

Geothermal Power Plant Emissions in Indonesia

Yuniarto¹, Tri Edhi Budhi Soesilo² and Elis Heviati¹

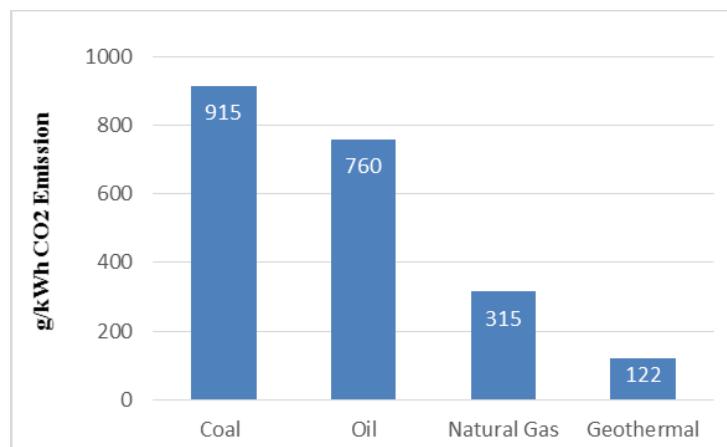
¹Directorate of Geothermal – Jalan Pegangsaan Timur 1 Jakarta Indonesia

²University of Indonesia

E-mail : yoen_tm113@yahoo.com

Keywords: CO₂ emission, H₂S emission, Non-Condensable Gas (NCG)

ABSTRACT


Indonesia has one of the largest potential geothermal capacity in the world, and currently has one of the largest installed capacities. The geothermal potential in Indonesia is about 28,000 MW distributed in 299 potential spots from western to eastern of Indonesia. The current installed capacity of geothermal power plants in Indonesia is 1341 MW distributed in nine locations across the nation. This represents an increase of more than 150 MW compared to 2010. Indonesia is targeting to develop up to 9,500 MW of geothermal power plant installed capacity by the year 2025, which is expected to contribute roughly 5% of the national energy mix.

An emissions calculation method developed by K.K. Bloomfield and J.N. Moore was used to calculate CO₂ and H₂S emissions from geothermal power plants in Indonesia. The result is in gr/kw-hr. The study reveals that geothermal power plants in Indonesia emit gaseous (CO₂ and H₂S) emissions. However, the CO₂ and H₂S emissions attributed to geothermal are small compared to fossil fuel. The emission level from geothermal power plant depends on the Noncondensable Gases (NCG) content. CO₂ emissions are influenced by the steam supply type. The CO₂ emissions from dry steam reservoirs are higher than those from two-phase reservoirs. In addition, the H₂S emissions are influenced not only by steam supply but also reservoir characteristics. The emissions from geothermal power plants in Indonesia contributed 47,273.34 tonnes of CO₂ and 1,575.26 tonnes H₂S in 2013.

1. INTRODUCTION

Indonesia has abundant geothermal resources and one of the largest potential geothermal capacities in the world. The geothermal potential in Indonesia is mainly volcanic-type systems. This makes sense because Indonesia has more than 119 volcanoes along the the ring of fire (MEMR,2008). Based on data from Ministry of Energy and Mineral Resources (2013), Indonesia has a potential of more than 28,000 MW distributed in 299 potential spots across the nation from Sumatera, Java, Bali, Nusa Tenggara, Maluku and Sulawesi. To this point, the Government of Indonesia has declared a total of 58 Geothermal Working Areas. As of December 2013, the total installed capacity of geothermal power plants in Indonesia is 1,341 MW in nine locations, including Sibayak, Ulubelu, Salak, Darajat, Kamojang, Wayang Windu, Dieng, Lahendong and Ulumbu. This number means only 4.5% of the total potential are currently generating electricity.

Even geothermal energy is known as green energy and clean energy, it does not mean that there is no pollution produced from geothermal exploitation. The Geothermal power plant is still producing green house gas emission, but it is lower than the others types of power plant (see Figure 1).

Figure 1. CO₂ emission rate in g/kWh for different Power Plants (Bertani and Thain, 2002).

Steam from geothermal fields contains Non-Condensable Gas (NCG) such as Carbon Dioxide (CO₂), Hydrogen Sulphide (H₂S), Ammonia (NH₃), Nitrogen (N₂), Methane (CH₄) and Hydrogen (H₂). Among them, CO₂ is the largest element within the NCG's discharged. CO₂ constitutes up to 95 to 98% of the total gases, H₂S constitutes only 2 to 3%, and the other gasses are even less abundant.

In 2002, Bertani and Thain conducted a survey to quantify the CO₂ emissions from operating geothermal power plants around the world on a macro basis. Results of the survey are presented in Table 1. The survey shows that geothermal Power plants have an environmental advantage compared to fossil fuel power plant in terms of CO₂ emissions.

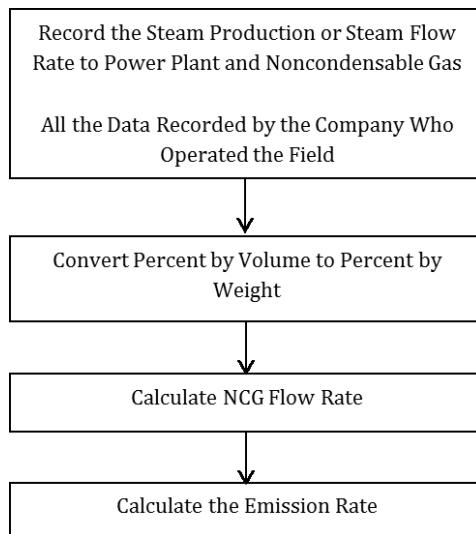
Table 1. CO₂ emission data in g/kWh with total running capacity in nine categories (Bertani and Train, 2002).

Emission Category (g CO₂/kWh)	Running Capacity (MWe)	Weight Avarage (g CO₂/kWh)
>500	197	603
400-499	81	419
300-399	207	330
250-299	782	283
200-249	346	216
150-199	176	159
100-149	658	121
50-99	1,867	71
<50	2,334	24

At the room temperature, CO₂ is a colorless, odorless, non-flammable gas. Exposure to CO₂ can produce a variety of health effects depending of the levels of it in the air. Exposure to the gas at high concentrations can affect the lungs, skin, and cardiovascular systems. The average concentration of carbon dioxide in air is approximately 0.03% or 300 parts per million (ppm)

Geothermal power plantd also emit H₂S to the air in relatively high amounts. Hunt (2001) compiled the emission of H₂S from various geothermal fields in the world as presented in Table 2.

Table 2. H₂S emission from some geothermal plants (Hunt, T.M, 2001).


Field	H₂S emission (g/kWh)
Wairakei, NZ	0.5
The Geyser, USA	1.9
Lardello, Italy	3.5
Cerro Prieto, Mexico	4.2
Krafla, Iceland	6.0
Ohaaki, Japan	6.4

H₂S is a colorless, flammable, and extremely hazardous gas. It causes a wide range of health effects, depending on concentration. Low concentrations of the gas irritate the eyes, nose, throat and respiratory system (e.g., burning/tearing of eyes, cough, shortness of breath). Safety threshold for hydrogen sulfide in humans can range from 0.0005 to 0.3 ppm.

CO₂ and H₂S are the dominant chemical compounds in geothermal steam, thus this paper delivers calculations of CO₂ and H₂S emission from geothermal power plants in Indonesia.

2. METHODOLOGY

Based on the methodology published by Bloomfield et.al (1999), the calculation of emissions from geothermal power plant could be predicted based on noncondensable gases (NCG) contained in geothermal steam. In the calculation, the assumptions are that power plant steam consumption is homogeneous and the steam is being gathered in one single gathering system. The calculation consists of four steps, as can be seen in Figure 2.

Figure 2. Methodology for calculating emission rate.

3. RESULTS AND DISCUSSIONS

As of December 2013, the total installed capacity of geothermal power plant in Indonesia 1,341 MW scattered in nine locations. Geothermal power plants contribute about 4.4 % of the total electricity supply in Indonesia. All geothermal power plants that are currently generating electricity are derived from volcanic systems. Based on the steam supply, geothermal power plants in Indonesia consist of two types of geothermal steam: dry steam and two-phase steam.

For this study, three fields have been chosen to represent geothermal power plants in Indonesia. Both of the fields, Kamojang and Wayang Windu, produce dry steam and the other, Ulubelu, produces two-phase steam. Kamojang is the first geothermal field developed in Indonesia with a total installed capacity of 200 MW. The field was commissioned in 1983. The Wayang Windu field was commissioning in 2000. The field has two 110 MW turbines to generate electricity. All of the fields produce dry steam. In addition, Ulubelu field, which produce two-phase steam, was commissioned in 2012. Its capacity is 110 MW.

Table 3. CO₂ emission and H₂S emission from geothermal power plant in Indonesia.

Power Plant	Capacity (MWe)	Emission (gr/kw-hr)	
		CO ₂	H ₂ S
Wayang Windu	227	73.48	2.54
Kamojang	200	72.57	0.14
Ulubelu	110	42.64	1.68
Average		62.90	1.45

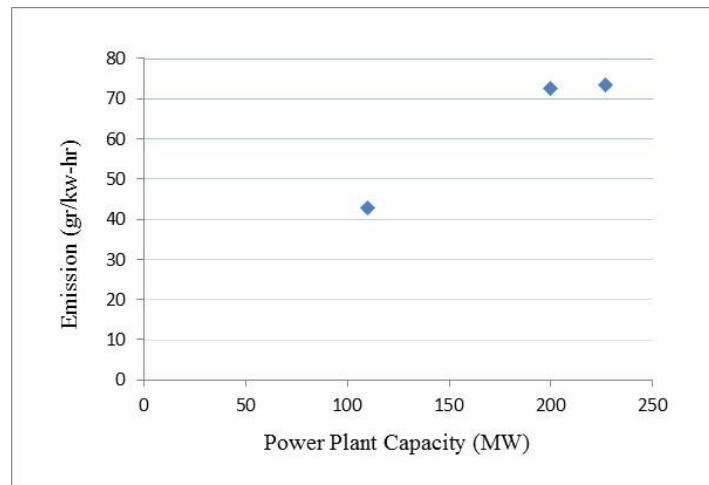
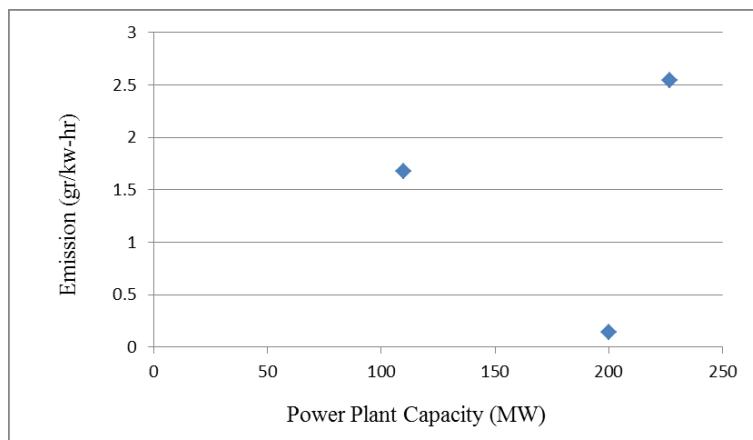

NCG concentrations from each geothermal field are different. NCG emissions from Wayang Windu field are 1.1 %, and emissions from Kamojang field are 0.98 %. Both of the fields produce dry steam. Ulubelu (two-phase steam) has NCG concentrations of 0.68%. The average NCG emissions from the three fields is 0.92 %.

Table 3 shows the emissions concentrations of CO₂ and H₂S from three commissioned geothermal power plants in Indonesia. The numbers in the table are the calculation result based on the method as explained in the methodology section. From the table, emissions of CO₂ range from 42 to 73 gr/kW-Hr with average value in 62.90 gr/kW-Hr. For H₂S, the values range between 0.14 to 2.54 gr/kw-hr with average value in 1.45 gr/kW-Hr. In addition, when separate analysis for CO₂ emissions is conducted between steam supply types which are dry-steam and 2-phase steam, there are two trends that can be seen in Figure 1. The average value for dry-steam is around 73.03 gr/kW-Hr and for two-phase steam is around 42.64 gr/kW-Hr.


The trend in CO₂ emission data could not be seen in those of H₂S because each field has different values. When the analysis considers not only steam supply type but also reservoir type, the interpretation becomes easier. The numbers depict three characters. Wayang Windu is characterized as a water-dominated reservoir with dry steam supply power plant. Whereas Kamojang is characterized as a steam-dominated reservoir with dry steam supply power plant. Furthermore, Ulubelu is characterized as between Wayang Windu and Kamojang. Its reservoir is defined as water-dominated reservoir and its steam supply is two-phase steam. The graph of CO₂ emissions vs capacity and H₂S vs capacity can be seen in Figures 3 and 4.

For further study, more fields and more data is needed. The study should have considered the time and location where the emissions data was collected due to weather conditions as explained by Sahzabi Te. La (2011). Therefore, specific weather and wind conditions are needed. In addition, up to now, there are seven geothermal fields in operation. It would be a huge advantage to interpret the field data from all sites.

Geothermal power plant emissions in Indonesia are shown in Table 3. Emissions of CO₂ from geothermal power plants in Indonesia range from 42 gr/kw-hr to 73 gr/kw-hr with average of CO₂ emission 62.90 gr/kw-hr. H₂S emissions range from 0.14 gr/kw-hr to 2.54 lbs/kw-hr with an average emission 1.45 gr/kw-hr. Based on this calculation, emissions from geothermal power plant in Indonesia are still in line with the CO₂ survey in 2002. With the total production of electricity from geothermal power plants in Indonesia of 9332.32 GWh in 2013, geothermal power plants contributed 47,132,81 tonnes of CO₂ and 1,089,08 tonnes of H₂S emissions to the atmosphere.

Figure 3. CO2 emission rate in g/kWh for different Power Plants in Indonesia.

Figure 4. H₂S emission rate in g/kWh for different Power Plants in Indonesia.

4. CONCLUSIONS

This study revealed that geothermal power plants in Indonesia emit gasses such as CO₂ and H₂S. However, compared to fossil fuels, geothermal power emits a relatively small amount of these gasses. The emission levels from geothermal power plant depends on the noncondensable gas (NCG) content.

CO₂ emissions are influenced by the steam supply type. The CO₂ emissions from dry steam reservoirs are higher than those from two-phase steam. In addition, the H₂S emissions are influenced not only by steam supply but also reservoir characteristics.

The emissions from geothermal power plants in Indonesia contributed 47,273.34 tonnes of CO₂ and 1,575.26 tonnes H₂S in 2013.

ACKNOWLEDGMENT

A big thank for PT. Pertamina Geothermal Energy and Star Energy Geothermal Wayang Windu, Ltd. for the fully support for NCG data. We also owe a thank to Husin Setia Nugraha for the discussion.

REFERENCES

- Armannson, O.; CO₂ Emission From Geothermal Plants, *Proceedings*, International Geothermal Conference, Reykjavik, (2003).
- Bertani, R., Thain, I.,: Geothermal Power Generating Plant CO₂ Emission Survey, *IGA News*, **49**, (2002) 1-3.
- Bloomfield, K.K., Moore, J.N.: Geothermal Electrical Production CO₂ Emission Study, *Geothermal Resources Council Annual Meeting*, (1999).
- Héctor G. Puente, H.G., Lourdes Hernández, L.G., H2S Monitoring and Emission Control at the Cerro Prieto Geothermal Field, Mexico, *Proceedings*, World Geothermal Congress, (2005).

Hunt, T.M.,: Five Lectures on Environmental Effects of Geothermal Utilization, United Nation University Geothermal Training Programme, (2000).

Noorollahi, Y.,: H2S and CO2 Dispersion Modelling for the Nesjavellir Geothermal Power Plant, S-Iceland and Preliminary Geothermal Environmental Impact Assessment for The Theistareykir Area, Ne-Iceland, Geothermal Training Programme, (1999).

OSHA Fact Sheet, Hydrogen Sulfide (H₂S), 2005 Pennsylvania Department of Health, *Carbon Dioxide Fact Sheet*, (2011).

Peralta, et al. : H₂S Emissions From Cerro Prieto Geothermal Power Plant, Mexico, and Air Pollutants Measurements in the Area, *Geothermics*, **46**, (2013), 55–65.

Ruchijat, S.: Barriers and Opportunities for Geothermal Development in Indonesia, *APERC Annual Conference*, 2014.

Sahzabi, A.Y., Sasaki, K., Yousefi,H., Saied Pirasteh, S., Sugai Y.: GIS aided prediction of CO₂ emission dispersion from geothermal electricity production, *Journal of Cleaner Production*, (2011).

Tiangoo, V., Hare, R., Birkinshaw, K., Johannis, M.: Emission factor of geothermal Power Plant in California, *Geothermal resources council TRANSACTION*, **19**, (1995).

U.S. Department of Health and Human Services Public Health Service: Agency for Toxic Substances and Disease Registry (2006).

Vulcanology Survey of Indonesia: Pengenalan Gunungapi, Ministry of Energy and Mineral Resources, (2008).

APPENDIX

KAMOJANG

Steam Consumtion	1,103,930 TON/month
	35,611 TON/day
	1,484 ton/hr
	1,483,776,881.72 gr/hr
POWER PLANT OUT	200 MW
% NCG	0.98 %

NCG Component	% by Volume
CO2	0.998
H2S	0.002
Total	1.00

Component	<i>y_i</i> Volume fraction	<i>M_i</i> molecular weight	<i>y_iM_i</i>	<i>y_iM_i/Σy_iM_i</i> weight fraction
CO2	1.00	44.01	43.92	1.00
H2S	0.00	34.08	0.07	0.00

NCG flowrate **14,549,916 gr/hr**

CO2 **14,519,701 gr/hr** **for 200 MW**
H2S **30,215 gr/hr** **for 200 MW**

plant steam rate **296,755,376,344 gr steam/Mwe**
296,755,376 gr steam/kw-hr

CO2 emission rate **72598.507 gr/hr/MW**
72.599 gr/hr/kw-hr

H2S emission rate **151.074 gr/hr/MW**
0.1511 gr/hr/kw-hr