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ABSTRACT 

In this study, a brief explanation is first given on solute 
Na/K geothermometers developed until now, and a new 
Na/K geothermometer model is derived after presenting a 
world geothermal database (n=212) to a neural network as a 
training set and another database (n=112) as a validation 
set. In this model Na and K values are treated as input 
values and geothermometer temperatures as output values. 
A multilayer feedforward neural network is trained using a 
genetic algorithm for optimizing hidden layer neuron 
weights and linear regression for optimizing output neuron 
weights. The model is successfully evaluated and compared 
with actual deep temperature measurements to avoid 
training bias 

1. INTRODUCTION  

Artificial neural networks have lately been popular because 
of their applicability and ability to learn non-linear models, 
and simple implementation. New artificial neural network 
(ANN) software was developed for modeling geothermal 
energy related problems. The application is first used for 
modeling the Na/K geothermometer. Several versions of 
Na/K geothermometer have previously been studied using 
ANNs by Can (2002), Bayram (2001) and Diaz-Gonzalez et 
al. (2008). In all these studies neural networks were trained 
by back-propagation algorithms. The new ANN software 
utilizes a genetic algorithm for optimizing neuron weights 
instead of back-propagation of errors. The use of a genetic 
algorithm is expected to reduce the probability of 
convergence to local minima of the network’s error 
function occurring in back-propagation algorithms. 

2. ARTIFICIAL NEURAL NETWORKS 

An artificial neural network is an information processing 
system that shares characteristics with biological neural 
networks. Artificial neural networks have been developed 
as generalizations of mathematical models of human 
cognition and neural biology. Neural nets can be applied to 
a wide variety of problems, such as storing or recalling data 
or patterns, classifying patterns, noise reduction, function 
approximation, performing general mappings from input 
patterns to output patterns, finding solutions to constrained 
optimization problems, noise reduction, function 
approximation and time series prediction. 

A neural net consists of a large number of simple 
processing elements called neurons or nodes. Each neuron 
is connected to other neurons by means of directed links, 
each with an associated weight that multiplies the signal 
transmitted. Each neuron is characterized by an activation 
function to its net input (sum of its weighted input signals) 
which determines its output signal, called activation or 
activity level. 

A neural network is characterized by its pattern of 
connection between the neurons (called its architecture) 
and its method of determining the weights on the 
connections (called its training or learning algorithm). This 
text will focus on genetic and error back-propagation 
algorithms for training multilayer feedforward network 
architectures. 

2.1 Multilayer Feedforward Networks 

A multilayer feedforward network consists of a set of 
neurons that are logically arranged into two or more layers. 
There is an input layer and an output layer, each containing 
at least one neuron. Neurons in the input layer are 
hypothetical in that they do not themselves have any input, 
and they do no processing. Their activation is defined by 
the network input. There are usually one or more hidden 
layers sandwiched between the input and output layers. The 
term “feedforward” means that information flows in one 
direction only. The inputs to the neurons in each layer come 
exclusively from the outputs of neurons in previous layers 
and outputs from these neurons pass exclusively to neurons 
in following layers (Masters, 1993). The output units and 
the hidden units may have biases. These bias terms act like 
weights on connections from units whose output is always 
1. 

It can learn, a multi-layer net (with one or more hidden 
layers) can learn any continuous mapping to an arbitrary 
accuracy (Fausett, 1994). More than one hidden layer may 
be beneficial (at the expense of more difficult training due 
to the dramatic increase of local minima of the function that 
is being optimized) for some applications such as learning a 
function having discontinuities. A multilayer network with 
two hidden layers (the Z and ZZ units) is shown in Figure 1. 

The activation function of a neuron is usually a nonlinear 
function that, when applied to the net input of a neuron, 
determines the output of that neuron. The activation 
function is generally expected to be continuous, 
differentiable, have an unlimited domain and approach a 
finite maximum and minimum asymptotically. Usually the 
activation function’s range is limited between (0, 1) and in 
some cases (-1, 1). For training with back-propagation of 
errors it is desirable for computational efficiency that the 
function’s derivative is easy to compute and that the value 
of the derivative can be expressed in terms of the value of 
the function (Fausett, 1994). One of the most commonly 
used activation functions (also used in the NeuroGene 
application) is the binary sigmoid function, or logistic 
function which is defined as 
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Sometimes using nonlinear activation functions for all 
neurons may be detrimental. The squashing function used 
in the output layer may cause compression of extreme 
values. This may be avoided by using any linear function, 
such as the identity function f(x) = x, for the output layer 
neurons. The biggest advantage of using a linear output 
layer is that using a regression technique for the output 
layer will produce optimal output weights. One potentially 
serious drawback to linear activation functions concerns 
noise immunity. Although the squashing functions in the 
hidden layer provide a fair degree of buffering, the extra 
amount provided at the output layer can sometimes be 
valuable (Masters, 1993). 

Choosing an appropriate number of hidden neurons is 
extremely important. Using too few will starve the network 
of the resources it needs to solve the problem. Using too 
many will increase the training time. Also an excessive 
number of hidden neurons may cause a problem called 
overfitting. The network will have so much information 
processing capability that it will learn insignificant aspects 
of the training set, aspects that are irrelevant to that of the 
general population. The purpose of training the neural net is 
to achieve a balance between the ability to respond 
correctly to the input patterns that are used for training 
(memorization) and the ability to give reasonably good 
responses to input that is similar, but not identical, to that 
used in training (generalization). A network with an 
excessive number of neurons may lose its ability to 
generalize and can perform poorly when called upon to 
work the general population even though it achieved 
excellent results with training sample data. Thus, it is 
imperative that the absolute minimum numbers of hidden 
neurons which will perform adequately are used (Masters, 
1993). 

 

Figure 1: Multilayer Feedforward Neural Network with 
Two Hidden Layers. 

One rough guideline for choosing the number of hidden 
neurons in many problems is the geometric pyramid rule. It 
states that, for many practical networks, the number of 
neurons follows a pyramid shape, with the number 
decreasing from the input towards the output. This 
guideline may underestimate the number of neurons 
required in cases where there are very few inputs and 
outputs and the problem is very complex. A more rigorous 
approach is to start training and testing with a small number 

of neurons and increase the number until the error is 
acceptably small or there is no significant improvement 
(Masters, 1993). 

2.2 Training by Backpropagation of Errors 

Training a network by back-propagation involves three 
stages: the feedforward of the input training pattern, the 
back-propagation of the associated error and the adjustment 
of the weights. 

During feedforward, an input pattern is presented to the 
network and the response of the network is obtained by 
computing the activation of every neuron at the first hidden 
layer and broadcasting that signal to successive layers. For 
a network with k outputs, the output neuron activation yk is 
compared against the training sample data tk to determine 
the associated error for that pattern. Based on this error, the 
factor δk is calculated as 
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where y_inputk is the net weighted sum of the input signals 
to output neuron Yk. This value is used to distribute 
information on the error at output unit Yk back to all units in 
the next lower layer. It also stored for later update of output 
neuron weights (Fausett, 1994). For a hidden layer with j 
neurons, the factor δj is computed similarly as 

jkkjj winputzzf δδ ∑= − )('   (4) 

where zz_inputj is the net weighted sum of the input signals 
to hidden neuron ZZj and wjk represents the weight values 
associated with links between hidden neuron ZZj and all 
output neurons (Fausett, 1994). This value is then used to 
distribute the information on the error back to all units in 
the previous hidden layer, if there are any. It also stored for 
later update of the final hidden layer neuron weights. If 
there are multiple hidden layers, the factor δh for hidden 
neuron Zh of those layers can be computed in a similar 
fashion by using the δ values of the next upper hidden layer 
neurons and weight values associated with links between 
neuron Zh and all neurons of the next upper hidden layer. 

The weights can be updated after each training pattern is 
presented but in a more popular variation of the training 
algorithm the weights are updated after one cycle through 
the entire set of training vectors (an epoch). For each 
pattern the weight updates are accumulated in a weight 
correction term. The delta weight correction terms for the 
output units are calculated as 

jkjk zzw αδ=∆  (for weights on links to output layer 

neuron k), 

kkw αδ=∆ 0   (bias correction term for output layer 

neuron k), 

where α is a user defined constant learning rate and zzj is 
the activation of the neurons in the next lower hidden layer 
(Fausett, 1994). The weight correction terms are 
accumulated over an entire epoch and the new weights are 
calculated by adding the weight correction terms to the old 
weights at the end of the epoch. The delta weight correction 
terms for hidden layer units can be similarly calculated as 

hjhj zv αδ=∆  (for weights on links to hidden layer 

neuron j), 
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jjv αδ=∆ 0  (bias correction term for hidden layer 

neuron j), 

where zh is the activation of the neurons in the next lower 
hidden layer (Fausett, 1994). If there is no lower hidden 
layer, then the input pattern xi should be used as activations 
from the previous layer in order to obtain the weight 
correction term ∆uih = α δh xi for weights on links to the 
first hidden layer neuron h. 

2.2.1 Drawbacks of Training By Back-propagation of 
Errors 

The mathematical basis for the back-propagation algorithm 
is the optimization technique known as gradient descent. 
The gradient of a function gives the direction in which the 
function increases more rapidly, the negative of the gradient 
gives the direction in which the function decreases more 
rapidly. For back-propagation, the function is the network’s 
error for the training set and the optimized variables are the 
weights of the network. The exact distance to step in the 
negative gradient, often called the learning rate, can be 
critical. If the distance is too small, convergence will be 
excessively slow. If it is too large, the function will jump 
wildly and never converge. 

There are two very serious flaws in the above method. First 
is the fact that the gradient is an extremely local pointer to 
optimal function change. Even a tiny distance away the 
gradient may point in a dramatically different direction. 
This can dramatically increase the search time. The second 
problem is that it is difficult to know in advance how far to 
step in the negative gradient direction (Masters, 1993). 

Some of these problems have been addressed in variations 
of the algorithm, but they fail to address the problem of 
escaping false minima. It is surprisingly easy for gradient 
algorithms to get stuck in local minima when learning 
feedforward network weights. Even tiny problems can sport 
local minima far inferior to global minima. Network error 
functions have broad expanses of plains that are nearly flat, 
but do definitely slope downward to a distant minimum. 
When a gradient descent algorithm finds itself in such an 
area, it will have trouble if it assumes that it is at a 
minimum because the gradient is very small (Masters, 
1993). 

A genetic algorithm has been chosen as the network 
training method for the NeuroGene application as it 
facilitates a much wider search to the global minimum and 
offers a fair degree of robustness. 

2.3 Genetic Algorithms 

Genetic algorithms are adaptive methods which may be 
used to solve search and optimization problems. They are 
based on the genetic processes of biological organisms. In 
nature evolution is driven by survival of the fittest. Weak 
individuals die before reproducing, while stronger ones live 
longer and bear more offspring, who often inherit the 
qualities that enabled their parents to survive. Artificial 
genetic optimization operates in a similar manner. The 
basic principles of genetic algorithms were first laid down 
rigorously by Holland (1975). 

Genetic algorithms work with a population of individuals, 
each representing a possible solution to a given problem. 
The parameters of the function to be optimized are encoded 
as genes in a chromosome. Each individual is assigned a 
fitness score according to how good a solution to the 
problem it is. The highly-fit individuals are given 

opportunities to reproduce, by cross breeding with other 
individuals in the population. This produces new 
individuals as offspring, which share some features taken 
from each parent. The least fit members of the population 
are less likely to get selected for reproduction, and so die 
out. 

A whole new population of possible solutions is thus 
produced by selecting the best individuals from the current 
"generation", and mating them to produce a new set of 
individuals. This new generation contains a higher 
proportion of the characteristics possessed by the good 
members of the previous generation. In this way, over many 
generations, good characteristics are spread throughout the 
population. By favoring the mating of the more fit 
individuals, the most promising areas of the search space 
are explored. If the genetic algorithm has been designed 
well, the population will converge to an optimal solution to 
the problem. 

A genetic algorithm belongs to the class of methods known 
as weak methods because it makes relatively few 
assumptions about the problem that is being solved. Genetic 
algorithms are often described as a global search method 
that does not use gradient information. Thus, non-
differentiable functions as well as functions with multiple 
local optima represent classes of problems to which genetic 
algorithms might be applied. Genetic algorithms, as a weak 
method, are robust but very general. They are not 
guaranteed to find the global optimum solution to a 
problem, but they are generally good at finding "acceptably 
good" solutions to problems "acceptably quickly". Where 
specialized techniques exist for solving particular problems, 
they are likely to outperform genetic algorithms in both 
speed and accuracy of the final result. The basic mechanism 
of a genetic algorithm is so robust that, within fairly wide 
margins, parameter settings are not critical. 

Both genetic algorithms and neural nets are adaptive, learn, 
can deal with highly nonlinear models and noisy data and 
are robust, "weak" random search methods. They do not 
need gradient information or smooth functions. For 
practical purposes they appear to work best in combination: 
neural nets can be used as the prime modeling tool, with a 
genetic algorithm used to optimize the network parameters. 

2.3.1 Coding 

Before a genetic algorithm can be run, a suitable coding (or 
representation) for the problem must be devised. It is 
assumed that a potential solution to a problem may be 
represented as a set of parameters, such as the weight 
parameters that optimize a neural network. These 
parameters (known as genes) are joined together to form a 
string of values often referred to as a chromosome. For 
example, in order to maximize a function of three variables, 
each variable may be represented by a 10-bit binary 
number. The chromosome would therefore contain three 
genes, and consist of 30 binary digits. The explicit genetic 
structure represented by a particular chromosome is 
referred to as a genotype. The genotype contains the 
information required to construct an organism which is 
referred to as the phenotype. The phenotype is the physical 
expression of the genotype. 

For phenotypes that express numerical values, binary 
encoding will produce poor results. For example, the 8 bit 
binary encoding for the number 127 is 01111111, while 128 
is encoded as 10000000. A unit change in the number 
required all eight bits to change. Binary encoding is 
unsuitable for genetic expression because small changes in 
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numerical values require large changes in the genotype. To 
alleviate this problem, a new coding system, called Gray 
code after its inventor, was devised. In this system, a unit 
change in the number causes exactly one bit to change 
(Masters, 1993). 

2.3.2 Evaluation 

The evaluation function, or objective function, provides a 
measure of performance with respect to a particular set of 
parameters. The fitness function transforms that measure of 
performance into an allocation of reproductive 
opportunities. The evaluation of a string representing a set 
of parameters is independent of the evaluation of any other 
string. The fitness of that string, however, is always defined 
with respect to other members of the current population. In 
the genetic algorithm, fitness is defined by: fi / fA where fi is 
the evaluation associated with string i and fA is the average 
evaluation of all the strings in the population (Whitley, 
1993). 

For neural network weight optimization the objective 
function value can be expressed as the network error for the 
entire training set. The next step is to convert the objective 
function’s value to a raw fitness. Since the goal is to 
minimize the objective function, smaller function values 
should produce larger fitness values. Also, later calculations 
will be simplified if the fitness is never negative. The best 
conversion function can be somewhat problem dependent. 
However, the exponential function: f (v) = e-Kv generally has 
been found to be useful where the network error v ranges 
from 0-1 (Masters, 1993). 

The final evaluation step is converting the raw fitness 
values to a scaled fitness. If the raw fitness values were 
used to determine parent-selection possibilities, two 
problems could arise. One is that in the first few 
generations, one or a very few extremely superior 
individuals usually appear. Their fitness values are so high 
that they would be selected as parents too many times and 
their genetic material would quickly dominate the gene 
pool. Population diversity, which is crucial to genetic 
optimization, would be lost early on. The second problem is 
just the opposite. After many generations, clearly inferior 
individuals will have been weeded out. The population will 
consist of individuals who have relatively high raw fitness. 
The maximum fitness will usually be only slightly greater 
than the average. As a result, the fittest individuals will not 
be selected as parents in the high proportions necessary for 
continued rapid development (Masters, 1993). 

A popular fitness scaling method involves applying a linear 
transform to the raw fitness values such that the average 
scaled fitness remains unchanged, but the maximum scaled 
fitness becomes a fixed multiple of the average. However, 
the presence of just one super-fit individual (with a fitness 
ten times greater than any other, for example), can lead to 
over-compression. If the fitness scale is compressed so that 
the ratio of maximum to average is 2:1, then the rest of the 
population will have fitness values clustered closely about 
1. Although premature convergence has been prevented, it 
has been at the expense of effectively flattening out the 
fitness function. As mentioned above, if the fitness function 
is too flat, genetic drift will become a problem, so over-
compression may lead not just to slower performance, but 
also to drift away from the maximum. 

Fitness ranking is another commonly employed method, 
which overcomes the reliance on an extreme individual 
(Baker, 1985). Individuals are sorted in order of raw fitness, 
and then reproductive fitness values are assigned according 

to rank. This may be done linearly or exponentially. This 
gives a similar result to fitness scaling, in that the ratio of 
the maximum to average fitness is normalized to a 
particular value. However, it also ensures that the remapped 
fitness values of intermediate individuals are regularly 
spread out. Because of this, the effect of one or two extreme 
individuals will be negligible and over-compression ceases 
to be a problem. Several experiments have shown ranking 
to be superior to fitness scaling. 

2.3.3 Parent Selection 

It is helpful to view the execution of the genetic algorithm 
as a two stage process. It starts with the current population. 
Selection is applied to the current population to create an 
intermediate population. Then recombination and mutation 
operators are applied to the intermediate population to 
create the next population. The process of going from the 
current population to the next population constitutes one 
generation in the execution of a genetic algorithm. 
Goldberg (1989) refers to this basic implementation as a 
Simple Genetic Algorithm. 

In the first generation the current population is also the 
initial population. After calculating fi / fA for all the strings 
in the current population, selection is carried out. The 
probability that strings in the current population are copied 
(i.e. duplicated) and placed in the intermediate generation is 
in proportion to their fitness. 

There are a number of ways to do selection. The population 
might be viewed as mapping onto a roulette wheel, where 
each individual is represented by a space that proportionally 
corresponds to its fitness. By repeatedly spinning the 
roulette wheel, individuals are chosen using stochastic 
sampling with replacement to fill the intermediate 
population. 

A selection process that will more closely match the 
expected fitness values is remainder stochastic sampling. 
For each string i where fi / fA is greater than 1.0, the integer 
portion of this number indicates how many copies of that 
string are directly placed in the intermediate population. All 
strings (including those with fi / fA less than 1.0) then place 
additional copies in the intermediate population with a 
probability corresponding to the fractional portion of fi / fA. 
For example, a string with fi / fA = 1.36 places 1 copy in the 
intermediate population, and then receives a 0.36 chance of 
placing a second copy. A string with a fitness of fi / fA = 
0.54 has a 0.54 chance of placing one string in the 
intermediate population (Whitley, 1993). 

Remainder stochastic sampling is most efficiently 
implemented using a method known as stochastic universal 
sampling. In this method it can be assumed that the 
population is laid out in random order as in a pie graph, 
where each individual is assigned space on the pie graph in 
proportion to fitness. An outer roulette wheel is placed 
around the pie with N equally-spaced pointers. A single 
spin of the roulette wheel will simultaneously pick all N 
members of the intermediate population. The resulting 
selection is also unbiased (Baker, 1987). 

Implicit fitness remapping methods fill the mating pool 
without passing through the intermediate stage of 
remapping the fitness. In binary tournament selection, pairs 
of individuals are picked at random from the population. 
Whichever has the higher fitness is copied into a mating 
pool (and then both are replaced in the original population). 
This is repeated until the mating pool is full (Goldberg, 
1990). Larger tournaments may also be used, where the best 
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of n randomly chosen individuals is copied into the mating 
pool. Using larger tournaments has the effect of increasing 
the selection pressure, since below-average individuals are 
less likely to win a tournament and vice-versa. 

2.3.4 Reproduction 

After selection has been carried out the construction of the 
intermediate population is complete and recombination can 
occur by applying crossover to randomly paired strings. 
This operation can be viewed as creating the next 
population from the intermediate population. 
Recombination operators are applied in order to generate 
new samples in the search space. Crossover is not usually 
applied to all pairs of individuals selected for mating. A 
random choice is made, where the probability of crossover 
being applied is typically between 0.6 and 1.0. If crossover 
is not applied, offspring are produced simply by duplicating 
the parents. This gives each individual a chance of passing 
on its genes without the disruption of crossover (Whitley, 
1993). 

A binary string encoding would represent a possible 
solution to some parameter optimization problem. New 
sample points in the space are generated by recombining 
two parent strings. If the string 1101001100101101 and 
another binary string, yxyyxyxxyyyxyxxy, in which the 
values 0 and 1 are denoted by x and y, are recombined 
using a single randomly-chosen recombination point, 1-
point crossover occurs as follows: 

11010 \/ 01100101101 

yxyyx /\ yxxyyyxyxxy 

Swapping the fragments between the two parents produces 
the following offspring: 

11010yxxyyyxyxxy and yxyyx01100101101 

The problem with adding additional crossover points is that 
building blocks (hyper-plane partitions within search space 
that contain significant genetic information) are more likely 
to be disrupted. However, an advantage of having more 
crossover points is that the problem space may be searched 
more thoroughly. In 2-point crossover, chromosomes are 
regarded as loops formed by joining the ends together. To 
exchange a segment from one loop with that from another 
loop requires the selection of two cut points. 1-point 
crossover can be seen as 2-point crossover with one of the 
cut points fixed at the start of the string. Hence 2-point 
crossover performs the same task as 1-point crossover (i.e. 
exchanging a single segment), but is more general (Whitley, 
1993). 

Uniform crossover is radically different to 1-point 
crossover. Each gene in the offspring is created by copying 
the corresponding gene from one or the other parent, chosen 
according to a randomly generated crossover mask. Where 
there is a 1 in the crossover mask, the gene is copied from 
the first parent, and where there is a 0 in the mask, the gene 
is copied from the second parent (Syswerda, 1989). The 
process is repeated with the parents exchanged to produce 
the second offspring. A new crossover mask is randomly 
generated for each pair of parents. Offspring therefore 
contain a mixture of genes from each parent. The number of 
effective crossing points is not fixed, but will average L/2 
(where L is the chromosome length). 

Despite analytical results showing uniform crossover is in 
every case more disruptive than 2-point crossover for order-

3 schemata (hyper-plane partitions represented by 3 bit 
substrings) for all defining string lengths, several 
researchers have suggested that uniform crossover is a 
better recombination operator. Spears and DeJong (1991) 
speculate that, “With small populations, more disruptive 
crossover operators such as uniform or n-point (n >> 2) 
may yield better results because they help overcome the 
limited information capacity of smaller populations and the 
tendency for more homogeneity.” Uniform crossover 
appears to be more robust. Where two chromosomes are 
similar, the segments exchanged by 2-point crossover are 
likely to be identical, leading to offspring which are 
identical to their parents. This is less likely to happen with 
uniform crossover. 

2.3.5 Mutation 

The mutation operator is applied to each offspring after 
crossover. For each bit in the new population, a mutation 
can occur with some low probability pm. It is typical for the 
mutation rate to be within 0.1%-1% probability. Mutation is 
applied by flipping the bit value (Whitley, 1993). 

A genetic algorithm will always be subject to stochastic 
errors. One such problem is that of genetic drift. Even in the 
absence of any selection pressure, members of the 
population will still converge to some point in the solution 
space. If, by chance, a gene becomes predominant in the 
population, then it is just as likely to become more 
predominant in the next generation as it is to become less 
predominant. If an increase in predominance is sustained 
over several successive generations, and the population is 
finite, then a gene can spread to all members of the 
population. Once a gene has converged in this way, 
crossover cannot introduce new gene values. The rate of 
genetic drift can be reduced by increasing the mutation rate. 
However, if the mutation rate is too high, the search 
becomes effectively random. 

Mutation is traditionally seen as a "background" operator, 
responsible for introducing alleles or inadvertently lost 
gene values, preventing genetic drift and providing a small 
element of random search in the vicinity of the population 
when it has largely converged (Whitley, 1993). However, 
mutation becomes more productive, and crossover less 
productive, as the population converges. Despite its 
generally low probability of use, mutation is a very 
important operator. 

2.4 Neurogene Application 

The NeuroGene application is a program that runs a neural 
network and a genetic algorithm in conjunction. The neural 
network is used as the prime modeling tool and the genetic 
algorithm is used to optimize network parameters. The 
application permits the user to create any single or double 
hidden layer feedforward network architecture and load 
sample data for training the network. The network weights 
and architecture can be saved at any time along with 
input/output data scaling parameters. A new network may 
be created by loading this file at any time. If the network is 
created from previously saved weights, the application will 
only allow execution of input patterns. Training will not be 
allowed in execution mode but a set of input vectors may be 
loaded from a file and presented to the network’s inputs. 
The application will display the network’s response to each 
input vector. 

2.4.1 Create New Network Dialog 

This dialog permits the user to set sample data scaling 
parameters and choose among multilayer network 
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architectures. The number of neurons at each hidden layer 
and the type activation function (linear or logistic) for the 
output layer neurons can be set. The training and test 
sample data is loaded when a new network is created. The 
user can type in the path for the data file. Test data can be 
randomly extracted from the sample data or loaded 
explicitly. Testing data is never presented to the network 
during training but it is very important for the validation of 
the network. Without test samples, the user will have no 
measure of the network’s performance when presented with 
general real-world data. Test data validation is the only way 
to detect over-fitting issues that can occur during training. 

If a variable is used to train output neurons and the output 
neurons have an activation function with bounded range, 
target activations must certainly be limited to values that 
can comfortably be learned. That is why scaling is very 
important. Another reason for uniform scaling is to initially 
equalize the importance of variables. If one variable has an 
order of magnitude of 1,000,000 while another is about 
0.000001, it asking a lot of the learning algorithm to 
traverse such a range. The network’s life can be made a lot 
easier by giving it data scaled in such a way that all weights 
remain in small, predictable ranges. 

NeuroGene employs normalization based on the 
population’s mean and distribution values. The input data is 
standardized to a Z-score by subtracting its mean and 
dividing by standard deviation: 

σ
µ)( −= x

Z     (5) 

This removes all effects of offset and measurement scale. 
Simply scaling to a Z-score is not generally sufficient for 
output variables, as the scaled values would still exceed the 
activations limits implicit in the network’s model. 
NeuroGene will map from Z-score to neuron activation: 
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Figure 2: Create New Neural Network Dialog. 

The practical limits for this mapping can be set in the 
network creation dialog. When the network’s practical 
output range is set to 20% (of activation range 0-1) 
normalized variable practical limits Zmax and Zmin will be 
mapped to 0.6 (Amax) and 0.4 (Amin) respectively. Occasional 
outlier data falling outside those boundaries may be clipped 

at the network’s truncation limits which can also be set 
within the dialog. 

2.4.2 Main Application Screen 

The main application screen allows the user to set various 
training and genetic algorithm parameters, and provides 
several mating selection scheme choices. After a network 
has been created, training can be initiated and terminated by 
pressing the “Start/Stop Net Training” button. Training may 
also automatically end when the mean square error of the 
output dips below “Target Error” or the genetic algorithm 
has been running for more than “Max Generations”. During 
training, the current generation number, minimum network 
error and current population mean error values are 
presented in real-time at the display screen. At the end of a 
training session, all input patterns in the sample test set are 
presented to the network and the outputs are compared to 
sample target outputs for calculating the root mean square 
error in the output variable’s original un-scaled range. The 
root mean square error is a good measure of the network’s 
real-world performance. 

The “crossover rate” parameter defines the percentage of 
individuals chosen among the intermediate population as 
parents. The “uniform crossover %p” parameter defines the 
percentage of genes the first offspring will receive from one 
of its parents and the second offspring will receive from the 
other parent. This parameter is 50% for standard uniform 
crossover which can cause too much disruption of valuable 
genetic information. It must be noted that a low %p 
parameter should be accompanied with a low crossover rate 
to preserve the gene pool. 

The “Bits per Gene” parameter specifies the number of bits 
used to represent each network weight. A large value will 
dramatically increase the search space, which in turn will 
lead to longer training times or increased difficulty in 
convergence to a global minimum. A low value might not 
provide enough resolution for sampling the search space 
and cause the algorithm to miss narrow valleys in the 
objective function. It is a good idea to use a larger 
population size for a larger search space. The “Phenotype 
Range” parameter defines the maximum and minimum 
network weight values. The gray encoded genes are 
decoded and scaled to that range during execution. 

When remainder or universal stochastic sampling is chosen 
as the parent selection method, NeuroGene uses sigma 
truncation for scaling fitness values: 

)(' σcFFF avg −−=    (8) 

Favg is the mean fitness value and σ is the standard 
deviation. c is the sigma scaling factor and is set internally 
based on the fitness distribution. The user can also set a 
mapping constant K, which is used in error to fitness 
Gaussian mapping f (v) = e-Kv. 

When tournament selection is selected as the parent 
selection method, NeuroGene uses an adaptive tournament 
size based on the difference between the population’s mean 
fitness value and best fitness value. The difference is 
expressed in terms of multiples of the population’s current 
fitness standard deviation. Two fitness distribution values, 
corresponding to the minimum and maximum tournament 
sizes, can be set by the user. NeuroGene decreases selection 
pressure by reducing tournament size when the population 
contains super-fit individuals and increases selection 
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pressure when the population displays a flatter fitness 
distribution. 

If the “Use Elitist Gene Propagation” checkbox is selected, 
the fittest individual in the current population will be 
guaranteed to pass on its genes to the next generation. 
Applying this strategy may lead to premature convergence 
of the genetic algorithm. 

 

Figure 3: NeuroGene application main screen. 

When the “Use Linear Regression on Output Weights” 
checkbox is selected, output layer neuron weights will not 
be represented in the chromosome bit string. The genetic 
algorithm will only optimize hidden layer neuron weights. 
Neural networks are explicitly nonlinear. However, the 
operation of passing the output activations of one layer to 
the input of the next layer is linear. The input applied to an 
output layer neuron is a linear combination of the 
activations of the neurons in the previous layer. If that 
hidden layer’s activations are treated as independent 
variables, and if the known desired input to an output 
neuron is treated as a dependent variable, the problem 
becomes a linear regression problem. The output neuron 
weight vector will be optimal in that it minimizes the mean 
square error of the input to the output neuron. To solve with 
linear regression, the inverse transfer function of the 
neuron’s desired output must be computed for each training 
sample. Using linear regression in conjunction with a 
genetic algorithm is computationally very intensive but the 
algorithm is likely to converge in less generations. Linear 
regression interferes with the natural evolution of the 
population by producing dominant super-fit individuals 
early on, therefore in some cases it may lead to premature 
convergence. 

3. BASICS OF NA/K GEOTHERMOMETERS 

Chemical geothermometers are important tools that are 
used for prediction of equilibrium temperatures of 
geothermal systems. These geothermometers are analytical 
equations founded in empirical form, on the basis of data 
created by measured temperatures and chemical 
composition of fluids sampled in hot springs and wells. 

Na/K ratio of geothermal fluids (spring and well waters) is 
likely to provide a significant indication of subsurface 
temperatures. The Na/K ratio in natural hot water is 
controlled by a reversible temperature dependent rock-
water equilibrium involving potash-mica, potash-feldspar 
and albite. The reversible relationship appears only at 
temperatures above 200oC. The Na/K equilibrium adjusts 
after a temperature change relatively slowly, which enables 

useful information on conditions in the deep aquifer to be 
obtained from the values of Na/K in spring waters. 

Na/K geothermometers based on this phenomenon have 
evolved in the past 40 years and several experimentally 
derived equations have been proposed by Ellis and Mahon 
(1967), Ellis (1970), Truesdell (1976), Fournier, (1979), 
Tonani, (1980), Arnorsson, (1983) and Gigenbach, (1988). 
Those equations work well for reservoirs with temperatures 
in the 180-350oC range, but break down at lower 
temperatures, notably at less than 120oC. At these 
temperatures Na and K concentrations are influenced by 
other minerals, such as clays, and are not controlled only by 
feldspar ion-exchange reaction (Nicholson, 1993). 

Citing critics of Santoyo and Verma, (1993) and Verma and 
Santoyo, (1997) on validity and reliability of conventional 
Na/K geothermometers, Diaz et al, (2008) concluded that 
the effects of primary error sources for conventional 
geothermometers might be as follows: (1) analytical errors 
in chemical analysis, (2) errors in regression coefficients of 
developed equations, (3) errors derived from incorrect use 
of solute concentration units for geothermometers, (4) 
correct geochemical conditions, temperature range and 
concentration of same equations, (5) lack of well 
temperatures and rock-fluid interaction experimental 
temperatures for low and intermediate temperature ranges, 
(6) limited number of data collected and outliers among 
them. Therefore, Santoyo and Verma, (1993) and Verma 
and Santoyo, (1997) examined Na/K geothermometer 
through statistical theory of error propagation, and on this 
basis proposed new Na/K geothermometers. 

4. APPLICATIONS OF NEW ANN MODEL FOR 
NA/K GEOTHERMOMETERS 

The ANN computational technique has been perceived as 
an effective tool; (1) for relatively simple solutions to 
complex numerical problems, (2) for substituting 
experimental works that are difficult to realize. 

Bayram (2001) and Can (2002) proposed new 
geothermometer equations of Na/K through implementation 
of an ANN. Bayram (2001) proposed a simple ANN model 
using a non-linear logistic activation function, which was 
trained with 6 known geothermometer equations. The ANN 
was trained with synthetic data of Na-K as input and 
reservoir temperatures that were inferred from the results of 
6 known geothermometers as output. On the other hand, 
Can (2002) developed a new Na/K geothermometer 
empirically on the basis of 39 data samples collected from 
various geothermal fields around the world. The simple 
ANN architecture was characterized by input, hidden and 
output layers, each containing one neuron. Training was 
conducted with the back-propagation algorithm, again, 
using a non-linear logistic activation function. 

Recently, Diaz et al., (2008) proposed 3 new Na/K 
geothermometers developed using ANNs and ordinary 
linear regression. The obtained results appear to 
systematically provide better and reliable estimations of 
deep equilibrium temperatures than the equations 
previously reported in the geothermal literature. They 
applied the ANN method in obtaining two geothermometers 
and the linear regression approach for the third one. The 
first geothermometer was obtained by training the ANN 
architecture, consisting of a single hidden layer neuron, 
with real data of reservoir temperatures collected from 
different fields around the world as input, and Na-K as 
output. Training was performed with the back-propagation 
algorithm using a linear activation function taking 
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advantage of the linear nature of Na/K geothermometer 
[(1/T) = A log(Na/K) + B]. In the second geothermometer 
proposed by Diaz-Gonzalez et al., (2008), training was also 
conducted by back-propagation of errors but a hyperbolic 
tangent activation function was used.  

Considering the limitations and uncertainties of 
conventional Na/K geothermometers, in this study several 
models have been developed through training ANNs with 
data created from 324 data samples of measured 
temperatures and chemical compositions collected from 
geothermal wells all around the world. Data collected and 
examined in the Diaz et al., (2008) study was composed of 
a training data set of 212 and a test data set of 112. In our 
study we have also used these two data sets as training and 
test data sets, and on the other hand, we have also utilized 
another data set of 39 samples collected by Can, (2002) as 
test data for our models. 

Using our ANN software the following models were 
created in two groups, and in this first group of models the 
input is log(Na/K) and the output is 1/T: 

• Model#1: Hidden layer (7 neurons) => logistic 
activation; Output layer => logistic activation 
(output activation range: 0.4-0.6). 

• Model#2: Hidden layer (3 neurons) => logistic 
activation; Output layer => linear activation 
(output activation range: 0.3-0.6). 

• Model 2a: Hidden layer (3 neurons) => logistic 
activation; Output layer => linear activation, 
linear regression applied for solving output 
weights (output activation range: 0.4–0.6). 

• Model#3: Hidden layer (3 neurons) => linear 
activation; Output layer => linear activation 
(output activation range: 0.4–0.6). 

In this second group of models the inverse solution is used, 
and here the input is temperature (1/T) and the output is 
log(Na/K). 

• Model#4: Hidden layer (3 neurons) => logistic 
activation; Output layer => logistic activation 
(output activation range: 0.3–0.7). 

• Model#5: Hidden layer (3 neurons) => logistic 
activation; Output layer => linear activation 
(output activation range: 0.2-0.8). 

• Model#6: Hidden layer (3 neurons) => linear 
activation; Output layer => linear activation 
(output activation range: 0.1–0.9). 

As can be seen above, both logistic and linear activation 
functions have been utilized with various output activation 
ranges and architectures. 

Root Mean Square Error (RMSE) values were calculated by 
comparing the output of the network when presented with 
test input samples against expected results. RMSE values 
obtained for these models are given in Table 1.  

Table 1: RMSE Values for Different ANN Models. 

Models RMSE Values 

Model#1 0.000106  

Model#2 0.000098  

Model#3 0.000096 

Model#4 0.100533 

Model#5 0.096819 

Model#6 0.086503 

The results for the first model are shown in Figure 4. As 
seen in Figure 4, Diaz-Gonzalez et al. (2008) and Verma 
and Santoyo (1997) geothermometers were good at 
representing the lower and upper limits of scattered data 
(n=112), respectively. Our 3 models remained in between 
and seem to represent the whole data. Diaz et al. (2008)’s 
third geothermometer, obtained by regression analysis, was 
very close to our models.  
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Figure 4: Comparative results of our first three ANN 
models with Diaz-Gonzalez et al. (2008) data set. 

Similar results have been obtained with inverse models as 
seen in Figure 5. These models also seem to represent the 
whole scattered data better. 
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Figure 5: Comparative results of 3 inverse ANN models 
with Diaz-Gonzalez et al. (2008) data set. 

As seen in Figure 6 all results for our ANN models and 
other models were pretty close to each other when 
presented with test data (n=39) from Can (2002). The best 
geothermometer with results close to measured 
temperatures was the one of Verma and Santoyo (1997). It 
appears that all geothermometers based on ANN models 
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were better at matching measured temperatures in the 180-
3500C range. In the lower range <160oC, Verma and 
Santoyo (1997) geothermometer performed better.  
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Figure 6: Comparative results of our 6 models and 
others models with Can (2002) data set. 

conducted on the resulting model solutions. This study was 
based on the calculation of percentage of deviation equation 
proposed by Verma and Santoyo (1997) as follows:  

100
(

% ⎥
⎦

⎤
⎢
⎣

⎡ −=
m

mc

t

tt
DEV    (9) 

Where, tc and tm are calculated by geothermometers and 
measured temperatures in wells, respectively, and %DEV is 
percentage of deviation.  

%DEV is used as a statistical parameter to evaluate the 
exactness of calculated geothermometer temperatures, 
assuming that the measured temperatures are real downhole 
temperatures of wells. Results obtained in calculation of 
%DEV for the first 3 models are shown in Figure 7. As can 
be seen in Figure 7, %DEV was within 10% like other 
geothermometers. On the other hand, %DEV was unusually 
high below 160oC. In their work, Diaz et al., (2008) have 
pointed out the same problem. They have attributed this 
behavior to insufficient data in that range. We have also 
observed the same behavior for our models, as seen in 
Figure 7. 

On the other hand, as seen in Figure 8 all ANN based 
geothermometers seem to underestimate bottomhole 
temperatures in that range (<160oC) when the Can (2002) 
data set was utilized. There is a remarkable difference 
between two data sets below 160oC. For this range, while 
log(Na/K) values range from 0.8 to 1.4 in the Diaz et al., 
(2008) data set, they are found to range between 1.4 and 2.2 
in the Can (2002) data set. This may have been born from 
the fact that very few samples below 160oC exist in the Can 
(2002) data set. On the other hand, there might be a 
difference between chemical compositional characteristics 
of samples collected. Moreover, there may be outliers 
within the Can (2002) data set.  

5. CONCLUDING REMARKS 

• New ANN software utilizing a complex genetic 
algorithm was developed.  

• Several ANN models that successfully represent the 
Na/K geothermometer were created. 

• More reliable data is needed for a better 
representation of resources below 160oC. 
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Figure 7: Comparative results of %DEV for the first 4 
ANN models with Diaz-Gonzalez et al, (2008) 
data set. 
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Figure 8: Comparative results of %DEV for the first 3 
ANN models with Can, (2002) data set. 
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