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ABSTRACT  

European and French regulations state that 50% of the energy mix in the French Caribbean should be sourced from renewable 

energies by 2020. Because of the volcanic conditions of the French Caribbean islands, geothermal energy would seem to be a very 

favorable solution to reach this ambitious objective, as, unlike other renewable sources, it is continuous and weather independent. 

According to the Intergovernmental Panel on Climate Change (IPCC), geothermal energy source is recognized as a competitive 

energy source (with a carbon footprint around 50 gCO2eq/kWh over its lifetime) compared to conventional energies such as coal or 

oil (with a carbon footprint around 800 g CO2 eq/kWh). The IPCC make their overall environmental assessments of energy 

pathways using Life Cycle Assessment (LCA). LCA assesses the environmental and human health impacts throughout the life cycle 

stages of a product by providing a “cradle-to-grave” environmental profile. A LCA of an existing high temperature geothermal 

system is reported here with two objectives: quantifying the environmental impacts of a geothermal plant installed in the French 

Caribbean islands, and comparing and identifying technological alternatives which potentially reduce its environmental impacts. 

The geothermal power plant assessed in this study is Bouillante geothermal power plant located in the Guadeloupe island. Built in 

the 80s, Bouillante is a high temperature geothermal system (the reservoir temperature is around 250°C) which is representative, in 

terms of size, spatial and technological constraints, of future power plants to be developed in French overseas territories. Its 

medium size (15.75 MW) enables it to supply 6 to 7% of Guadeloupe’s annual electricity needs. It has two production units: UB1, a 

double flash technology (4.75 MW), and UB2, a simple flash technology (11 MW). The data inventory is mainly based on site-

specific data, extracted from drilling reports: annual environmental and exploitation reports, and technical sheets completed with 

personal communication with experts. This power plant however presents some unusual design configurations related to the age of 

its construction: use of a sea water cooling system and absence of geothermal fluid reinjection. To model a configuration that fits 

better with current practices, two new scenarios based on alternative technologies are considered: a cooling tower or air dry cooling 

condensers. Three scenarios are assessed via a multicriteria approach using a selection of life cycle environmental indicators: 

climate change, water consumption, eutrophication, land use, ecotoxicity, primary energy demand, abiotic depletion, acidification 

and human toxicity. These environmental indicators are assessed at all phases of the plant life cycle: drilling, construction and 

installation of the surface equipment, operation, and end of life (decommissioning).  

First results show that greenhouse gases (GHG) are mostly generated at the operation step (around 90% of total GHG) and are 

mainly due to leakage of CO2 and CH4 emissions (a geothermal stream is composed of non-condensable gases fraction such as CO2, 

and CH4 which are emitted due to the decrease in pressure). Results range from 38 to 47 gCO2eq/kWh over the 3 scenarios. Primary 

energy demand is mainly due to the construction and installation phase (around 70% of total energy consumption) from background 

processes such as steel or copper production processes. The primary energy demand and GHG for the reference scenario and the 

cooling tower system alternatives are found to be lower than those for the aerocondenser cooling system scenario (for the same 

energy production). As an outcome of the study, we establish the development of a general parameterized LCA model developed 

for conventional geothermal systems with a temperature reservoir ranging from 230°C to 300°C. Results obtained from this model 

enable high temperature geothermal systems to be positioned from an environmental perspective in comparison with other energy 

systems, and also highlight the main drivers leading to the reduction of environmental impacts of future geothermal systems. 

1. INTRODUCTION  

Strong incentives and regulations are found at European and National levels to promote and include renewable energies in the 

energy mix by 2020 [European Parliament and Council 2009]. For the French overseas territories, French regulations, referred to as 

Grenelle Laws [Loi n°2009-967 2009] [Loi n°2010-788 2010] are particularly ambitious aiming to ensure that 50% of energy 

production comes from renewable energies by 2020, and achieving energy self-sufficiency by 2030. Despite their high natural 

potential of renewable energies, the current electricity production of these territories is, however, essentially based on imported 

fossil energies (70 to 90% of the electricity production). In 2006, for example, the energy dependence rate in the French West 

Indies was over 90% [INSEE Antilles-Guyane and DRIRE Antilles-Guyane 2010]. To reach the 2020 and 2030 targets, there is a 

need for a strong development of combined renewable energies, including geothermal energy. Considering the specific volcanic 

context of these French overseas territories (hot spot of La Reunion and subduction area of the Lesser Antilles), geothermal energy 

appears today as one of the very favorable solutions for supplying a high proportion of the local energy needs [Sanjuan et al. 2011]. 

A power plant is already running in Guadeloupe (Bouillante) and supplies 7% of the local energy needs and a strong increase of this 

renewable energy is possible and expected. 

To favor good conditions for renewable energy deployment, the assessment of its environmental impacts is needed. LCA is a 

relevant tool to assess the environmental and human health impacts throughout the life cycle stages of a product by providing a 
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“cradle-to-grave” environmental profile [ISO 14040 2006]. It has been applied successfully to renewable energies [Ness et al. 

2007] accounting for their specificities: environmental performances of renewable energy systems highly depend on their geo-

localization and are driven by external factors influencing electricity production over the lifetime of an installation [Blanc et al. 

2008]. In the geothermal context, these geo-dependent factors are the reservoir characteristics (well depth, water availability,…) 

[Clark et al. 2009], the reservoir temperature [Frick et al. 2010], [Sullivan et al. 2010], or the geothermal fluid flow rate [Sullivan, 

Clarck, Yuan, Han and Wang 2010].  

Currently, there are few publications related to the environmental assessment of geothermal systems [Bayer et al. 2013]. These 

LCA geothermal references can be classified according to technical particularities: the type of energy produced (electricity or 

combined district heat and electricity), the type of reservoir (conventional or unconventional) and the type of conversion 

technology. The classification of these LCA geothermal references is reported in Table 1.  

Table 1: The classification of published LCAs of geothermal energy production according to the type of energy produced, 

reservoir and conversion technology  

Classification of references Publications 

Type of energy 

produced  

Electricity  [Hondo 2005], [Pehnt 2006], [Bauer et al. 2008], [Rule et al. 2009],  

[Fthenakis and Kim 2010], [Sullivan, Clarck, Yuan, Han and Wang 2010], 

[Lacirignola and Blanc 2013] 

Combined-production of 

district heat and electricity 

[Clark, Wang, Vyas and Gasper 2009], [Frick, Kaltschmitt and Schröder 

2010], [Karlsdottir et al. 2010], [Matuszewska 2011], [Gerber and Maréchal 

2012] 

Type of 

reservoir 

Conventional or 

hydrothermal reservoir 

[Hondo 2005], [Rule, Worth and Boyle 2009], [Karlsdottir, Palsson and 

Palsson 2010], [Sullivan, Clarck, Yuan, Han and Wang 2010], [Matuszewska 

2011] 

Unconventional reservoir or 

Hot Dry Rock (HDR) or 

Enhanced Geothermal 

System (EGS) 

[Pehnt 2006], [Bauer, Dones, Heck and S. 2008], [Clark, Wang, Vyas and 

Gasper 2009], [Frick, Kaltschmitt and Schröder 2010], [Sullivan, Clarck, 

Yuan, Han and Wang 2010], [Matuszewska 2011], [Gerber and Maréchal 

2012], [Lacirignola and Blanc 2013] 

Type of 

conversion 

technology 

Flash systems (single or 

double) 

[Hondo 2005], [Karlsdottir, Palsson and Palsson 2010], [Sullivan, Clarck, 

Yuan, Han and Wang 2010], [Matuszewska 2011], [Gerber and Maréchal 

2012] 

Organic Rankine Cycle 

(used a binary fluid) 

[Clark, Wang, Vyas and Gasper 2009], [Rule, Worth and Boyle 2009], 

[Frick, Kaltschmitt and Schröder 2010], [Sullivan, Clarck, Yuan, Han and 

Wang 2010], [Matuszewska 2011], [Gerber and Maréchal 2012], 

[Lacirignola and Blanc 2013] 
 

In this literature panel, only two LCA publications provide environmental impacts of a geothermal plant producing electricity from 

deep aquifer (hydrothermal reservoir) and flash systems conversion technology corresponding to the Bouillante configuration: 

[Hondo 2005] and [Sullivan, Clarck, Yuan, Han and Wang 2010]. Results from these studies are focused on greenhouse gases 

(GHG) emissions. 

Considering the lack of available LCAs fitting the geothermal system to be studied, we design our study to perform the LCA of the 

existing high temperature geothermal system situated in Guadeloupe in Bouillante. The objective is to compare technological 

alternatives to the present situation with a view to investigating potential reduction of the environmental impacts. Bouillante power 

plant presents some unusual design configurations related to the age of its construction: use of a sea water cooling system and 

absence of geothermal fluid reinjection. In order to better represent current practices, two new cooling strategies based on 

alternative technologies are modelled. 

A life cycle inventory is elaborated to enable the modelling of several technical scenarios in a modular way. This inventory is based 

on the in situ material and energy data collection from Bouillante plant (scenario 1). We then perform the environmental assessment 

with characterization methods as recommended by ILCD [European Commission et al. 2011]. These results are interpreted to 

compare three scenarios. Results are positioned according to existing literature on the LCA of geothermal energy and to other 

energy production pathways. From these specific geothermal system LCA results, we also initiate the building of a general LCA 

model for conventional geothermal systems with a temperature reservoir ranging from 230°C to 300°C. 

2. THE LCA MODEL FOR BOUILLANTE HIGH TEMPERATURE GEOTHERMAL SYSTEM  

Our LCA study is defined according to the ISO standard and follows the ILCD recommendations [European Commission, Joint 

Research Centre and Institute for Environment and Sustainability 2011]. As a first step it is necessary to define the system function 

and the functional unit. These elements are essential to characterize the studied systems. The functional unit corresponds to the 

comparison basis and must be common to all assessed alternatives [Clift et al. 2000], [ISO 14040 2006].  

2.1 System function and functional unit 

High temperature geothermal systems are used in French Caribbean territories to produce electricity only. In this context, the 

production of electricity is chosen as the function of the system. The functional unit is set in this study to the kWh of net energy 

produced (injected on the electricity network) by a geothermal plant over a fixed operating period of 30 years. The system 

boundaries include energy and material flows of the plant, including the cooling system, the surface and sub-surface equipment 

related to the geothermal fluid loop connected to construction and installation, the operation and the end of life phases. 
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2.2 Presentation of the scenarios  

Bouillante geothermal plant presents some unusual design configurations related to its relatively old construction: use of a sea water 

cooling system and absence of geothermal fluid reinjection. To model an installation better fitting current and future technical 

configurations, two new scenarios based on alternative technologies are investigated. 

2.2.1 The base scenario (Bouillante case)  

The base scenario represents the current Bouillante power plant. In the 70s, the first drillings allowed the determination of the 

geothermal potential of the Guadeloupe Island. Between 1970 and 2005, different steps of well construction and administrative 

change owner occurred. The base scenario is based on the operation of Bouillante plant since 2005. Currently, Bouillante power 

plant has two production units: UB1 with a power of 4.75 MW and UB2 with a power of 11MW. The reference year for the electric 

production is 2007 which corresponds to an annual production of 95 GWh (with a load factor1 of 0.83). 

The geothermal fluid is extracted from the reservoir thanks to production wells and is sent into a high pressure separator (HP) 

which separates steam from water. Then, steam is dried in the HP dryer and sent to the turbine unit B2 and turbine unit B1. Part of 

the separated water passes into the low pressure separator (LP) that generates a second steam flow for the second-stage of turbine 

unit B1 (the power unit B2 does not have low pressure stage). The steam activates the turbines, which then drive the generator and 

produce electricity. The transformer adjusts the voltage before injection of the electricity into the network. At the turbine, the non-

condensable gases contained in the geothermal steam are isolated and released to the atmosphere by the vacuum group. Barometric 

condensers, supplied by sea water, condensate the steam from the turbine by direct-contact. The condensed steam and cooling 

seawater are then collected by two mixing basins before going to the atmospheric condenser (which also received the water 

separated from the separator). The whole mixture is cooled by seawater pumped and direct contact with the atmosphere before 

being discharged into the sea through outfall structures. Each unit has its own pumping station to supply it with the necessary 

seawater for the cooling system.  

Recognizing the initial research purpose of Bouillante, its technical configuration is very specific. These features cover the use of 

sea water by direct contact to cool the geothermal fluid, the release of geothermal fluid in the sea via a rejection canal, the absence 

of geothermal fluid reinjection as well as the absence of gaseous treatment. These technical characteristics were taken into account 

in the environmental assessment of the base scenario, while recognizing that these specific features would not be reproduced in the 

future geothermal power plants in the Caribbean context.  

2.2.2 Scenario 2a and 2b 

The definition of prospective scenarios enables a comparison of different technologies expected to be implemented in future 

geothermal power plants, such as a different cooling system or the reinjection of geothermal fluid. The definition of two alternative 

scenarios focuses on technical practices to be implemented in the future but not on technical options like the conversion technology. 

We have considered two solutions:  

 scenario 2a : a cooling system by evaporation on wet tower and geothermal fluid reinjection;  

 scenario 2b : a cooling system by aerocondenser (closed circuit) and geothermal fluid reinjection. 

The choice of alternative solutions for the cooling system like Bouillante power plant is complex as the cooling system has to 

integrate local conditions such as water availability or resource scarcity. Both solutions have advantages and drawbacks: the wet 

tower cooling system requires water consumption but has a reduced noise level (important parameter to consider in urban area) 

while the performances of an aerocondenser cooling system could be somehow reduced because of the Caribbean territories climate 

which has a high humidity saturation level. 

2.3 Life cycle inventory 

Two types of activities are distinguished in the inventory, namely foreground and background activities. Foreground activities 

correspond to activities directly related to the studied system (the Bouillante geothermal plant) and for which specific data are used. 

The latter are mainly collected from reports and interviews with experts of CFG Services (the Bouillante operating company) and 

of Geothermie Bouillante (GB, the owner of the geothermal power plant). Background activities correspond to activities supporting 

the system function (i.e. materials and fuels extraction and transformation, transports and end-of-life of equipment) and for which 

the level for initiatives is more limited. In our study, these background activities are essentially modelled using generic data, 

considering the ecoinvent v2.2 database. 

The characteristics of the Bouillante geothermal reservoir configuration are the following: 

 based on a fractured volcanic reservoir containing ground water about 250°C; 

 with a main high permeability area located at more than 500m depth; 

 covered by a low permeability area allowing the thermal confinement of the system; 

 fed by marine and meteoric waters. 
 

 

A specific drilling scheme based on four sections of homogeneous diameter (18''5/8; 13''3/8; 9''5/8 and 7'') has been considered. 

                                                                 

1 Load factor: annual functioning rate of the plant. 
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2.3.1 Data collection procedure 

The Life Cycle Inventory (LCI) calculation is based on the compilation of all inputs (materials, resources and energy consumption) 

and outputs (emissions and waste) involved in the various stages of the life cycle of the geothermal plant. The LCI is built 

distinguishing 5 life cycle stages, as detailed below. All data are reported per kWh of geothermal electricity (the functional unit), 

considering 2850 GWh of overall production over the assumed 30-year lifetime of the plant. The data used for the inventory of 

scenario 1 are now described. A final paragraph is dedicated to the specificities of the inventories related to scenarios 2a and 2b.  

The phases of drilling exploration and production wells are both accounted for distinctly, but are gathered in the inventory due to 

the predominance of drilling operations in these two phases. Depending on geology, resource enthalpy and well-depths, the drilling 

of wells may be unsuccessful. We consider an average success rate of 74%, and a constant 5.4 MW electric power per production 

well [International Finance Corporation 2013]. To get 15.75 MW we therefore have to consider four production wells.  

The quantities of materials and fuels required for drilling operations, cementation and casing are compiled from the daily and final 

drilling reports related to one Bouillante well in the years 2001-2002. Prior to the drilling of production wells, deep exploration 

wells are required to provide the confirmation of the existence of an important reservoir. In this study, the phase of exploration 

drilling wells encompasses site preparation (including roads construction) in addition to drilling operations with a drilling rig. Three 

deep exploratory wells are assumed to be necessary on average [DiPippo 2012]. In the absence of any data on the drilling of 

exploration wells specific to Bouillante power plant, the inventory compiled for production wells is used as a proxy. Scaling factors 

of 0.5 and 0.3 are assumed regarding respectively cement and steel, to account for the lower diameters of exploration wells (ratio 

between diameter exploration well and diameter production well).  

The phase of construction and installation takes into account the manufacturing, installation and land-use related to subsurface 

equipment, premises and surface equipment. Their maintenance is also included considering the assumed 30-year plant lifetime. 

The following equipment is accounted for in the inventory: well head unit, steam inlet unit, separator unit, separator pipeline, turbo-

generator unit, condensers and vacuum creation, pumping station and release, electric and control system, lubricating and back up 

control system. The corresponding data (type of equipment, materials, lifespan and quantities) are compiled from reports on plant 

operation (2006, 2007 and 2012), from a report on plant environmental impacts [Caraïbes Environnement 2011], from equipment 

technical sheets and delivery orders from manufacturers, completed with interviews with experts from CFG Services, GB and 

BRGM (The French Geological Survey). 

Three types of emissions occur during the plant operation. Emissions to atmosphere (mainly of CO2, H2S and CH4) originate on the 

one hand from the condensers, where non-condensable gases are removed by vacuum pumps, and on the other hand from the 

cooling system related to degassing of liquid effluents. Occasional discharges of brine (purges) are emitted to the ground at the 

shutdown of operations. The seawater and geothermal fluid effluent is discharged into the sea. These emissions are quantified based 

on yearly reports on plant operation (2006, 2007 and 2012) and on the study of the plant environmental impacts [Caraïbes 

Environnement 2011]. Furthermore, during the operation phase, supplementary wells are drilled in order to replace the old wells 

with a decreasing productivity during the plant lifetime. It is assumed that the productivity decreases by 38% after 30 years of 

operation [International Finance Corporation 2013], so that 1.1 additional wells are required to be drilled during the operation 

phase. 

Data on the closure of wells is approximated from ecoinvent v3 data related to the closure of a borehole of 6000 m depth for 

geothermal power generation in an unspecific rock formation. Moreover, in the absence of information on the end-of-life treatments 

of equipment at Bouillante power plant, generic scenarios are considered. Extrapolating from UNEP report on metal recycling 

[United Nations Environment Programme and International Resource Panel 2011], 50% recycling and 50% landfilling is assumed 

regarding copper, and 70% recycling and 30% landfill regarding steel. All other materials (including plastics, concrete, and 

fiberglass) are assumed to be entirely landfilled. Recycled waste material is assumed to substitute for primary produced material, 

without considering any correction factor. The landfill and recycling operations are assumed to take place around Bouillante in 

Guadeloupe. 

Scenarios 2a and 2b do not represent the current situation at Bouillante. They are therefore not based on real plant data but rather on 

data compiled from pre-feasibility reports at Bouillante and Wotten Waven Geothermal fluid (Dominica) [B.P. Power 2003], 

[Verkis 2008] and from technical sheets, completed with the LCI performed by [Lacirignola and Blanc 2013] and interviews of 

experts from CFG-Services. Geothermal reinjection involves returning all extracted water from the reservoir back into the 

geothermal system. The production well over injection well ratio is assumed to be 1:1, while the rate of success for reinjection well 

drilling is assumed to be 74%, as in the case of production wells. The required additional injection pumps are accounted for by 

using data on Bouillante surface pumps and control system as a proxy. No supplementary wells are considered to be necessary 

during the operation of the plant, due to the additional recharge provided by the fluid reinjection. Data on new cooling systems 

(materials and mass) are compiled by use of technical sheets and by extrapolating from an EGS geothermal plant [Lacirignola and 

Blanc 2013].  

2.3.2 Aggregated data tables 

According to the inventory procedure, we generate an aggregated input data table per each of the life cycle phase expressed per 

kWh (Table 2).  
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Table 2: Synthesis of inputs and outputs relatively to the production of 1 kWh geothermal electricity, in scenario 1 

(Bouillante) 

Life Cycle Phase Element Quantity Unit/kWh 

Drilling of exploration 

and production wells 

Land use 1.20E-06 m².an 

Road construction 1.41E-06 m² 

Materials for drilling (gravel, concrete, steel mud, cement and 

sand) 
4.98E-03 kg 

Diesel 5.00E-03 MJ 

Road transport 3.16E-04 t.km 

Ship transport 7.77E-03 t.km 

Disposal of mud and mineral waste  2.73E-04 kg 

Total emissions of pollutants to water 8.63E-06 kg 

Land use 1.73E-04 m².an 

Minerals 1.05E-03 kg 

Construction and 

installation 

Material for construction and installation (concrete, cement, 

steel, copper, plastics and electronics components) 
6.58E-03 kg 

Road transport 7.38E-04 t.km 

Ship transport 6.46E-03 t.km 

Diesel 1.51E-05 MJ 

Lubricating oil 6.51E-05 kg 

Operation Use of water 6.88E-01 m3 

Occasional discharges of brine to ground 6.43E-05 kg 

Permanent discharges of Cl- to the sea 2.94E+01 kg 

Permanent discharges of SO4
2- to the sea 3.95E+00 kg 

Permanent discharges of NH4
+ to the sea 8.21E-04 kg 

Other permanent discharges to the sea 3.07E+00 kg 

Direct CO2 emissions to atmosphere 4.16E-02 kg 

Direct H2S emissions to atmosphere 1.02E-03 kg 

Direct CH4 emissions to atmosphere 3.26E-06 kg 

Drilling of additional production well 3.86E-10 unit 

Decommissioning 

Recycling of steel and copper 6.42E-04 kg 

Landfilling of metals 2.77E-04 kg 

Landfilling of minerals 9.19E-03 kg 

Landfilling of plastics 3.14E-06 kg 

Cement for wells closure  2.22E-06 kg 

Gravel for wells closure 2.34E-05 kg 

 

2.4 Construction of the LCA model for high temperature geothermal systems  

Based on the specific Bouillante power plant inventory, we can now extrapolate and built a general LCA model for conventional 

geothermal systems with a temperature reservoir ranging from 230°C to 300°C. This model is represented on Figure 1. 

The aggregation of environmental impacts associated to the life cycle steps permits the determination of total impact of geothermal 

power plant. This impact is brought back to the electricity production (electricity production on Figure 1) providing the 

environmental performances of geothermal power plant according to the kWh produced (functional unit of our system). The 

electricity production accounts for the lifetime (lifetime) of the geothermal power plant and for its load factor (load factor).  

This model is built accounting for the explicit relations between the input variables and the specific parameters of Bouillante 

geothermal system. 

2.4.1 Exploration and production drilling phases 

The drilling length depends on two parameters: 

- the depth of the geothermal reservoir (reservoir depth (sections 1  3) in Figure 1) which correspond to the first three 

sections of the well; 

- the depth which is necessary to drill within the geothermal reservoir to obtain the focus resource (the expected flow rate) 

(well depth section 4 related to drilling last section).  

In the case of production drilling, the section 1 to 3 lengths are unlikely to vary (they are fixed according to the estimated depth of 

reservoir (reservoir depth)), whereas section 4 has a variable length which depends on the obtained flow rate. The total drilling 

length is specific to the geothermal site. The reservoir depth is generally correctly estimated and described precisely via projected 

logs. On the other hand, the total length of drilling and more particularly the last section is likely to vary.  

The material quantities related to the drilling step are proportional to the number of wells to drill in exploration and production 

steps (number of exploration wells, production wells and reinjection wells). For our study, the number and the type of drilling 

related to the functional unit are the following:  
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 the number of production wells is related to the well potential electric power (well potential electric power) (energy 

produced by each well) to the net power of geothermal power plant (net power) and  to the success rate (success rate) 

associated to the drilling realization;  

 the number of reinjection wells (for the scenarios with reinjection modelling) is related to the number of production wells 

(number of production wells): a ratio 1 to 1 between the reinjection wells and the production well is selected.  

The well potential electric power parameter is set to a constant value for our three scenarios but could be variable in a more 

generalized parameterized geothermal power plant model. 

 

Figure 1: LCA model of conventional geothermal power plant in Caribbean context for a reservoir temperature range = 

[230°C; 300°C] 

2.4.2 Power plant construction and installation phase (equipment) 

The construction and installation phase aims to model the construction of surface and cooling system equipment. The reference 

model considers the following solutions:  

 scenario 1: configuration of geothermal power plant without fluid reinjection in the geothermal reservoir (IF reinjection – 

No). In this case, the cooling system is based on seawater use, and includes the pump station construction (sea water 

pump station LCI). In this scenario, the non-reinjection of geothermal fluid leads to supplementary wells (number of 

supplementary wells) offsetting the decrease of productivity (decrease of productivity) modelled in the operation step; 

 scenarios 2a and 2b: configuration of geothermal power plant with fluid reinjection in reservoir (IF reinjection – Yes) 

leads to drilling reinjection wells (number of reinjection wells) (with a ratio 1 for 1 with production wells). In these 

scenarios, the modelled cooling systems are: tower cooling system (tower cooling system) or aerocondenser cooling 

system (aerocondenser cooling system). Next, two inventories related to both cooling systems are built (tower cooling 

system LCI and aerocondenser cooling system LCI).  

Concerning the surface machinery equipment (surface machinery equipment LCI), we suppose it to be similar for the three 

scenarios and related to the gross power (the reference gross power being the UB2 unit production of Bouillante power plant).  

2.4.3 Operation phase 

Input variables differ according to the scenario:  

 scenario 1: configuration of geothermal power plant without fluid reinjection in reservoir (IF reinjection – No). 

Equipment 
LCI

Production well drilling LCI 

Operation LCI

End of life LCI

Tower cooling
system LCI

Lifetime (LT)

% steel recycling
(Rsteel)

Characterization factors

Ecoinvent 2.2

Tower cooling
system

Surface machinery
equipment LCI

Impact/kWh

Electricity
production

Diesel
Concrete

Steel
Mud

Site preparation

DRILLING

Concrete
Copper

Steel
Water

EQUIPMENT

Copper
Steel

EQUIPMENT

Diesel
Concrete

Steel
Mud

Site preparation

DRILLING

Input variable 

Dependant variable Life cycle impact

Legend

Background processes

Number of 
supplementary

wells

Drilling depth

Succes rate (s)

Gross power

Section 4 depth (z4)

Number of 
production wells

Reservoir depth
(sections 1 3) (Z) 

Decrease of 
productivity

Life cycle inventory

Number of 
exploration wells (3)

Fixed parameter

Aerocondenser
cooling system LCI

Sea water pump
station LCI

Number of 
reinjection wells

Aerocondenser
cooling systemyes

IF 
reinjection

no
Sea water pump

station

Exploration well drilling LCI 

Material, energy
and transport

Impact 
exploration well

Impact 
production and 

reinjection
wells

Impact 
equipment

Geothermal
impact

Impact 
operation

Impact end 
of life

Reinjection well drilling LCI 

Well potential elec. 
power (Qe, well)

Material road transport distance (dtr)
Material ship transport distance (dts)

% copper
recycling (Rcopper)

Load factor (LF)
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The absence of reinjection leads to a decrease of reservoir productivity (decrease of productivity) which is related to the lifetime of 

geothermal power plant (lifetime). The number of supplementary wells is related to the gross power (gross power), the success rate 

(success rate) and the number of production wells (number of production wells).  

 scenarios 2a and 2b: configuration of geothermal power plant with fluid reinjection in reservoir (IF reinjection – Yes). 

In our study, when a geothermal fluid reinjection in the reservoir is set, we suppose there is no decrease of productivity nor 

supplementary wells-drilling. The assumption of no considering productivity decrease is taken at first to simplify the modelling. 

However this assumption would deserve further analysis. 

The main input variables associated to this step are the choice of reinjection or not, the drilling of supplementary wells, the 

installation lifetime and the number of reinjection wells. 

2.4.4 End of life phase 

This step aims to model the dismantling of the geothermal power plant and more particularly the surface equipment. The 

percentages of recycling are variable inputs (% steel recycling and % copper recycling). For sub-surface equipment, we suppose no 

dismantling (this assumption has been shared with geothermal experts). The reference model considers a single scenario for the 

equipment material for all scenarios:  

 steel and copper equipment are recycled (70% for steel and 50% for copper); 

 plastic equipment are not recycled.  

The manufacturing of material such as steel, concrete or copper is issued from ecoinvent v2.2.  

3. RESULTS  

3.1 Comparison of scenarios 

The environmental impacts associated with the life cycle of the three scenarios are assessed according to fourteen impacts 

categories (Table 3). In particular, in the case of scenario 1 (Bouillante power plant), the environmental impact potentials associated 

with the delivery of 1 kWh amounts to 47.0 g CO2eq in terms of climate change and 82.8 kJ in terms of non-renewable energy. The 

impact in terms of climate change however decreases to 38.5 g CO2 eq/kWh in the case of scenario 2a and to 73.5 kJ/kWh for non-

renewable energy consumption. For scenario 2b, the result for change climate is 39.4 g CO2 eq/kWh and 92.7 kJ/kWh for non-

renewable energy. 

Table 3: Impact Assessment results for the scenarios 1, 2a and 2b, considering 14 impact categories 

Impact categories Units (/kWh) S1 S2a S2b 

IPCC GWP 100a kg CO2 eq 4.70E-02 3.85E-02 3.94E-02 

Ecological scarcity2006 water consumption UBP 1.05E-02 8.17E-03 1.24E-02 

ReCiPe, freshwater eutrophication kg P eq 1.68E-06 1.44E-06 2.01E-06 

ReCiPe, marine eutrophication kg N eq 6.42E-04 1.33E-06 1.83E-06 

CML2, terrestrial eutrophication kg PO4—
eq 2.80E-04 8.04E-06 1.03E-05 

ReCiPe, natural land transformation m² 3.56E-06 4.24E-06 4.70E-06 

USEtox, ecotoxicity CTUe 2.80E-02 2.12E-02 2.70E-02 

CML2, abiotic depletion kg Sb eq 3.71E-05 3.36E-05 3.96E-05 

CED Non-renewable MJ 8.28E-02 7.35E-02 9.27E-02 

CED Renewable MJ 9.19E-04 8.17E-04 1.20E-03 

ReCiPe agricultural and urban occupation m²a 3.74E-04 3.91E-04 5.22E-04 

USEtox Human toxicity (cancer) CTUh 2.23E-13 1.67E-13 3.04E-13 

USEtox Human toxicity (no cancer) CTUh 1.16E-12 1.13E-12 1.43E-12 

CML2, acidification kg SO2 eq 1.95E-3 1.61E-3 1.61E-3 

 

Compared to scenarios 2a and 2b, scenario 1 contributes significantly more to climate change, acidification, terrestrial and marine 

eutrophication categories (Table 3 and Figure 2). For the agricultural and urban occupation as well as for natural land 

transformation categories, scenarios 2a and 2b contribute significantly more than scenario 1. For all other impact categories (water 

consumption, fresh water eutrophication, abiotic depletion, cumulative energy demand (renewable and non-renewable) and human 
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toxicity (carcinogenic and non-carcinogenic), scenario 1 is intermediate between scenario 2a and 2b. Compared to scenario 1, both 

scenarios 2a and 2b generate the lowest local environmental impact (marine and terrestrial eutrophication). 

 

Figure 2: Environmental impact potentials of the three scenarios, considering scenario 1 as the reference (100%) for each 

impact category  

3.2 Identification of key processes and parameters 

The processes mostly contributing to the different impact categories assessed (“key processes”) can be identified thanks to Table 4. 

The contribution of each life cycle phase to each impact category may be identified:  

 the drilling phase contributes most to natural land transformation;  

 the construction and installation phase shows the larger contribution to impacts on water consumption, fresh water 

eutrophication, ecotoxicity, abiotic depletion, cumulative energy demand (renewable and non-renewable), agricultural 

and urban occupation and human toxicity (with carcinogenic and non-carcinogenic effects). These impacts are related to 

background process (steel production);  

 the operation phase contributes most to climate change, due to the direct release of CO2 and CH4 emissions to 

atmosphere, acidification (H2S emissions), marine and terrestrial eutrophication (NH4+ emissions) impact categories;  

 the end of life phase does not significantly contribute to any impact category. 

Table 4: Environmental impact analysis according to the most polluting processes 

Impact categories Life cycle step 

Relative contribution of each life 

cycle step 
Key processes identified 

S1 S2a S2b 

Climate change Operation 89% 90% 87% 

Release of non-condensable 

gases to atmosphere (CO2 and 

CH4) 

Water consumption 
Construction and 

installation 
87% 75% 142%* 

Resources used for the steel 

manufacturing 

Cumulative Energy 

Demand – non-

renewable 

Construction and 

installation 
77% 61% 153%* 

Resources used for the steel 

manufacturing 

Cumulative Energy 

Demand – renewable 

Construction and 

installation 
99% 92% 170%* 

Resources used for the steel 

manufacturing 

Human toxicity with 

carcinogenic effects 

Construction and 

installation 
84% 86% 139%* Steel manufacturing process 

Human toxicity with 

non-carcinogenic effects 

Construction and 

installation 
207%* 222%* 228%* Steel manufacturing process 

Fresh water 

eutrophication 

Construction and 

installation 
141%* 132%* 258%* Steel manufacturing process 

Marine eutrophication 

Operation for S1 

and construction 

and installation 

for S2a and S2b 

100% 61% 133%* 
Permanent releases of effluents 

to the sea (ammonium) 

Terrestrial 

eutrophication 

Operation for S1 

and construction 

and installation 

for S2a and S2b 

97% 89% 199%* 
Permanent releases of effluents 

to the sea (ammonium) 

Natural land 

transformation 
Drilling 75% 79% 71% 

Preparation and transformation 

of drilling site for production 

wells  

0%

50%

100%

150%
Global Warming

Water consumption

Freshwater eutrophication

Marine eutrophication

Terrestrial eutrophication

Natural land transformation

Ecotoxicity

Abiotic depletion

CED No renewable

CED Renewable

Agricultural and urban
occupation

Human toxicity (cancer)

Human toxicity (no cancer)

Acidification

Life cycle assessment S1

Life cycle assessment S2a

Life cycle assessment S2b
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Impact categories Life cycle step 
Relative contribution of each life 

cycle step 
Key processes identified 

Agricultural and urban 

occupation  

Construction and 

installation 
102%* 99% 144%* 

Excavation, transformation and 

sols occupation for power plant 

Ecotoxicity  
Construction and 

installation 
47% 48% 169%* Steel manufacturing process 

Abiotic depletion 
Construction and 

installation 
84% 67% 176%* Steel manufacturing process 

Acidification  Operation 99% 99% 99% 
Release of non-condensable 

gases to atmosphere (H2S) 

*The indicated percentages correspond to proportions of generated and avoided impacts (for the end of life step), which 

explains the fact that some percentages are superior to 100 %. 

According to this environmental result analysis, it is possible to identify the four discriminating physical parameters driving the 

differences observed among the scenarios:  

 the steel quantity used, related to equipment;  

 the quantity of non-condensable gases emitted;  

 the quantity of effluents (geothermal fluid + seawater) released to the sea;  

 the total number of wells (exploration, production and reinjection).  

Considering the life cycle as a whole, the power plant construction and installation phase has the greatest impact of all the impact 

categories assessed. The analysis of scale of impacts shows that a majority of environmental impacts are related to background 

activities and more particularly to the steel manufacturing process. For these background activities, the decision maker has no direct 

action. Foreground activities contribute to climate change, acidification, marine and terrestrial eutrophication impact categories and 

more particularly in the case of scenario 1. 

The comparison of the three scenarios allows the identification of the environmental benefits of the reinjection scheme, despite the 

drilling of supplementary wells for reinjection wells. To limit the emissions of non-condensable gases, it could be profitable to set 

up a gaseous system treatment. This would significantly reduce emissions to air and more particularly CO2 and CH4 emissions as 

well as H2S emissions to reduce the installation odor impact (impact not assessed in this study).  

3.3 Comparison with the literature 

Concerning the geothermal pathway and its related impacts on climate change, it is possible to compare our results with the 

literature (Figure 3). The Life Cycle GHG respectively range from 22 gCO2 eq/kWh  to 80 gCO2 eq/kWh for EGS and from 5 gCO2 

eq/kWh to 100 gCO2 eq/kWh for flash technology whereas few grams of CO2 eq/kWh are estimated for binary technology. The results 

related to the three scenarios 1, 2a and 2b presented above therefore lie within the range of values found in the literature. 

 

Figure 3: Comparison of Life cycle GHG associated with geothermal electricity production (in CO2eq/kWh), based on a 

literature survey and considering different technologies  

These values may be put in perspective with GHG performances for other electricity production systems. According to the IPCC 

study reporting LCA literature reviews for energy pathways, the median value of GHG for geothermal energy is 45 gCO2 eq/kWh,  

is 46 gCO2 eq/kWh for photovoltaic energy, 12 gCO2 eq/kWh for wind technology, 16 gCO2 eq/kWh for nuclear technology, around 

470 gCO2 eq/kWh for natural gas technology, 840 gCO2 eq/kWh for oil technology and more than1000 gCO2 eq/kWh for coal 

technology [IPCC 2011]. 
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4 CONCLUSION  

LCA is applied to determine the environmental impacts of the existing Bouillante power plant by comparing technological 

alternatives such as different cooling systems or the modelling of geothermal fluid reinjection. The study is based on site-specific 

data extracted from Bouillante documentation such as technical reports, equipment plans, purchase orders, completed by discussion 

with geothermal experts from CFG Services and Géothermie Bouillante SA.  

The main conclusions of the environmental assessment are: 

1. considering climate change, GHG values range from 38.5 to 47 gCO2 eq/kWh, in line with results found in the literature 

[Hondo 2005], [Sullivan, Clarck, Yuan, Han and Wang 2010], [IPCC 2011].  

2. prospective scenarios 2a and 2b generate the lowest local environmental impact, in particular for global warming, 

acidification, marine and terrestrial eutrophication;  

3. prospective scenario 2b generates the largest environmental impact related to background process and more precisely 

related to steel production. Optimizing the equipment size is a key element in minimizing the environmental impacts of 

such installation. 

4. the assessment illustrates the environmental benefits of geothermal fluid reinjection and more particularly for marine and 

terrestrial eutrophication impact categories. Indeed, the geothermal fluid effluent mixed with the cooling seawater 

contains ammonium elements. The geothermal fluid reinjection allows these releases into environment to be avoided. 

Based on the specific Bouillante power plant inventory, we built a general LCA model for conventional geothermal systems with a 

temperature reservoir ranging from 230°C to 300°C. Further scaling modelling could be applied to get a parameterized generic 

model for high temperature geothermal system accounting for variable reservoir depth, success rate, etc. The definition of this type 

of model is an iterative process which requires improvements and collection of more detailed and systematic data from other 

installations. Considering scaling modelling, it will be necessary in particular to collect more technical information relating the 

installation power and the surface equipment material and to extend to other types of conversion technology (binary systems). The 

generalization of this type of renewable energy technology is also very sensitive to local conditions like the in situ geologic 

characteristics of the geothermal field.  The interest of such reference LCA model is to be representative of the energy pathway 

[Greenpeace and EREC 2008] and deserves further study. 
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