corresponding saturated pressure (P) for the quadratic regression 

equation) is substituted in the regression equations given in Table 1 to calculate the silica concentration of liquid phase in the 

reservoir. This silica concentration (SiO2,poly) is substituted for 𝑆𝑖𝑂2,𝑙 in equation 17 to calculate 𝑦𝑟𝑒𝑠. The value of 𝑦𝑟𝑒𝑠 together 

with the values of Hl and Hv at T are used to calculate the reservoir enthalpy (Hres) from equation 1. Hres must be equal to the 

measured reservoir enthalpy (HR), if T is equal to the reservoir temperature. Thus the equation 17 and the conservation of enthalpy 

(𝐻𝑟𝑒𝑠 = (1 − 𝑦𝑟𝑒𝑠)𝐻𝑙 + 𝑦𝑟𝑒𝑠𝐻𝑣) are solved for temperature and vapor fraction. 
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Verma (2012a) included this algorithm in the computer program, QrtzGeotherm for the propagation of analytical uncertainty in the 

calculation of geothermal reservoir parameters. The program is modified to SilicaGeotherm with including amorphous silica 

geothermometry and the solubility polynomials with the constraints of exact function. 

The independent variables are reservoir enthalpy (HR) and total discharge concentration of 𝑆𝑖𝑂2 (SiO2,TD), whereas the dependent 

variables are reservoir temperature (TRes) and vapor fraction (yRes). Fortunately, the number of both independent and dependent 

variables is same, but the algorithm is valid for any number of independent and dependent variables. 

3.2 Cation Exchange Geothermometry 

S.P. Verma (2002) compiled the equations of various types of cation exchange geothermometers, which are empirical relations used 

to estimate deep geothermal reservoir temperature on the basis of the proportion of cation concentrations (e.g. Na+/K+) in 

geothermal fluid. Most commonly used cation geothermometers based on the concentration of Na+, K+, Ca2+ and/or Mg2+ are from 

Fournier and Truesdell (1973) and others. Verma and Santoyo (1997) applied a statistical data treatment method and the theory of 

error propagation in improving the Na+/K+ geothermometer equation. Arnónsson (2000) presents a thermodynamic calibration for 

the Na+/K+ geothermometer equation. 

A cation-exchange reaction between Na+ and K+ is in general written as following 

𝑧𝑁𝑎+ + 𝑁𝑎1−𝑧𝐾𝑧𝑋 = 𝑧𝐾+ + 𝑁𝑎𝑧𝐾1−𝑧𝑋        (18) 

where X represents an anion and z denotes the stoichiometric coefficient. The equilibrium constant of this reaction is given by 

𝐾𝑒𝑞 = 𝑒𝑥𝑝 (−
∆𝐺𝐹

𝑇,𝑃

𝑅𝑇
) =  

(𝑎𝐾+)
𝑧

(𝑎𝑁𝑎𝑧𝐾1−𝑧𝑋)

(𝑎𝑁𝑎+)
𝑧

(𝑎𝑁𝑎1−𝑧𝐾𝑧𝑋)
        (19) 

The activity coefficient is considered to unity in dilute solutions. Similarly, the activity of solid phases is also considered as unity in 

developing the geothermometers. The equilibrium constant (equation 20) is reduced to 

𝐾𝑒𝑞 = (
[𝐾+]

[𝑁𝑎+]
)

𝑧

           (20) 

Thus the proportion of Na+/K+ in geothermal fluids is a function of T and P. The pressure effect is considered relatively less under 

the geothermal reservoir conditions. 

Verma(2012a) and Verma and Betzler (2013) analyzed the above treatment for the development of cation exchange 

geothermometers on the basis of the laws of chemistry and chemical thermodynamics: 

 Unidiretionality: There are some materials which have affinity to capture some cation (say Na+) and liberate other cation 

(say K+) under certain environmental conditions. These types of reactions are unidirectional for the given environment. 

Writing a chemical reaction like equation 19 with “=” sign means that the reaction is in equilibrium (i.e. some reactants 

form products and the equal amount products form reactants). In other words there is equilibrium between reactants 

(𝑁𝑎+,  𝑁𝑎1−𝑧𝐾𝑧𝑋) and products (𝐾+ , 𝑁𝑎𝑧𝐾1−𝑧𝑋). Clearly, this is not true in case of exchange reaction. 

 Activity Coefficient of Impure Mineral: The mixed-minerals like 𝑁𝑎1−𝑧𝐾𝑧𝑋  are not pure phase, so their activity cannot 

be considered as unity. 

 Imbalanced Reaction: On substituting 𝑧 = 0.5, the equation 19 reduces to 

𝑁𝑎+ + 𝐾𝑋 = 𝐾+ + 𝑁𝑎𝑋         (21) 

 Inexistence of Free Ions: There is need is to know the structural formula of the molecule or species. According to 

equation 22 the reactants (𝑁𝑎+, 𝐾𝑋) form products (𝐾+, 𝑁𝑎𝑋). We cannot have free ions. It means that equation 22 (or 

19) is a partial chemical reaction. Thus there is need to understand first the full chemical reaction instead of developing a 

geothermometer on the basis of partial chemical reaction. 

 Electro-neutrality of Solution: According to equation 22 (or 19) there are 𝑁𝑎+and 𝐾+ in the solution and both have 

positive charge. A solution should be electrically neutral. It means that the concentrations of 𝑁𝑎+and 𝐾+ must be 

controlled by some anions in the solution. We have to know the effect of controlling anions on the equilibrium constant 

of the “cation exchange” reaction. 

 Arbitrary Temperature Value: Fournier (1989) simplified the equations for various cation-exchange geothermometers to 

the Na+/K+ geothermometer. Then he plotted log (Na+/K+) versus 1000/T for base exchange between albite and adularia, 

albite and microline and Na+- and K+-montorillonites together with the values of log (Na+/K+) for the empirical equations 

(Figure 6). There is a wide range of values for log (Na+/K+) at a given temperature and vice versa. For example, at 

temperature 100ºC, log (Na+/K+) varies in the range 0.95 to 2.25 for different equations. Similarly, for log (Na+/K+)=1.00, 

the temperature range is 90 to 410ºC. Thus one can get a wide range of temperature values using different 

geothermometer equations for a given ratio of Na+/K+. 

Thus the cation exchange geothermometry is contradictory to the laws of chemistry and chemical thermodynamics and must be 

abandoned, if we are unable to justify any of the above mentioned points. 

3.3 Gas Geothermomtry 

The gas geothermometers for the H2O-CO2-H2S-NH3-H2-N2CH4 system have been proposed by Giggenbach (1980) and others. 

These geothermometers are useful in case of vapor-dominated (or vapor producing) geothermal systems. We will discuss the 
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approach of Giggenbach (1980) with the thermodynamic point of view. There are generally two phases, liquid and vapor in a 

geothermal reservoir. The methane breakdown reaction for the vapor phase may be written as 

𝐶𝐻4 + 2𝐻2𝑂 = 𝐶𝑂2 + 4𝐻2          (22) 

 

Figure 6: Variation of log(Na+/K+) as a function of 1000/T for the theoretical curves for low albite-microcline, low albite-

adularia, and Na-montmorilloniteK-montmorillonite together with equation of various Na+/K+ geothermomters 

(modified after Fournier, 1989). 

 

Considering the fugacity coefficients as unity, the equilibrium constant of the reaction 23 in terms of partial pressure (Pi) of 

respective species may be written 

𝐾𝐶 =  
𝑃𝐶𝑂2  𝑃𝐻2

4

𝑃𝐶𝐻4  𝑃𝐻2𝑂
2  

           (23) 

By substituting the relationship 

𝑃𝑖 = 𝑥𝑣,𝑖  𝑃𝑡           (24) 

where 𝑥𝑣,𝑖 represents the mole fraction of the gas i in the vapor phase at a total pressure 𝑃𝑡, equation 24 changes to 

𝐾𝐶 =  
𝑥𝑣,𝐶𝑂2  𝑥𝑥,𝐻2

4  𝑃𝑡
4

𝑥𝑣,𝐶𝐻4  𝑃𝐻2𝑂
2  

           (25) 

The distribution coefficient of gaseous species i between vapor and liquid is defined as 

𝐵𝑖 =  
𝑥𝑣,𝑖 

𝑥𝑙,𝑖  
=

(
𝑛𝑖

𝑛𝐻2𝑂+∑ 𝑛𝑖
)

𝑣

(
𝑛𝑖

𝑛𝐻2𝑂+∑ 𝑛𝑖
)

𝑙

≅
(

𝑛𝑖
𝑛𝐻2𝑂

)
𝑣

(
𝑛𝑖

𝑛𝐻2𝑂
)

𝑙

         (26) 

On substituting the values of 𝑥𝑣,𝑖   from equation 27 in equation 26, we get 

𝐾𝐶 =  
𝑥𝑙,𝐶𝑂2𝐵𝐶𝑂2 𝑥𝑙,𝐻2

4  𝐵𝐻2
4 𝑃𝑡

4

𝑥𝑙,𝐶𝐻4 𝐵𝐶𝐻4𝑃𝐻2𝑂
2  

          (27) 

The effect of vapor gain or loss on the liquid phase concentration in terms of the total well discharge concentration is expressed as  

𝑥𝑙,𝑖 =
𝑥𝑑,𝑖

(1 − 𝑦 + 𝑦𝐵𝑖)±1⁄ =
𝑥𝑑,𝑖

𝐷𝑖
±1⁄         (28) 

The values of 𝐾𝐶  and 𝑃𝐻2𝑂 as function of T (in K) are the following 

log 𝐾𝐶 = 10.76 − 9323
𝑇⁄            (30) 

log 𝑃𝐻2𝑂 = 5.51 − 2048
𝑇⁄            (31) 

Similarly, the values of B for CH4, H2 and CO2 are function of T (Giggenbach, 1980). However, the following important points are 

lacking in this derivation of gas geothermometer: 

Truesdell (1976)

Tonani (1980)

Arnorson (1983)

Fournier (1983)

Nieva & Nieva (1987)

Giggenbach (1988)
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 The equilibrium constant of a chemical reaction which involves gaseous species must be a function of T and P. 

Giggenbach (1980) did not describe the derivation of 𝐾𝐶 , 𝑃𝐻2𝑂 and coefficient of distribution (B) of gaseous species as 

function of T. 

 Verma (2002b) showed that the concentration of CO2 in the total discharge of a well was also function of geothermal 

reservoir liquid pH. 

 Giggenbach et al. (2001) showed that the sampling procedure of gaseous species in geothermal fluids was incorrect. Thus 

it is not justified to obtain valid results on the characteristics of geothermal reservoir form these gaseous species data. 

Thus the gas geothermometry concepts need to be improved with the basic knowledge of chemistry and chemical thermodynamics. 

Similarly, the gas sampling techniques are very primitives. 

3.4 Stable Isotope Geothermometry 

An isotopic exchange reaction (Urey, 1947) may be written as  

𝑎 𝐴1 + 𝑏 𝐵2 = 𝑎 𝐴2 + 𝑏 𝐵1          (32) 

where A and B are molecules which have some one element as a common constituent and the subscripts 1 and 2 indicate that the 

molecule contains only the light or the heavy isotope, respectively. The equilibrium constant of the isotopic exchange reaction is 

defined as 

𝐾 =
(

𝑄´𝐴2
𝑄´𝐴1

)

𝑎

(
𝑄´𝐵2
𝑄´𝐵1

)
𝑏           (33) 

where the Q's are the partition functions of the molecules. Only the ratio of partition functions entre into these equilibrium 

constants and this makes it necessary to consider only these simple ratios, which are given for a chemical compound as  

𝑄´2

𝑄´1
=

𝜎1

𝜎2
(

𝑀2

𝑀1
)

3
2⁄ ∑ exp (−

𝐸2
𝑘𝑇

)

∑ exp (−
𝐸1
𝑘𝑇

)
          (34) 

Where 𝜎1, and 𝜎2 are the symmetry numbers of the two molecules, 𝑀1 and 𝑀2 are their molecular weights, 𝐸1 and 𝐸2 are particular 

energy states of the molecules, and the summations are to be taken over all such energy states. 

The stable isotope fractionation factor between two compounds A and B is given by  

𝛼𝐴−𝐵 =
𝑅𝐴

𝑅𝐵
=

1000+𝛿𝐴

1000+𝛿𝐵
          (35) 

Or  

103 ln 𝛼𝐴−𝐵 ≅ 𝛿𝐴 − 𝛿𝐵          (36) 

where R’s are isotope ratios of the element of interest in the respective compounds. The δ-value of a sample A is defined as 

𝛿 = (
𝑅𝐴

𝑅𝑆𝑇
⁄ − 1) × 1000, where RST is the isotope ratio of the standard. The equilibrium constant of isotopic exchange reaction is 

directly related with the coefficient of fractionation α. The values of α are determined experimentally (Longinelli and Craig, 1967; 

Lloyd, 1968; Mizutani and Rafter, 1969) and theoretically (Urey, 1947; Zeebe, 2010). Recently, Zeebe (2010) presented a very 

systematic study on the determination and calculation of 𝛼𝑆𝑂4
2−−𝐻2𝑂 and 𝛼𝐻𝑆𝑂4

−−𝐻2𝑂 and proposed the following equations 

103 ln 𝛼𝐻𝑆𝑂4
−−𝐻2𝑂 = 2.99

106

𝑇2 − 4.95         (37) 

103 ln 𝛼𝑆𝑂4
2−−𝐻2𝑂 = 2.68

106

𝑇2 − 7.35         (38) 

Initially, the equation 38 was used as isotope geothermometer; however, it is valid only at low pH of geothermal reservoir fluid 

Zeebe (2010). 

Secondly, there are generally vapor and liquid in the geothermal reservoir. So, we consider the algorithm similar to the silica 

geothermometry to calculate the geothermal reservoir temperature and vapor fraction. Let the temperature and vapor faction in the 

geothermal reservoir are Tres and yres. The total discharge isotopic composition is written as  

𝛿18𝑂𝑇𝐷 = 𝑦𝑟𝑒𝑠 × 𝛿18𝑂𝑣𝑎𝑝,𝑟𝑒𝑠 + (1 − 𝑦𝑟𝑒𝑠) × 𝛿18𝑂𝑙𝑖𝑞,𝑟𝑒𝑠       (39) 

The isotopic fractionation of oygen-18 between the liquid and vapor phases in the reservoir as 

103 ln 𝛼𝑙𝑖𝑞−𝑣𝑎𝑝 ≅ 𝛿18𝑂𝑙𝑖𝑞,𝑟𝑒𝑠 − 𝛿18𝑂𝑣𝑎𝑝,𝑟𝑒𝑠        (40) 

Similarly, the isotopic fractionation of oygen-18 between the dissolved sulfate and liquid phase in the reservoir as  

103 ln 𝛼𝑆𝑂4
2−−𝐻2𝑂 ≅ 𝛿18𝑂𝑆𝑂4

2− − 𝛿18𝑂𝑙𝑖𝑞,𝑟𝑒𝑠        (41) 
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These equations are used to calculate the Tres, yres and  𝛿18𝑂𝑙𝑖𝑞,𝑟𝑒𝑠  (or 𝛿18𝑂𝑣𝑎𝑝,𝑟𝑒𝑠). One more point to be emphasized is the 

analytical uncertainty in the measurement of 𝛿18𝑂𝐻2𝑂 and  𝛿18𝑂𝑆𝑂4
2−  are ±0.1 and ±0.2 %o, respectively. This causes an uncertainty 

in the estimate of geothermal reservoir temperature from equations 39 and 42 of ±25°C at Tres= 250°C. 

4. CASE STUDY: LOS AZUFRES 

The cation-exchange and gas geothermometers limitations are illustrated above; therefore, this work presents only the applications 

of silica (quartz) and stable isotope (𝛿18𝑂 in SO4
2-H2O) in the determination of geothermal reservoir fluid characteristics. Table 2 

presents the chemical analytical data of wells from Los Azufres geothermal field taken from Arellano et al. (2005) and Monteagudo 

(1989). Firstly, the separation pressure (PSep) from the separation temperature (TSep) is calculated using the SteamTables (Verma, 

2003b). For example, the separation temperature of well 5 is 180°C. Using the SteamTables, the separation pressure is calculated as 

1.003 MPa. The analytical uncertainty (error) is not reported in the analytical data of geothermal system. Verma et al. (2012) 

conducted an inter-laboratory comparison of silica analysis in water samples. They found that the analytical uncertainty in the silica 

analysis is more than 10%. Similarly, the uncertainty in the measurement of enthalpy is considered as 2%. 

Verma (2012a) presented the calculation of geothermal reservoir temperature and vapor fraction in Excel. First, the total discharge 

silica concentration (SiO2TD) and its uncertainty (SiO2TDErr) are calculated. In the case of well 5, the input parameters are the 

number of separators (nSep=2), separation pressures (PSep(1)=0.1 and PSep(2)=1.003 MPa, total discharge enthalpy (Hr=2224 

kJ/kg), silica concentration in the water sample (SiO2msd=991 ppm) and its uncertainty (SiO2msdErr=99.1 ppm). Thus the total 

discharge concentration is 230.5±23.1 ppm. The propagation of uncertainty for the total discharge concentration is linear; therefore, 

the uncertainty in SiOTD is also 10%. 

The geothermal reservoir temperature and vapor fraction and their uncertainties are calculated using the Excel function GeoRes. In 

the case of well 5, the input parameters are Hr=2224 kJ/kg, HrErr=2%=44.48 kJ/kg, SiO2TD=231 ppm, SiO2TDErr=23 ppm, and 

GeoEQ=5 (i.e. Quadratic of 1/T and P with exact function constraints). Thus the calculated reservoir temperature and vapor fraction 

are TRes=292±22°CC and yRes=0.63±0.03. The present algorithm is based on the conservation of enthalpy; therefore, the enthalpy 

of the liquid and vapor at the reservoir temperature is the same as the total discharge enthalpy, i.e. no vapor loss or vapor gain 

between the deep fluid and the fluid reaching the surface was assumed. 

Figure 7 shows the comparison of temperature and reservoir enthalpy, calculated from quartz geothermometry using the present 

algorithm (i.e. conservation of enthalpy) and the algorithm used in literature (i.e. liquid only in the reservoir). It can be observed in 

Figure 7(a) that the geothermal reservoir temperature of all the wells is significantly higher for the present algorithm than that used 

in the literature except for wells 22 and 26. 

Figure 7(b) shows a relation between the measured and calculated enthalpies using the both the algorithms. The calculated 

enthalpies for well 26 are close since the vapor fraction (yRes=0.13) is low. As the vapor fraction increases the difference between 

the calculated enthalpies increases. The present algorithm is based on the conservation of enthalpy; therefore the measured and 

calculated enthalpies are same. If we consider the liquid only in the reservoir, there will be substantially low enthalpy in the 

reservoir. The energy loss is not feasible; therefore the present algorithm is an improved in the quartz geothermometry. 

 

Figure 7: Comparison of (a) reservoir temperature and (b) reservoir enthalpy for Los Azufres geothermal field, calculated 

by the quartz geothermometry using the present algorithm based on the conservation of enthalpy and the earlier 

algorithm considering only liquid in the reservoir. The data are slightly different from Verma (2012a) as the 

quadratic of 1/T and P polynomial with exact function constraints is used for the quartz solubility. 

 

The enthalpy-pressure diagram for water is constructed in Excel using the SteamTables class (Verma, 2003b). The separation 

boundary between the liquid and vapor phases is formed by the critical isochor and the two phase region (Figure 8). The conditions 

of the geothermal reservoir fluids for all the wells are in the two phase region and between the isotherms at 200 and 310°C. 

Therefore, the geochemistry of Los Azufres provides the similar evidences as obtained by the well simulator (Arellano et al., 2005). 

Verma et al. (2013) presented a comparative study of geochemical modeling of geothermal system using GeoSys.Chem and 

WATCH and concluded that both the programs provide similar results. 
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Figure 8: Enthalpy verses pressure diagram. It shows the characteristics of Los Azufres geothermal reservoir (after 

Arellano et al., 2005 and Verma, 2012b). 

 

Table 3 presents the isotopic analytical data of wells from Los Azufres geothermal field taken from Monteagudo (1989). The 

reservoir enthalpy is considered from Arellano et al. (2005) as the objective of this chapter is to illustrate the calculation procedure 

only. As mentioned above the uncertainty in the reservoir temperature is at least ±25°. We are working to write the computer 

program to propagate the uncertainty of all the analytical parameters. 

Table 2: Geothermal reservoir temperature and vapor fraction of Los Azufres geothermal reservoir, calculated from quartz 

geothermometry (data from Arellano et al., 2005) and isotope geothermometry (data from Monteagudo, 1989) 

Well 
Hr 

(kJ/kg) 

TSep 

(°C) 

Patm 

(MPa) 

PSep 

(MPa) 

SiO2 

(ppm) 

SiO2,TD 

(ppm) 

TSiO2 

(°C) 

Vapor 

Fraction 

Stable Isotope Geothermometer 

δ18OTD 

(%o) 

δ18OSO4 

(%o) 

TSO4-H2O 

(°C) 

Vapor 

Fraction 

5 2224 180.0 0.1 1.003 991 231(23) 292(22) 0.63(3) -3.72 2.51 202 0.71 

9 1840 150.5 0.1 0.483 887 344(34) 278(14) 0.39(2) -2.31 2.12 225 0.48 

13 1932 170.0 0.1 0.792 661 234(23) 253(11) 0.49(2) -2.39 2.20 224 0.53 

16-AD 2263 172.0 0.1 0.831 509 109(11) 231(12) 0.70(2) -3.37 2.64 206 0.72 

18 2061 135.0 0.1 0.313 715 206(21) 256(12) 0.56(2) -3.37 2.83 200 0.62 

22 1551 190.5 0.1 1.269 1123 580(58) 306(31) 0.13(2)     

26 1430 177.0 0.1 0.935 617 349(35) 249(10) 0.20(2)     

33 2557 187.0 0.1 1.175 660 62(6) 249(23) 0.85(3)     

46 1724 160.5 0.1 0.626 850 374(37) 275(13) 0.33(2) -3.07 3.11 193 0.46 

48 1761 151.0 0.1 0.489 1124 474±47 305(30) 0.28(3)     

 

5. CONCLUSIONS 

The quartz solubility geothermometry is an accurate and efficient approach to estimate the deep geothermal reservoir temperature 

and vapor fraction with multivariate analytical uncertainty propagation. The calculation of temperature and vapor fraction in the 

geothermal reservoir of Los Azufres geothermal system is illustrated with considering the analytical uncertainty of enthalpy (2%) 

and SiO2 concentration (10%). The average uncertainty in the calculated reservoir temperature is ±20°C. 

The stable isotope geothermometry i.e. the fractionation of oxygen-18 in the dissolved sulfate and liquid water in the geothermal 

reservoir provides much lower temperatures, but there is relatively higher uncertainty at least ±25°C. There are two possibilities: 

residence time of geothermal reservoir fluid is less to achieve the isotopic equilibrium or the equation 39 is incorrect. 

The average uncertainty in the calculated reservoir temperature is ±20°C, which is relatively high to understand reservoir processes 

during the exploitation of the geothermal reservoir. Thus the geochemical analysis of geothermal water is first improvement that 

must be made to obtain a better understanding of the characteristics of geothermal systems with fluid geochemistry. The algorithm 

of quartz geothermometry with considering only liquid phase in the geothermal reservoir is conceptually incorrect due to lacking of 

energy (enthalpy) balance. However, both the algorithms provide same results for the wells, which are fed from a single phase 

liquid reservoirs. 

The Los Azufres geothermal reservoir temperature is 200–310°C and dominating process in the upper part of the reservoir is the 

evaporation and partial condensation. 
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