
Proceedings World Geothermal Congress 2010
Bali, Indonesia, 25-29 April 2010

1

An Artificial Neural Network Model for Na/K Geothermometer

Genco Serpen1, Yildiray Palabiyik2, and Umran Serpen2
1 Koza Evleri 3/35, 4. Levent/Istanbul, Turkey.

2 ITU, Petroleum and Natural Gas Eng. Dept., Maslak Istanbul, 34469, Turkey

serpen@itu.edu.tr

Keywords: ANN, Genetic Algorithm and Na/K
geothermometer.

ABSTRACT

In this study, a brief explanation is first given on solute
Na/K geothermometers developed until now, and a new
Na/K geothermometer model is derived after presenting a
world geothermal database (n=212) to a neural network as a
training set and another database (n=112) as a validation
set. In this model Na and K values are treated as input
values and geothermometer temperatures as output values.
A multilayer feedforward neural network is trained using a
genetic algorithm for optimizing hidden layer neuron
weights and linear regression for optimizing output neuron
weights. The model is successfully evaluated and compared
with actual deep temperature measurements to avoid
training bias

1. INTRODUCTION

Artificial neural networks have lately been popular because
of their applicability and ability to learn non-linear models,
and simple implementation. New artificial neural network
(ANN) software was developed for modeling geothermal
energy related problems. The application is first used for
modeling the Na/K geothermometer. Several versions of
Na/K geothermometer have previously been studied using
ANNs by Can (2002), Bayram (2001) and Diaz-Gonzalez et
al. (2008). In all these studies neural networks were trained
by back-propagation algorithms. The new ANN software
utilizes a genetic algorithm for optimizing neuron weights
instead of back-propagation of errors. The use of a genetic
algorithm is expected to reduce the probability of
convergence to local minima of the network’s error
function occurring in back-propagation algorithms.

2. ARTIFICIAL NEURAL NETWORKS

An artificial neural network is an information processing
system that shares characteristics with biological neural
networks. Artificial neural networks have been developed
as generalizations of mathematical models of human
cognition and neural biology. Neural nets can be applied to
a wide variety of problems, such as storing or recalling data
or patterns, classifying patterns, noise reduction, function
approximation, performing general mappings from input
patterns to output patterns, finding solutions to constrained
optimization problems, noise reduction, function
approximation and time series prediction.

A neural net consists of a large number of simple
processing elements called neurons or nodes. Each neuron
is connected to other neurons by means of directed links,
each with an associated weight that multiplies the signal
transmitted. Each neuron is characterized by an activation
function to its net input (sum of its weighted input signals)
which determines its output signal, called activation or
activity level.

A neural network is characterized by its pattern of
connection between the neurons (called its architecture)
and its method of determining the weights on the
connections (called its training or learning algorithm). This
text will focus on genetic and error back-propagation
algorithms for training multilayer feedforward network
architectures.

2.1 Multilayer Feedforward Networks

A multilayer feedforward network consists of a set of
neurons that are logically arranged into two or more layers.
There is an input layer and an output layer, each containing
at least one neuron. Neurons in the input layer are
hypothetical in that they do not themselves have any input,
and they do no processing. Their activation is defined by
the network input. There are usually one or more hidden
layers sandwiched between the input and output layers. The
term “feedforward” means that information flows in one
direction only. The inputs to the neurons in each layer come
exclusively from the outputs of neurons in previous layers
and outputs from these neurons pass exclusively to neurons
in following layers (Masters, 1993). The output units and
the hidden units may have biases. These bias terms act like
weights on connections from units whose output is always
1.

It can learn, a multi-layer net (with one or more hidden
layers) can learn any continuous mapping to an arbitrary
accuracy (Fausett, 1994). More than one hidden layer may
be beneficial (at the expense of more difficult training due
to the dramatic increase of local minima of the function that
is being optimized) for some applications such as learning a
function having discontinuities. A multilayer network with
two hidden layers (the Z and ZZ units) is shown in Figure 1.

The activation function of a neuron is usually a nonlinear
function that, when applied to the net input of a neuron,
determines the output of that neuron. The activation
function is generally expected to be continuous,
differentiable, have an unlimited domain and approach a
finite maximum and minimum asymptotically. Usually the
activation function’s range is limited between (0, 1) and in
some cases (-1, 1). For training with back-propagation of
errors it is desirable for computational efficiency that the
function’s derivative is easy to compute and that the value
of the derivative can be expressed in terms of the value of
the function (Fausett, 1994). One of the most commonly
used activation functions (also used in the NeuroGene
application) is the binary sigmoid function, or logistic
function which is defined as

)1(

1
)(

xe
xf

−+
= (1)

with

Serpen et al.

 2

)](1)[()(' xfxfxf −= (2)

Sometimes using nonlinear activation functions for all
neurons may be detrimental. The squashing function used
in the output layer may cause compression of extreme
values. This may be avoided by using any linear function,
such as the identity function f(x) = x, for the output layer
neurons. The biggest advantage of using a linear output
layer is that using a regression technique for the output
layer will produce optimal output weights. One potentially
serious drawback to linear activation functions concerns
noise immunity. Although the squashing functions in the
hidden layer provide a fair degree of buffering, the extra
amount provided at the output layer can sometimes be
valuable (Masters, 1993).

Choosing an appropriate number of hidden neurons is
extremely important. Using too few will starve the network
of the resources it needs to solve the problem. Using too
many will increase the training time. Also an excessive
number of hidden neurons may cause a problem called
overfitting. The network will have so much information
processing capability that it will learn insignificant aspects
of the training set, aspects that are irrelevant to that of the
general population. The purpose of training the neural net is
to achieve a balance between the ability to respond
correctly to the input patterns that are used for training
(memorization) and the ability to give reasonably good
responses to input that is similar, but not identical, to that
used in training (generalization). A network with an
excessive number of neurons may lose its ability to
generalize and can perform poorly when called upon to
work the general population even though it achieved
excellent results with training sample data. Thus, it is
imperative that the absolute minimum numbers of hidden
neurons which will perform adequately are used (Masters,
1993).

Figure 1: Multilayer Feedforward Neural Network with
Two Hidden Layers.

One rough guideline for choosing the number of hidden
neurons in many problems is the geometric pyramid rule. It
states that, for many practical networks, the number of
neurons follows a pyramid shape, with the number
decreasing from the input towards the output. This
guideline may underestimate the number of neurons
required in cases where there are very few inputs and
outputs and the problem is very complex. A more rigorous
approach is to start training and testing with a small number

of neurons and increase the number until the error is
acceptably small or there is no significant improvement
(Masters, 1993).

2.2 Training by Backpropagation of Errors

Training a network by back-propagation involves three
stages: the feedforward of the input training pattern, the
back-propagation of the associated error and the adjustment
of the weights.

During feedforward, an input pattern is presented to the
network and the response of the network is obtained by
computing the activation of every neuron at the first hidden
layer and broadcasting that signal to successive layers. For
a network with k outputs, the output neuron activation yk is
compared against the training sample data tk to determine
the associated error for that pattern. Based on this error, the
factor δk is calculated as

)()('
kkkk inputyfyt −−=δ (3)

where y_inputk is the net weighted sum of the input signals
to output neuron Yk. This value is used to distribute
information on the error at output unit Yk back to all units in
the next lower layer. It also stored for later update of output
neuron weights (Fausett, 1994). For a hidden layer with j
neurons, the factor δj is computed similarly as

jkkjj winputzzf δδ ∑= −)(' (4)

where zz_inputj is the net weighted sum of the input signals
to hidden neuron ZZj and wjk represents the weight values
associated with links between hidden neuron ZZj and all
output neurons (Fausett, 1994). This value is then used to
distribute the information on the error back to all units in
the previous hidden layer, if there are any. It also stored for
later update of the final hidden layer neuron weights. If
there are multiple hidden layers, the factor δh for hidden
neuron Zh of those layers can be computed in a similar
fashion by using the δ values of the next upper hidden layer
neurons and weight values associated with links between
neuron Zh and all neurons of the next upper hidden layer.

The weights can be updated after each training pattern is
presented but in a more popular variation of the training
algorithm the weights are updated after one cycle through
the entire set of training vectors (an epoch). For each
pattern the weight updates are accumulated in a weight
correction term. The delta weight correction terms for the
output units are calculated as

jkjk zzw αδ=∆ (for weights on links to output layer

neuron k),

kkw αδ=∆ 0 (bias correction term for output layer

neuron k),

where α is a user defined constant learning rate and zzj is
the activation of the neurons in the next lower hidden layer
(Fausett, 1994). The weight correction terms are
accumulated over an entire epoch and the new weights are
calculated by adding the weight correction terms to the old
weights at the end of the epoch. The delta weight correction
terms for hidden layer units can be similarly calculated as

hjhj zv αδ=∆ (for weights on links to hidden layer

neuron j),

Serpen et al.

 3

jjv αδ=∆ 0 (bias correction term for hidden layer

neuron j),

where zh is the activation of the neurons in the next lower
hidden layer (Fausett, 1994). If there is no lower hidden
layer, then the input pattern xi should be used as activations
from the previous layer in order to obtain the weight
correction term ∆uih = α δh xi for weights on links to the
first hidden layer neuron h.

2.2.1 Drawbacks of Training By Back-propagation of
Errors

The mathematical basis for the back-propagation algorithm
is the optimization technique known as gradient descent.
The gradient of a function gives the direction in which the
function increases more rapidly, the negative of the gradient
gives the direction in which the function decreases more
rapidly. For back-propagation, the function is the network’s
error for the training set and the optimized variables are the
weights of the network. The exact distance to step in the
negative gradient, often called the learning rate, can be
critical. If the distance is too small, convergence will be
excessively slow. If it is too large, the function will jump
wildly and never converge.

There are two very serious flaws in the above method. First
is the fact that the gradient is an extremely local pointer to
optimal function change. Even a tiny distance away the
gradient may point in a dramatically different direction.
This can dramatically increase the search time. The second
problem is that it is difficult to know in advance how far to
step in the negative gradient direction (Masters, 1993).

Some of these problems have been addressed in variations
of the algorithm, but they fail to address the problem of
escaping false minima. It is surprisingly easy for gradient
algorithms to get stuck in local minima when learning
feedforward network weights. Even tiny problems can sport
local minima far inferior to global minima. Network error
functions have broad expanses of plains that are nearly flat,
but do definitely slope downward to a distant minimum.
When a gradient descent algorithm finds itself in such an
area, it will have trouble if it assumes that it is at a
minimum because the gradient is very small (Masters,
1993).

A genetic algorithm has been chosen as the network
training method for the NeuroGene application as it
facilitates a much wider search to the global minimum and
offers a fair degree of robustness.

2.3 Genetic Algorithms

Genetic algorithms are adaptive methods which may be
used to solve search and optimization problems. They are
based on the genetic processes of biological organisms. In
nature evolution is driven by survival of the fittest. Weak
individuals die before reproducing, while stronger ones live
longer and bear more offspring, who often inherit the
qualities that enabled their parents to survive. Artificial
genetic optimization operates in a similar manner. The
basic principles of genetic algorithms were first laid down
rigorously by Holland (1975).

Genetic algorithms work with a population of individuals,
each representing a possible solution to a given problem.
The parameters of the function to be optimized are encoded
as genes in a chromosome. Each individual is assigned a
fitness score according to how good a solution to the
problem it is. The highly-fit individuals are given

opportunities to reproduce, by cross breeding with other
individuals in the population. This produces new
individuals as offspring, which share some features taken
from each parent. The least fit members of the population
are less likely to get selected for reproduction, and so die
out.

A whole new population of possible solutions is thus
produced by selecting the best individuals from the current
"generation", and mating them to produce a new set of
individuals. This new generation contains a higher
proportion of the characteristics possessed by the good
members of the previous generation. In this way, over many
generations, good characteristics are spread throughout the
population. By favoring the mating of the more fit
individuals, the most promising areas of the search space
are explored. If the genetic algorithm has been designed
well, the population will converge to an optimal solution to
the problem.

A genetic algorithm belongs to the class of methods known
as weak methods because it makes relatively few
assumptions about the problem that is being solved. Genetic
algorithms are often described as a global search method
that does not use gradient information. Thus, non-
differentiable functions as well as functions with multiple
local optima represent classes of problems to which genetic
algorithms might be applied. Genetic algorithms, as a weak
method, are robust but very general. They are not
guaranteed to find the global optimum solution to a
problem, but they are generally good at finding "acceptably
good" solutions to problems "acceptably quickly". Where
specialized techniques exist for solving particular problems,
they are likely to outperform genetic algorithms in both
speed and accuracy of the final result. The basic mechanism
of a genetic algorithm is so robust that, within fairly wide
margins, parameter settings are not critical.

Both genetic algorithms and neural nets are adaptive, learn,
can deal with highly nonlinear models and noisy data and
are robust, "weak" random search methods. They do not
need gradient information or smooth functions. For
practical purposes they appear to work best in combination:
neural nets can be used as the prime modeling tool, with a
genetic algorithm used to optimize the network parameters.

2.3.1 Coding

Before a genetic algorithm can be run, a suitable coding (or
representation) for the problem must be devised. It is
assumed that a potential solution to a problem may be
represented as a set of parameters, such as the weight
parameters that optimize a neural network. These
parameters (known as genes) are joined together to form a
string of values often referred to as a chromosome. For
example, in order to maximize a function of three variables,
each variable may be represented by a 10-bit binary
number. The chromosome would therefore contain three
genes, and consist of 30 binary digits. The explicit genetic
structure represented by a particular chromosome is
referred to as a genotype. The genotype contains the
information required to construct an organism which is
referred to as the phenotype. The phenotype is the physical
expression of the genotype.

For phenotypes that express numerical values, binary
encoding will produce poor results. For example, the 8 bit
binary encoding for the number 127 is 01111111, while 128
is encoded as 10000000. A unit change in the number
required all eight bits to change. Binary encoding is
unsuitable for genetic expression because small changes in

Serpen et al.

 4

numerical values require large changes in the genotype. To
alleviate this problem, a new coding system, called Gray
code after its inventor, was devised. In this system, a unit
change in the number causes exactly one bit to change
(Masters, 1993).

2.3.2 Evaluation

The evaluation function, or objective function, provides a
measure of performance with respect to a particular set of
parameters. The fitness function transforms that measure of
performance into an allocation of reproductive
opportunities. The evaluation of a string representing a set
of parameters is independent of the evaluation of any other
string. The fitness of that string, however, is always defined
with respect to other members of the current population. In
the genetic algorithm, fitness is defined by: fi / fA where fi is
the evaluation associated with string i and fA is the average
evaluation of all the strings in the population (Whitley,
1993).

For neural network weight optimization the objective
function value can be expressed as the network error for the
entire training set. The next step is to convert the objective
function’s value to a raw fitness. Since the goal is to
minimize the objective function, smaller function values
should produce larger fitness values. Also, later calculations
will be simplified if the fitness is never negative. The best
conversion function can be somewhat problem dependent.
However, the exponential function: f (v) = e-Kv generally has
been found to be useful where the network error v ranges
from 0-1 (Masters, 1993).

The final evaluation step is converting the raw fitness
values to a scaled fitness. If the raw fitness values were
used to determine parent-selection possibilities, two
problems could arise. One is that in the first few
generations, one or a very few extremely superior
individuals usually appear. Their fitness values are so high
that they would be selected as parents too many times and
their genetic material would quickly dominate the gene
pool. Population diversity, which is crucial to genetic
optimization, would be lost early on. The second problem is
just the opposite. After many generations, clearly inferior
individuals will have been weeded out. The population will
consist of individuals who have relatively high raw fitness.
The maximum fitness will usually be only slightly greater
than the average. As a result, the fittest individuals will not
be selected as parents in the high proportions necessary for
continued rapid development (Masters, 1993).

A popular fitness scaling method involves applying a linear
transform to the raw fitness values such that the average
scaled fitness remains unchanged, but the maximum scaled
fitness becomes a fixed multiple of the average. However,
the presence of just one super-fit individual (with a fitness
ten times greater than any other, for example), can lead to
over-compression. If the fitness scale is compressed so that
the ratio of maximum to average is 2:1, then the rest of the
population will have fitness values clustered closely about
1. Although premature convergence has been prevented, it
has been at the expense of effectively flattening out the
fitness function. As mentioned above, if the fitness function
is too flat, genetic drift will become a problem, so over-
compression may lead not just to slower performance, but
also to drift away from the maximum.

Fitness ranking is another commonly employed method,
which overcomes the reliance on an extreme individual
(Baker, 1985). Individuals are sorted in order of raw fitness,
and then reproductive fitness values are assigned according

to rank. This may be done linearly or exponentially. This
gives a similar result to fitness scaling, in that the ratio of
the maximum to average fitness is normalized to a
particular value. However, it also ensures that the remapped
fitness values of intermediate individuals are regularly
spread out. Because of this, the effect of one or two extreme
individuals will be negligible and over-compression ceases
to be a problem. Several experiments have shown ranking
to be superior to fitness scaling.

2.3.3 Parent Selection

It is helpful to view the execution of the genetic algorithm
as a two stage process. It starts with the current population.
Selection is applied to the current population to create an
intermediate population. Then recombination and mutation
operators are applied to the intermediate population to
create the next population. The process of going from the
current population to the next population constitutes one
generation in the execution of a genetic algorithm.
Goldberg (1989) refers to this basic implementation as a
Simple Genetic Algorithm.

In the first generation the current population is also the
initial population. After calculating fi / fA for all the strings
in the current population, selection is carried out. The
probability that strings in the current population are copied
(i.e. duplicated) and placed in the intermediate generation is
in proportion to their fitness.

There are a number of ways to do selection. The population
might be viewed as mapping onto a roulette wheel, where
each individual is represented by a space that proportionally
corresponds to its fitness. By repeatedly spinning the
roulette wheel, individuals are chosen using stochastic
sampling with replacement to fill the intermediate
population.

A selection process that will more closely match the
expected fitness values is remainder stochastic sampling.
For each string i where fi / fA is greater than 1.0, the integer
portion of this number indicates how many copies of that
string are directly placed in the intermediate population. All
strings (including those with fi / fA less than 1.0) then place
additional copies in the intermediate population with a
probability corresponding to the fractional portion of fi / fA.
For example, a string with fi / fA = 1.36 places 1 copy in the
intermediate population, and then receives a 0.36 chance of
placing a second copy. A string with a fitness of fi / fA =
0.54 has a 0.54 chance of placing one string in the
intermediate population (Whitley, 1993).

Remainder stochastic sampling is most efficiently
implemented using a method known as stochastic universal
sampling. In this method it can be assumed that the
population is laid out in random order as in a pie graph,
where each individual is assigned space on the pie graph in
proportion to fitness. An outer roulette wheel is placed
around the pie with N equally-spaced pointers. A single
spin of the roulette wheel will simultaneously pick all N
members of the intermediate population. The resulting
selection is also unbiased (Baker, 1987).

Implicit fitness remapping methods fill the mating pool
without passing through the intermediate stage of
remapping the fitness. In binary tournament selection, pairs
of individuals are picked at random from the population.
Whichever has the higher fitness is copied into a mating
pool (and then both are replaced in the original population).
This is repeated until the mating pool is full (Goldberg,
1990). Larger tournaments may also be used, where the best

Serpen et al.

 5

of n randomly chosen individuals is copied into the mating
pool. Using larger tournaments has the effect of increasing
the selection pressure, since below-average individuals are
less likely to win a tournament and vice-versa.

2.3.4 Reproduction

After selection has been carried out the construction of the
intermediate population is complete and recombination can
occur by applying crossover to randomly paired strings.
This operation can be viewed as creating the next
population from the intermediate population.
Recombination operators are applied in order to generate
new samples in the search space. Crossover is not usually
applied to all pairs of individuals selected for mating. A
random choice is made, where the probability of crossover
being applied is typically between 0.6 and 1.0. If crossover
is not applied, offspring are produced simply by duplicating
the parents. This gives each individual a chance of passing
on its genes without the disruption of crossover (Whitley,
1993).

A binary string encoding would represent a possible
solution to some parameter optimization problem. New
sample points in the space are generated by recombining
two parent strings. If the string 1101001100101101 and
another binary string, yxyyxyxxyyyxyxxy, in which the
values 0 and 1 are denoted by x and y, are recombined
using a single randomly-chosen recombination point, 1-
point crossover occurs as follows:

11010 \/ 01100101101

yxyyx /\ yxxyyyxyxxy

Swapping the fragments between the two parents produces
the following offspring:

11010yxxyyyxyxxy and yxyyx01100101101

The problem with adding additional crossover points is that
building blocks (hyper-plane partitions within search space
that contain significant genetic information) are more likely
to be disrupted. However, an advantage of having more
crossover points is that the problem space may be searched
more thoroughly. In 2-point crossover, chromosomes are
regarded as loops formed by joining the ends together. To
exchange a segment from one loop with that from another
loop requires the selection of two cut points. 1-point
crossover can be seen as 2-point crossover with one of the
cut points fixed at the start of the string. Hence 2-point
crossover performs the same task as 1-point crossover (i.e.
exchanging a single segment), but is more general (Whitley,
1993).

Uniform crossover is radically different to 1-point
crossover. Each gene in the offspring is created by copying
the corresponding gene from one or the other parent, chosen
according to a randomly generated crossover mask. Where
there is a 1 in the crossover mask, the gene is copied from
the first parent, and where there is a 0 in the mask, the gene
is copied from the second parent (Syswerda, 1989). The
process is repeated with the parents exchanged to produce
the second offspring. A new crossover mask is randomly
generated for each pair of parents. Offspring therefore
contain a mixture of genes from each parent. The number of
effective crossing points is not fixed, but will average L/2
(where L is the chromosome length).

Despite analytical results showing uniform crossover is in
every case more disruptive than 2-point crossover for order-

3 schemata (hyper-plane partitions represented by 3 bit
substrings) for all defining string lengths, several
researchers have suggested that uniform crossover is a
better recombination operator. Spears and DeJong (1991)
speculate that, “With small populations, more disruptive
crossover operators such as uniform or n-point (n >> 2)
may yield better results because they help overcome the
limited information capacity of smaller populations and the
tendency for more homogeneity.” Uniform crossover
appears to be more robust. Where two chromosomes are
similar, the segments exchanged by 2-point crossover are
likely to be identical, leading to offspring which are
identical to their parents. This is less likely to happen with
uniform crossover.

2.3.5 Mutation

The mutation operator is applied to each offspring after
crossover. For each bit in the new population, a mutation
can occur with some low probability pm. It is typical for the
mutation rate to be within 0.1%-1% probability. Mutation is
applied by flipping the bit value (Whitley, 1993).

A genetic algorithm will always be subject to stochastic
errors. One such problem is that of genetic drift. Even in the
absence of any selection pressure, members of the
population will still converge to some point in the solution
space. If, by chance, a gene becomes predominant in the
population, then it is just as likely to become more
predominant in the next generation as it is to become less
predominant. If an increase in predominance is sustained
over several successive generations, and the population is
finite, then a gene can spread to all members of the
population. Once a gene has converged in this way,
crossover cannot introduce new gene values. The rate of
genetic drift can be reduced by increasing the mutation rate.
However, if the mutation rate is too high, the search
becomes effectively random.

Mutation is traditionally seen as a "background" operator,
responsible for introducing alleles or inadvertently lost
gene values, preventing genetic drift and providing a small
element of random search in the vicinity of the population
when it has largely converged (Whitley, 1993). However,
mutation becomes more productive, and crossover less
productive, as the population converges. Despite its
generally low probability of use, mutation is a very
important operator.

2.4 Neurogene Application

The NeuroGene application is a program that runs a neural
network and a genetic algorithm in conjunction. The neural
network is used as the prime modeling tool and the genetic
algorithm is used to optimize network parameters. The
application permits the user to create any single or double
hidden layer feedforward network architecture and load
sample data for training the network. The network weights
and architecture can be saved at any time along with
input/output data scaling parameters. A new network may
be created by loading this file at any time. If the network is
created from previously saved weights, the application will
only allow execution of input patterns. Training will not be
allowed in execution mode but a set of input vectors may be
loaded from a file and presented to the network’s inputs.
The application will display the network’s response to each
input vector.

2.4.1 Create New Network Dialog

This dialog permits the user to set sample data scaling
parameters and choose among multilayer network

Serpen et al.

 6

architectures. The number of neurons at each hidden layer
and the type activation function (linear or logistic) for the
output layer neurons can be set. The training and test
sample data is loaded when a new network is created. The
user can type in the path for the data file. Test data can be
randomly extracted from the sample data or loaded
explicitly. Testing data is never presented to the network
during training but it is very important for the validation of
the network. Without test samples, the user will have no
measure of the network’s performance when presented with
general real-world data. Test data validation is the only way
to detect over-fitting issues that can occur during training.

If a variable is used to train output neurons and the output
neurons have an activation function with bounded range,
target activations must certainly be limited to values that
can comfortably be learned. That is why scaling is very
important. Another reason for uniform scaling is to initially
equalize the importance of variables. If one variable has an
order of magnitude of 1,000,000 while another is about
0.000001, it asking a lot of the learning algorithm to
traverse such a range. The network’s life can be made a lot
easier by giving it data scaled in such a way that all weights
remain in small, predictable ranges.

NeuroGene employs normalization based on the
population’s mean and distribution values. The input data is
standardized to a Z-score by subtracting its mean and
dividing by standard deviation:

σ
µ)(−= x

Z (5)

This removes all effects of offset and measurement scale.
Simply scaling to a Z-score is not generally sufficient for
output variables, as the scaled values would still exceed the
activations limits implicit in the network’s model.
NeuroGene will map from Z-score to neuron activation:

minmin

(
AZ

x
rA +⎥⎦

⎤
⎢⎣
⎡ −−=

σ
µ

 (6)

)(

)(

minmax

minmax

ZZ

AA
r

−
−= (7)

Figure 2: Create New Neural Network Dialog.

The practical limits for this mapping can be set in the
network creation dialog. When the network’s practical
output range is set to 20% (of activation range 0-1)
normalized variable practical limits Zmax and Zmin will be
mapped to 0.6 (Amax) and 0.4 (Amin) respectively. Occasional
outlier data falling outside those boundaries may be clipped

at the network’s truncation limits which can also be set
within the dialog.

2.4.2 Main Application Screen

The main application screen allows the user to set various
training and genetic algorithm parameters, and provides
several mating selection scheme choices. After a network
has been created, training can be initiated and terminated by
pressing the “Start/Stop Net Training” button. Training may
also automatically end when the mean square error of the
output dips below “Target Error” or the genetic algorithm
has been running for more than “Max Generations”. During
training, the current generation number, minimum network
error and current population mean error values are
presented in real-time at the display screen. At the end of a
training session, all input patterns in the sample test set are
presented to the network and the outputs are compared to
sample target outputs for calculating the root mean square
error in the output variable’s original un-scaled range. The
root mean square error is a good measure of the network’s
real-world performance.

The “crossover rate” parameter defines the percentage of
individuals chosen among the intermediate population as
parents. The “uniform crossover %p” parameter defines the
percentage of genes the first offspring will receive from one
of its parents and the second offspring will receive from the
other parent. This parameter is 50% for standard uniform
crossover which can cause too much disruption of valuable
genetic information. It must be noted that a low %p
parameter should be accompanied with a low crossover rate
to preserve the gene pool.

The “Bits per Gene” parameter specifies the number of bits
used to represent each network weight. A large value will
dramatically increase the search space, which in turn will
lead to longer training times or increased difficulty in
convergence to a global minimum. A low value might not
provide enough resolution for sampling the search space
and cause the algorithm to miss narrow valleys in the
objective function. It is a good idea to use a larger
population size for a larger search space. The “Phenotype
Range” parameter defines the maximum and minimum
network weight values. The gray encoded genes are
decoded and scaled to that range during execution.

When remainder or universal stochastic sampling is chosen
as the parent selection method, NeuroGene uses sigma
truncation for scaling fitness values:

)(' σcFFF avg −−= (8)

Favg is the mean fitness value and σ is the standard
deviation. c is the sigma scaling factor and is set internally
based on the fitness distribution. The user can also set a
mapping constant K, which is used in error to fitness
Gaussian mapping f (v) = e-Kv.

When tournament selection is selected as the parent
selection method, NeuroGene uses an adaptive tournament
size based on the difference between the population’s mean
fitness value and best fitness value. The difference is
expressed in terms of multiples of the population’s current
fitness standard deviation. Two fitness distribution values,
corresponding to the minimum and maximum tournament
sizes, can be set by the user. NeuroGene decreases selection
pressure by reducing tournament size when the population
contains super-fit individuals and increases selection

Serpen et al.

 7

pressure when the population displays a flatter fitness
distribution.

If the “Use Elitist Gene Propagation” checkbox is selected,
the fittest individual in the current population will be
guaranteed to pass on its genes to the next generation.
Applying this strategy may lead to premature convergence
of the genetic algorithm.

Figure 3: NeuroGene application main screen.

When the “Use Linear Regression on Output Weights”
checkbox is selected, output layer neuron weights will not
be represented in the chromosome bit string. The genetic
algorithm will only optimize hidden layer neuron weights.
Neural networks are explicitly nonlinear. However, the
operation of passing the output activations of one layer to
the input of the next layer is linear. The input applied to an
output layer neuron is a linear combination of the
activations of the neurons in the previous layer. If that
hidden layer’s activations are treated as independent
variables, and if the known desired input to an output
neuron is treated as a dependent variable, the problem
becomes a linear regression problem. The output neuron
weight vector will be optimal in that it minimizes the mean
square error of the input to the output neuron. To solve with
linear regression, the inverse transfer function of the
neuron’s desired output must be computed for each training
sample. Using linear regression in conjunction with a
genetic algorithm is computationally very intensive but the
algorithm is likely to converge in less generations. Linear
regression interferes with the natural evolution of the
population by producing dominant super-fit individuals
early on, therefore in some cases it may lead to premature
convergence.

3. BASICS OF NA/K GEOTHERMOMETERS

Chemical geothermometers are important tools that are
used for prediction of equilibrium temperatures of
geothermal systems. These geothermometers are analytical
equations founded in empirical form, on the basis of data
created by measured temperatures and chemical
composition of fluids sampled in hot springs and wells.

Na/K ratio of geothermal fluids (spring and well waters) is
likely to provide a significant indication of subsurface
temperatures. The Na/K ratio in natural hot water is
controlled by a reversible temperature dependent rock-
water equilibrium involving potash-mica, potash-feldspar
and albite. The reversible relationship appears only at
temperatures above 200oC. The Na/K equilibrium adjusts
after a temperature change relatively slowly, which enables

useful information on conditions in the deep aquifer to be
obtained from the values of Na/K in spring waters.

Na/K geothermometers based on this phenomenon have
evolved in the past 40 years and several experimentally
derived equations have been proposed by Ellis and Mahon
(1967), Ellis (1970), Truesdell (1976), Fournier, (1979),
Tonani, (1980), Arnorsson, (1983) and Gigenbach, (1988).
Those equations work well for reservoirs with temperatures
in the 180-350oC range, but break down at lower
temperatures, notably at less than 120oC. At these
temperatures Na and K concentrations are influenced by
other minerals, such as clays, and are not controlled only by
feldspar ion-exchange reaction (Nicholson, 1993).

Citing critics of Santoyo and Verma, (1993) and Verma and
Santoyo, (1997) on validity and reliability of conventional
Na/K geothermometers, Diaz et al, (2008) concluded that
the effects of primary error sources for conventional
geothermometers might be as follows: (1) analytical errors
in chemical analysis, (2) errors in regression coefficients of
developed equations, (3) errors derived from incorrect use
of solute concentration units for geothermometers, (4)
correct geochemical conditions, temperature range and
concentration of same equations, (5) lack of well
temperatures and rock-fluid interaction experimental
temperatures for low and intermediate temperature ranges,
(6) limited number of data collected and outliers among
them. Therefore, Santoyo and Verma, (1993) and Verma
and Santoyo, (1997) examined Na/K geothermometer
through statistical theory of error propagation, and on this
basis proposed new Na/K geothermometers.

4. APPLICATIONS OF NEW ANN MODEL FOR
NA/K GEOTHERMOMETERS

The ANN computational technique has been perceived as
an effective tool; (1) for relatively simple solutions to
complex numerical problems, (2) for substituting
experimental works that are difficult to realize.

Bayram (2001) and Can (2002) proposed new
geothermometer equations of Na/K through implementation
of an ANN. Bayram (2001) proposed a simple ANN model
using a non-linear logistic activation function, which was
trained with 6 known geothermometer equations. The ANN
was trained with synthetic data of Na-K as input and
reservoir temperatures that were inferred from the results of
6 known geothermometers as output. On the other hand,
Can (2002) developed a new Na/K geothermometer
empirically on the basis of 39 data samples collected from
various geothermal fields around the world. The simple
ANN architecture was characterized by input, hidden and
output layers, each containing one neuron. Training was
conducted with the back-propagation algorithm, again,
using a non-linear logistic activation function.

Recently, Diaz et al., (2008) proposed 3 new Na/K
geothermometers developed using ANNs and ordinary
linear regression. The obtained results appear to
systematically provide better and reliable estimations of
deep equilibrium temperatures than the equations
previously reported in the geothermal literature. They
applied the ANN method in obtaining two geothermometers
and the linear regression approach for the third one. The
first geothermometer was obtained by training the ANN
architecture, consisting of a single hidden layer neuron,
with real data of reservoir temperatures collected from
different fields around the world as input, and Na-K as
output. Training was performed with the back-propagation
algorithm using a linear activation function taking

Serpen et al.

 8

advantage of the linear nature of Na/K geothermometer
[(1/T) = A log(Na/K) + B]. In the second geothermometer
proposed by Diaz-Gonzalez et al., (2008), training was also
conducted by back-propagation of errors but a hyperbolic
tangent activation function was used.

Considering the limitations and uncertainties of
conventional Na/K geothermometers, in this study several
models have been developed through training ANNs with
data created from 324 data samples of measured
temperatures and chemical compositions collected from
geothermal wells all around the world. Data collected and
examined in the Diaz et al., (2008) study was composed of
a training data set of 212 and a test data set of 112. In our
study we have also used these two data sets as training and
test data sets, and on the other hand, we have also utilized
another data set of 39 samples collected by Can, (2002) as
test data for our models.

Using our ANN software the following models were
created in two groups, and in this first group of models the
input is log(Na/K) and the output is 1/T:

• Model#1: Hidden layer (7 neurons) => logistic
activation; Output layer => logistic activation
(output activation range: 0.4-0.6).

• Model#2: Hidden layer (3 neurons) => logistic
activation; Output layer => linear activation
(output activation range: 0.3-0.6).

• Model 2a: Hidden layer (3 neurons) => logistic
activation; Output layer => linear activation,
linear regression applied for solving output
weights (output activation range: 0.4–0.6).

• Model#3: Hidden layer (3 neurons) => linear
activation; Output layer => linear activation
(output activation range: 0.4–0.6).

In this second group of models the inverse solution is used,
and here the input is temperature (1/T) and the output is
log(Na/K).

• Model#4: Hidden layer (3 neurons) => logistic
activation; Output layer => logistic activation
(output activation range: 0.3–0.7).

• Model#5: Hidden layer (3 neurons) => logistic
activation; Output layer => linear activation
(output activation range: 0.2-0.8).

• Model#6: Hidden layer (3 neurons) => linear
activation; Output layer => linear activation
(output activation range: 0.1–0.9).

As can be seen above, both logistic and linear activation
functions have been utilized with various output activation
ranges and architectures.

Root Mean Square Error (RMSE) values were calculated by
comparing the output of the network when presented with
test input samples against expected results. RMSE values
obtained for these models are given in Table 1.

Table 1: RMSE Values for Different ANN Models.

Models RMSE Values

Model#1 0.000106

Model#2 0.000098

Model#3 0.000096

Model#4 0.100533

Model#5 0.096819

Model#6 0.086503

The results for the first model are shown in Figure 4. As
seen in Figure 4, Diaz-Gonzalez et al. (2008) and Verma
and Santoyo (1997) geothermometers were good at
representing the lower and upper limits of scattered data
(n=112), respectively. Our 3 models remained in between
and seem to represent the whole data. Diaz et al. (2008)’s
third geothermometer, obtained by regression analysis, was
very close to our models.

0.4 0.6 0.8 1 1.2 1.4

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 4: Comparative results of our first three ANN
models with Diaz-Gonzalez et al. (2008) data set.

Similar results have been obtained with inverse models as
seen in Figure 5. These models also seem to represent the
whole scattered data better.

0.4 0.6 0.8 1 1.2 1.4

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 5: Comparative results of 3 inverse ANN models
with Diaz-Gonzalez et al. (2008) data set.

As seen in Figure 6 all results for our ANN models and
other models were pretty close to each other when
presented with test data (n=39) from Can (2002). The best
geothermometer with results close to measured
temperatures was the one of Verma and Santoyo (1997). It
appears that all geothermometers based on ANN models

Serpen et al.

 9

were better at matching measured temperatures in the 180-
3500C range. In the lower range <160oC, Verma and
Santoyo (1997) geothermometer performed better.

0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

log(Na/K)

110

150

190

230

270

310

350

T
, 0

C

Measured Data

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Linear & Output Linear)

This Work (Inverse: Hidden Logistic & Output Logistic)

This Work (Inverse: Hidden Logistic & Output Linear)

This Work (Inverse: Hidden Linear & Output Linear)

Verma and Santoyo, 1997

Diaz-Gonzalez et al., 2008a

Diaz-Gonzalez et al., 2008b

Diaz-Gonzalez et al., 2008c

Figure 6: Comparative results of our 6 models and
others models with Can (2002) data set.

conducted on the resulting model solutions. This study was
based on the calculation of percentage of deviation equation
proposed by Verma and Santoyo (1997) as follows:

100
(

% ⎥
⎦

⎤
⎢
⎣

⎡ −=
m

mc

t

tt
DEV (9)

Where, tc and tm are calculated by geothermometers and
measured temperatures in wells, respectively, and %DEV is
percentage of deviation.

%DEV is used as a statistical parameter to evaluate the
exactness of calculated geothermometer temperatures,
assuming that the measured temperatures are real downhole
temperatures of wells. Results obtained in calculation of
%DEV for the first 3 models are shown in Figure 7. As can
be seen in Figure 7, %DEV was within 10% like other
geothermometers. On the other hand, %DEV was unusually
high below 160oC. In their work, Diaz et al., (2008) have
pointed out the same problem. They have attributed this
behavior to insufficient data in that range. We have also
observed the same behavior for our models, as seen in
Figure 7.

On the other hand, as seen in Figure 8 all ANN based
geothermometers seem to underestimate bottomhole
temperatures in that range (<160oC) when the Can (2002)
data set was utilized. There is a remarkable difference
between two data sets below 160oC. For this range, while
log(Na/K) values range from 0.8 to 1.4 in the Diaz et al.,
(2008) data set, they are found to range between 1.4 and 2.2
in the Can (2002) data set. This may have been born from
the fact that very few samples below 160oC exist in the Can
(2002) data set. On the other hand, there might be a
difference between chemical compositional characteristics
of samples collected. Moreover, there may be outliers
within the Can (2002) data set.

5. CONCLUDING REMARKS

• New ANN software utilizing a complex genetic
algorithm was developed.

• Several ANN models that successfully represent the
Na/K geothermometer were created.

• More reliable data is needed for a better
representation of resources below 160oC.

110 150 190 230 270 310 350

T, 0C

-75

-50

-25

0

25

50

75

D
E

V
, %

This Work (Hidden Logistic & Output Logistic)

This Work (Hidden Logistic & Output Linear)

This Work (Hidden Logistic & Output Linear: LR)

This Work (Hidden Logistic & Output Linear)

Fournier, 1979

Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008

Figure 7: Comparative results of %DEV for the first 4
ANN models with Diaz-Gonzalez et al, (2008)
data set.

110 150 190 230 270 310 350

T, 0C

-75

-50

-25

0

25

50

75
This Work (Hidden Logistic & Output Logistic)
This Work (Hidden Logistic & Output Linear)

This Work (Hidden Logistic & Output Linear)

Fournier, 1979
Verma and Santoyo, 1997

Can, 2002

Diaz-Gonzalez et al., 2008

Figure 8: Comparative results of %DEV for the first 3
ANN models with Can, (2002) data set.

ACKNOWLEDGEMENT

We would like to extend our gratitude to Dr. Surendra Pal
Verma and Lorena Diaz-Gonzalez and her coauthors for
providing us data sets that have enabled us to realize this
study.

REFERENCES

Arnorsson, S.: “Chemical Equilibria in Icelandic
Geothermal Systems; Implications for Chemical
Geothermometry Investigations,” Geothermics, 12,
(1983), 119-128.

Baker, J.: “Adaptive selection methods for genetic
algorithms”, Proc. International Conf. on Genetic

Serpen et al.

 10

Algorithms and Their Applications. J. Grefenstette, ed.
Lawrence Erlbaum, (1985)

Baker, J.: “Reducing Bias and Inefficiency in the Selection
Algorithm”, Genetic Algorithms and Their
Applications: Proc. Second International Conf. J.
Grefenstette, ed. Lawrence Erlbaum, (1987)

Bayram, A.F.: “Application of An Artificial Neural
Network Model to A Na-K Geothermometer,” Journal
of Volcanology and Geothermal Research 112, (2001)
75-81.

Can, I.: “A New Improved NA/K Geothermometer by
Artificial Neural Networks,” Geothermics 31,(2002)
751-760.

Diaz, G.L., Santoyo, E., y Reyes, J.R.: “Desarollo de
Nuevos Geotermometros Mejorados de Na/K Usando
Redes Neoronales Artificiales Estadisticas: Aplicacion
a la Prediccion de Temperaturas de Sistemas
Geotermicos,” Revista Mexicana de Ciencias
Geologicas, 2008, 25(3), 465-482, (2008)

Ellis A. J. and Mahon W.A.J.: “Natural Hydrothermal
Systems and Experimental Hot-Water/Rock
Interactions (Part II),” Geochim. Cosmochim. Acta,
31, 519-538, (1967)

Ellis, A.J.: “Quantitative Interpretation of Chemical
Characteristics of Hydrothermal Systems,”
Geothermics, 25, 219-226, (1970)

Fausett, L.: “Fundamentals of Neural Networks”, Prentice-
Hall, Inc., (1994)

Fournier, R.O.: “A Revised Equation for Na/K
Geothermometer,” Geoth. Res. Council Trans., 3, 221-
224, (1979)

Gigenbach, W.F.: “Geothermal Solute Equilibria.
Derivation of Na-K-Mg-Ca Geoindicatores,”
Geochim. Cosmochim.Acta, 52, 2749-2765, (1988)

Goldberg, D.: “Genetic Algorithms in Search, Optimization
and Machine Learning”, Reading, MA: Addison-
Wesley, (1989)

Goldberg, D.: “A Note on Boltzmann Tournament
Selection for Genetic Algorithms and Population-
oriented Simulated Annealing”, TCGA 90003,
Engineering Mechanics, Univ. Alabama, (1990)

Holland, J.H.: "Adaptation in Natural and Artificial
Systems", MIT Press, (1975)

Masters T.: “Practical Neural Network Recipes in C++”,
Morgan-Kaufmann, (1993)

Nicholson, K.: “Geothermal Fluids. Chemistry and
Exploration Techniques”, Springer-Verlag, Berlin
Heidelberg, 72-73, (1993)

Santoyo E. and Verma, S.P.: “Evalucion de Errores en el
Uso de los Geotermometros de SiO2 y Na/K para la
Determinacion de Temperaturas en Sistemas
Geotermicos,” Geofisica Internacional, 32, 287-298,
(1993)

Spears, W. and DeJong, K.: “An Analysis of Multi-Point
Crossover”, Foundations of Genetic Algorithms, G.
Rawlins, ed. Morgan-Kaufmann, (1991)

Syswerda, G.: “Uniform Crossover in Genetic Algorithms”,
Proc 3rd International Conf on Genetic Algorithms,
Morgan-Kaufmann, pp 2-9, (1989)

Tonani, F.: “Some Remarks on the Application of
Geochemical Techniques in Geothermal Exploration,”
In: Proc. Adv. Eur. Geoth. Res., Second Symposium,
Strasburg, 428-443, (1980)

Truesdell, A.H.: “Summary of Section III. Geochemical
Techniques in Exploration,” Proceedings 2nd UN
Symposium on the development and use of geothermal
resources. San Fransisco, 1, (1976), Iiii-Ixxix.

Verma S.P. and Santoyo, E.: “New Improved Equations for
Na/K, Na/Li and SiO2 Geothermometers by Outlier
Detection and Rejection”, Journal of Volcanology and
Geothermal Research, 79(1-2), 9-24, (1997)

Whitley, D.: "A Genetic Algorithm Tutorial", Technical
Report CS-93-103, Colorado State University, (1993)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

