

Gas Geochemistry and Carbon-13 Systematics of Ungaran Geothermal Field, Central Java, Indonesia

Rasi Prasetio, Neneng Laksminingpuri, Bungkus Pratikno

Center for Application of Isotope and Radiation Technology, BATAN, Indonesia

rasi_p@batan.go.id

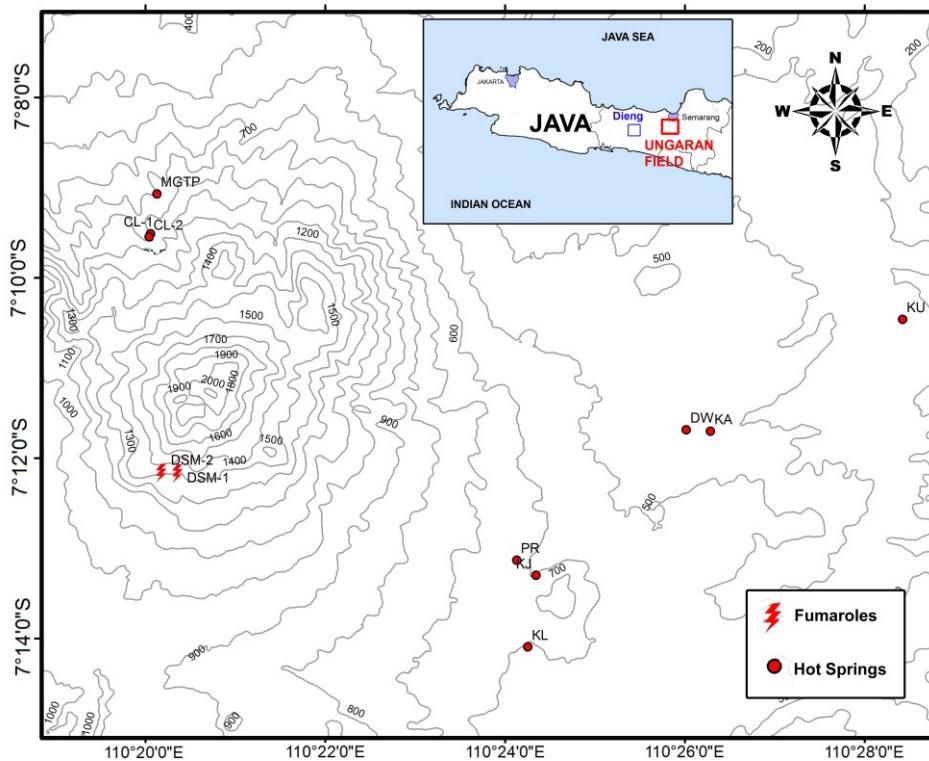
Keywords: gas geochemistry, carbon-13, fumaroles, magmatic

ABSTRACT

The Ungaran geothermal field has numerous thermal manifestations, e.g. fumaroles and hot springs with temperatures ranging from 31°C to 86°C. Fluid samples have been taken from fumaroles at Gedong Songo (Dasamuka) and gas bubbling from various hot springs to analyse its gas composition and carbon-13 ratio. The result of the gas analysis shows that the Ungaran's fluids are of meteoric origin with some degree of magmatic contribution, with CO₂ as the dominant gas. CO₂-H₂-Ar gas ratio grid shows that only samples from Gedong Songo fumaroles that plotted inside the two-phase grid with temperature about 280°C, while other samples plotted outside the grid indicates re-equilibration at lower temperatures. The range of carbon-13 ratio is about -8-32 ‰ to -5.89 ‰ (vs PDB). These values indicate that CO₂ in Ungaran geothermal fluids are magmatic origin, not from soil or carbonate source.

1. INTRODUCTION

Ungaran geothermal field is located about 30 km southwest of Semarang, the capital of Central Java province, Indonesia. Ungaran lies in quaternary volcanic belt namely Solo zone, which is in between north Serayu mountain range in the west and Kendang ridge in the east (van Bemmelen, 1949). The mountain is also a member of the volcanic arc with mount Sindoro, Sumbing, Telomoyo, Merbabu to the north. The Ungaran volcanic complex consists of older and younger volcanic body based on its volcanic activity history. The old Ungaran age is about 0.5 Ma, while young Ungaran is 0.3 Ma and situated inside the caldera formed by old Ungaran activity (Kohno et al, 2006).


Several thermal manifestations are spread around Ungaran in form of fumaroles, hot springs and altered grounds. The temperatures of the fumaroles are about 86°C and are located in Gedongsongo area, named Kawah Dasamuka as famous tourist attraction. While the hot springs are found in some locations including Gedongsongo, Nglimut, Diwak, Kaliulo, Kalianget and Klotok with temperature vary between 33°C to 46°C. Most of the hot springs is bicarbonate type, while hot springs located in fumarolic fields are acid sulfate type (Phuong et al, 2012).

Some geochemical studies have been done in attempt to characterize the properties of Ungaran geothermal field, since the early 1980's. The most recent geochemical study was done by Phuong et al (2012), which applied water geochemistry and soil gas survey to delineate the fracture system and hydrogeochemical model of Ungaran. In this paper, a gas geochemistry and carbon isotopic study is applied to characterize fluids equilibration temperature and its origin.

2. METHOD

2.1. Sampling

The gas samples were collected from fumaroles and bubbling gases associated with the hot springs. These samples were taken using pre-evacuated glass bottle filled with 50 mL of 6N NaOH (Giggenbach and Goguel, 1989; Arnorsson et al, 2006). The steam was condensed inside the bottle while CO₂ and H₂S are absorbed by NaOH solution. The rest of the gases were occupied the headspace in the sampling bottle due to its low solubility in water. Sampling was done in various locations around Mt. Ungaran as shown in figure 1.

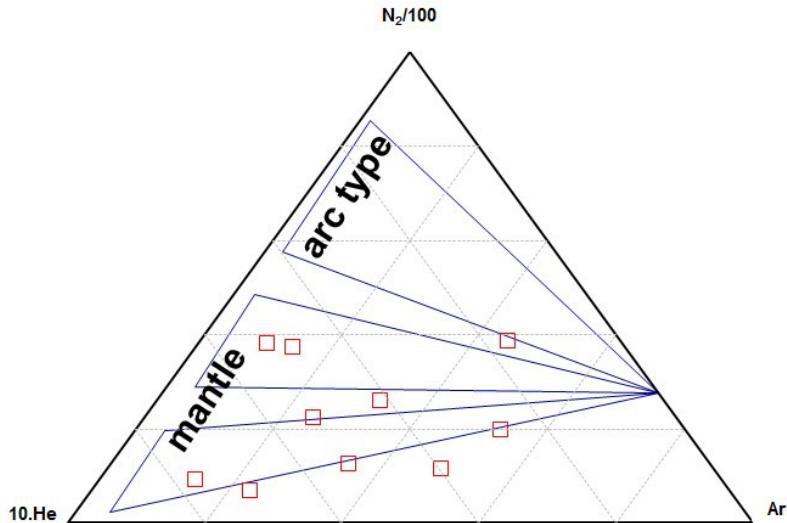
Figure 1. Sampling location of Ungaran thermal manifestation.

2.2. Analysis

Gas analysis was done by gas chromatography (Agilent 7890A) for He, H₂, N₂, O₂, Ar and CH₄ using Porapak column, He and Ar gas carrier and thermal conductivity detector. CO₂ and H₂S were analyzed using titration method (Giggenbach and Goguel, 1989). Carbon isotope of CO₂ analysis was performed using mass spectrometer VG SIRA-9 and measured against PDB standard.

3. RESULTS

Table 1 shows the analysis result of fumaroles and bubbling (seeping) gases. All samples have relatively small steam content, i.e. 16-37% mol, compare to steam derived from drilled wells. The low steam content inferred the effect of condensation during the rising of the fluids to the surface. This condensation might occur either due to deep location of reservoir or steam absorption into shallow aquifer, leads into bicarbonate water. The most dominant gas species is CO₂ that constitutes up to 99% of the NCG's, while H₂S composition is less than 1.2% mol, lower than some other geothermal fluids i.e. up to 32% (e.g. Kiyosu and Yoshida, 1988; D'Amore et al, 1992; Prasetyo et al, 2010).


Table 2. Gas and $\delta^{13}\text{C}_{\text{CO}_2}$ analysis results of Ungaran fumaroles and seeping gases. ND = not detected, NA = not analyzed. Others = He, H₂, N₂, Ar, CH₄ (measured, but not shown).

Code	Location	Gas (% mol)			NCG (% mol)	Steam (% mol)	$\delta^{13}\text{C}_{\text{CO}_2}$ (‰ PDB)
		CO ₂	H ₂ S	Others*			
DSM-1	Dasamuka	96.65	1.16	2.19	80.84	19.16	N.A.
DSM-2	Dasamuka	96.99	1.03	1.97	62.89	37.11	-7.44
KA	Kalianget	99.62	0.02	0.36	74.56	25.44	-5.80
KJ	Karangjoho	99.78	0.02	0.21	75.77	24.23	-5.92
KL	Klotok	95.01	0.04	4.95	76.93	23.07	-6.56
KU	Kaliulo	98.46	0.03	1.51	71.84	28.16	-6.34
MTP	Margotopo	99.68	0.22	0.10	72.86	27.14	-8.32
CL-1	Curuglawa	98.27	0.49	1.24	83.58	16.42	-7.92
CL-2	Curuglawa	99.65	0.29	0.06	65.23	34.77	-8.31
DW	Diwak	99.40	0.03	0.57	76.91	23.09	-7.13

4. DISCUSSION

4.1. Origin of gas and geothermometry

The origin of the gases can be inferred from a He-N₂-Ar trilinear diagram (Giggenbach, 1997) as shown in Figure 2. Gas composition of Ungaran geothermal fluids have typical characteristic of volcano-associated with largely meteoric contribution as seen from its N₂/Ar ratio. Fumarole samples at Dasamuka (DSM-1 and DSM-2) have higher N₂/Ar ratio, i.e. 268 and 387, indicate higher contribution of magmatic source than bubbling/seeping gas samples with N₂/Ar ratio below 100. This may suggest that Dasamuka (Gedongsongo) area is the up flow zone of the Ungaran geothermal field.

Figure 2. He-N₂-Ar trilinear diagram (Giggenbach, 1997) of Ungaran fluids.

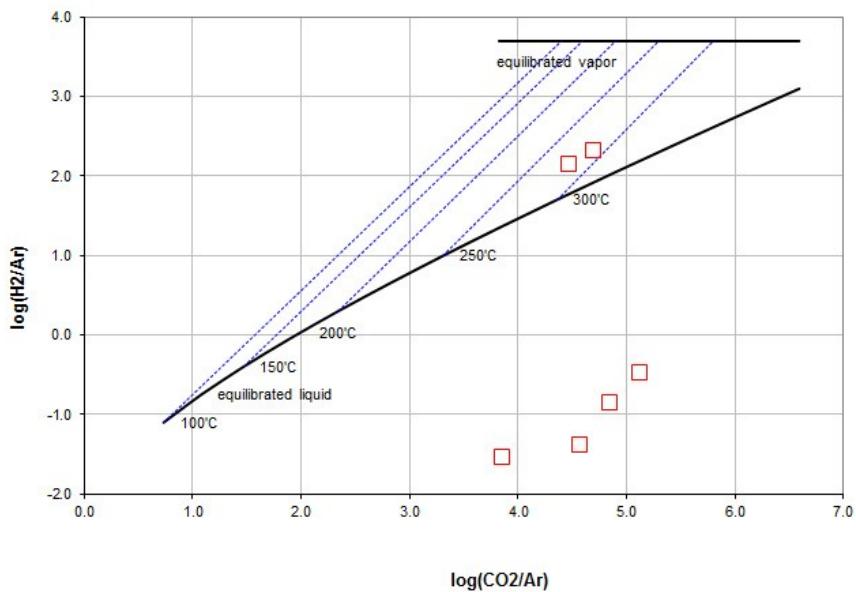
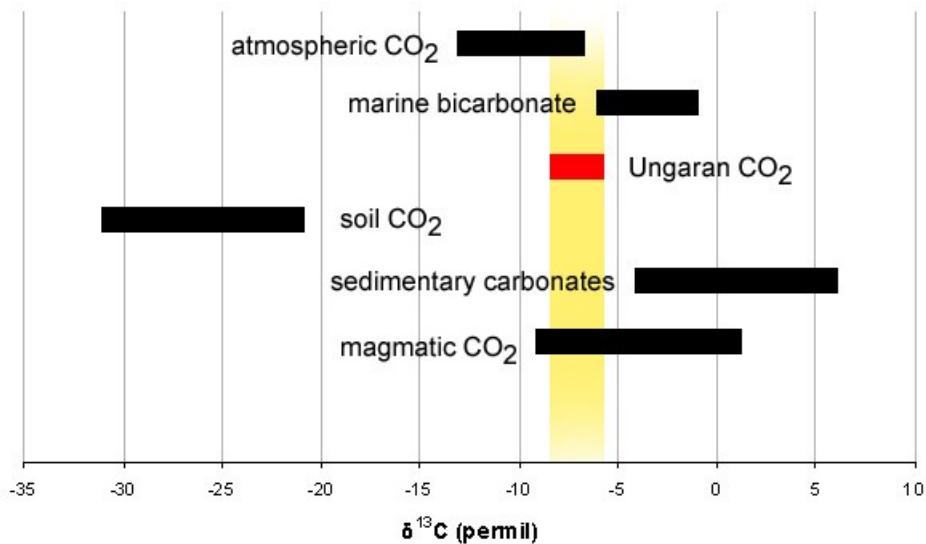
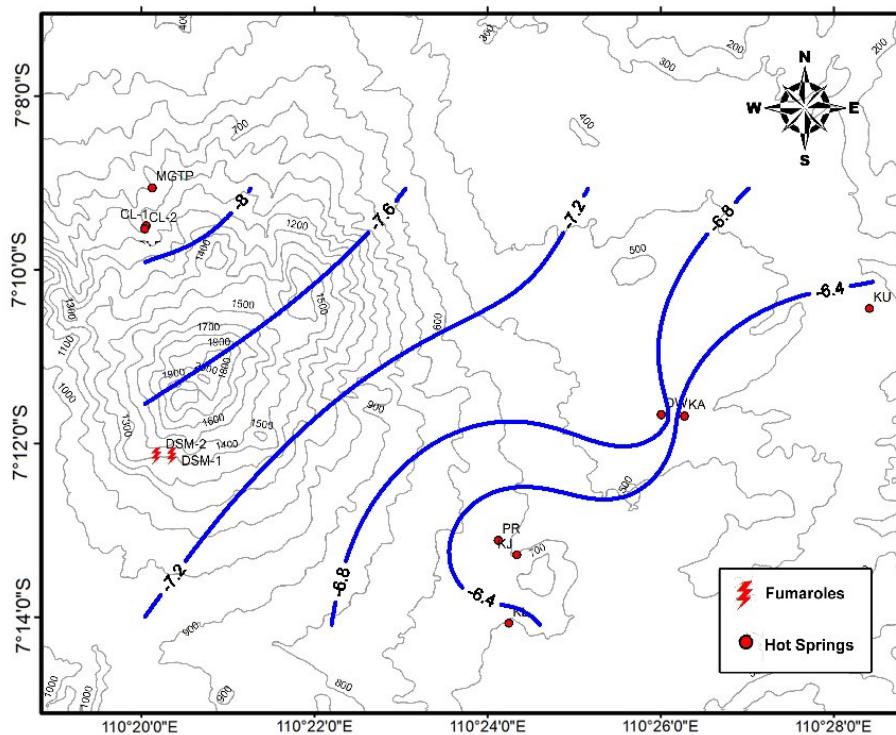

Estimation of reservoir temperature was also done using various gas geothermometer calculations. Due to condensation process, as inferred from NCG concentration, single species geothermometer can not be applied (e.g. T_{CO₂}, T_{H₂S}). Application of these geothermometers would lead to over-estimation of reservoir temperature. Thus, gas-gas ratio geothermometers, i.e. H₂S/H₂ and CO₂/H₂ (Arnórsson and Gunlaugsson, 1985), H₂/Ar and CH₄/CO₂ (Giggenbach, 1991), were applied to minimize the effect of steam condensation (table 2). Calculation results show that geothermometer involving CH₄ for samples collected from bubbling/seeping gases at Margotopo and Curuglawa tends to have higher temperature estimation, up to 442°C. This phenomenon is probably caused by slow equilibration rate of CH₄, thus this geothermometer may reflect deeper equilibration temperature (Giggenbach, 1991). On contrary, under-estimated temperature were obtain for also samples collected from bubbling/seeping gases, i.e. at Kali Ulo, Margotopo and Curuglawa when using geothermometer calculations involving H₂ species (i.e. H₂/Ar, CO₂/H₂ and H₂S/H₂). These two contradictions are probably caused by some factors such as condensation and removal of gas species from the steam. Thus, it may suggest that Kaliulo, Margotopo and Curuglawa are out flow area.

Table 2. Gas-gas geothermometer of Ungaran geothermal fluids.

Code	Location		Geothermometer (°C)			
			H ₂ /Ar	CO ₂ /H ₂	H ₂ S/H ₂	CH ₄ /CO ₂
DSM-1	Dasamuka	Fumarole	326	229	289	282
DSM-2	Dasamuka	Fumarole	339	227	290	284
KU	Kali Ulo	Bubbling gas	116	< 100	220	268
MTP	Margotopo	Bubbling gas	< 100	< 100	178	394
CL A	Curuglawa	Bubbling gas	< 100	< 100	186	442
CL B	Curuglawa	Bubbling gas	143	< 100	187	392

Beside simple geothermometer calculation, pair of gas-gas geothermometer, i.e. CO₂/Ar and H₂/Ar was also utilized to estimate not only reservoir temperature, but also to liquid-vapor equilibrium in reservoir (Giggenbach, 1991). Using a single fixed redox state (R_H = -2.8), the graphical representation of this geothermometer can be seen in figure 3. The graph shows that there are only two samples plotted inside the grid, i.e. fumarole samples (DSM-1 and DSM-2), and indicates two-phase equilibration with temperature


between 275-290 °C. Meanwhile, other samples are plotted below liquid equilibration line which may indicate H₂ re-equilibration at lower temperature, atmospheric Ar introduction or more negative redox state (Powell, 2000). Based on these two geothermometer methods (table 2 and fig. 3) the temperature of reservoir is estimated c.a. 280°C.


Figure 3. CO₂/Ar and H₂/Ar geothermometer grid of Ungaran fluids. Only fumarole samples plotted inside the grid.

4.2. Isotope ¹³C of CO₂

As seen from Table 1, $\delta^{13}\text{C}_{\text{CO}_2}$ composition of thermal manifestation vary between -8.32‰ and -5.80‰. Compared to other $\delta^{13}\text{C}_{\text{CO}_2}$ values as summarized by Birkle et al (2001), this value overlaps values of $\delta^{13}\text{C}$ from magmatic CO₂ and atmospheric CO₂ sources, not apparent contribution from soil CO₂ (fig. 4), thus indicates the contribution of magmatic and atmospheric sources. This finding is also in agreement with the gas analysis results (fig. 2) which inferred magmatic and meteoric contribution to the fluids. Although the main reservoir rocks are inferred to be consisted of Tertiary marine sedimentary rocks (Budiardjo et al, 1997) the $\delta^{13}\text{C}$ value only slightly overlaps with $\delta^{13}\text{C}$ of marine bicarbonates value. The $\delta^{13}\text{C}$ is also distributed into more enriched values towards east and southeast of the field (Fig. 5).

Figure 4. $\delta^{13}\text{C}_{\text{CO}_2}$ composition of Ungaran thermal fluids (red ribbon), compare to other $\delta^{13}\text{C}$ sources (Birkle et al, 2001).

Figure 5. Distribution of $\delta^{13}\text{C}$ in Ungaran geothermal field. The value is more enriched towards east-southeast of the field.

5. CONCLUSION

Ungaran geothermal fluids are meteoric origin, mixed with magmatic source as can be seen from its gas compositions. The fluids are mainly ascending at Dasamuka (Gedong Songo) area as an up flow zone. The gases in reservoir i.e. CO_2 - H_2 - Ar shows two-phase equilibrium at temperature about 280°C . The $\delta^{13}\text{C}_{\text{CO}_2}$ value inferred its origin, i.e. magmatic and atmospheric, which is in agreement with gas analysis results. Moreover, $\delta^{13}\text{C}_{\text{CO}_2}$ value is more enriched towards east and southeast of the field. Further study is needed to assess the factors influencing the variation of $\delta^{13}\text{C}_{\text{CO}_2}$ value.

ACKNOWLEDGEMENT

This study was funded by National Nuclear Energy Agency (BATAN), Indonesia. The authors would like to thank Mr. Satrio for his help in laboratory.

REFERENCES

Arnórsson, S., Gunnlaugsson, E., New gas geothermometers for geothermal exploration – calibration and application, *Geochim. Cosmochim. Acta* (1985), vol. 49, pp. 1307 – 1325

Arnórsson, S., Bjarnasson, J.O., Giroud, N., Gunnarsson, I., Stefansson, A., Sampling and analysis of geothermal fluids, *Geofluids* 6 (2006), 203 – 216

Birkle, P., Merkel, B., Portugal, E., Torres-Alvarado, I.S., The origin of reservoir fluids in the geothermal field of Los Azufres, Mexico – isotopical and hydrological indications, *Applied Geochemistry* (2001), vol. 16, pp. 1595 – 1610

Budiardjo, B., Nugroho, D., Budiardhi, M., 1997, Resource characteristics of the Ungaran field, Central Java, Indonesia, Proceedings of National Seminar of Geologist Human Resources, UPN Veteran, Jogjakarta

D'Amore, F., Gianelli, G., Caprai, A., Yusa, Y., Kitaoka, K., Takemura, K., Gas geochemistry for the Beppu hydrothermal system, Kyushu, Japan, Water-Rock Interaction (1992), Kharaka and Maest (eds), Balkema

Giggenbach, W.F., Chemical techniques in geothermal exploration. In D'Amore, F. (editor), *Application of Geochemistry in Geothermal Reservoir Development*, UNITAR/UNDP publication (1991), Rome, pp. 119 – 243

Giggenbach W.F., The origin and evolution of fluids in magmatic-hydrothermal systems. In: *Geochemistry of hydrothermal ore deposits* (1997) 3rd Edition (H. L. Barnes, Ed.), Wiley, 737-796.

Giggenbach, W.F., Goguel, R.L., Collection and Analysis of Geothermal and Volcanic Water and Gas Discharges, Chemistry Division, Department of Scientific and Industrial Research (1989), New Zealand

Kiyosu, Y., Yoshida, Y., Origin of some gases from the Takinioe geothermal area Japan, *Geochemical Journal* (1988), vol. 22, pp. 183 – 193

Phuong, N.K., Harijoko, A., Itoi, R., Unoki, Y., Water geochemistry and soil gas survey at Ungaran geothermal field, central Java, Indonesia, Journal of Volcanology and Geothermal Research **229-230** (2012), 23-33

Powell, T., A review of exploration gsa geothermometry, Proceedings 25th Workshop on Geothermal Reservoir Engineering (2000), Stanford University

Prasetio, R., Abidin, Z., Yulizar, Y., Isotope and gas geochemistry of Dieng geothermal field, Indonesia, Proceeding World Geothermal Congress 2010, Bali, Indonesia

Van Bemmelen, R.W., The geology of Indonesia, Vol. IA, General geology of Indonesia and adjacent archipelagos, Government Printing Office (1949), The Hague