

Ca and CO₂ Transport and Scaling in the Hijiori HDR System, Japan

Norio Yanagisawa

AIST Tsukuba Central 7, Higashi 1-1-1, Tsukuba, Ibaraki, Japan

n-yanagisawa@aist.go.jp

Keywords: HDR, EGS, CO₂ storage, calcium, calcite, anhydrite, scale transpotation

ABSTRACT

Carbon dioxide (CO₂) and calcium (Ca) transport in underground water or geothermal reservoirs is an important topic in water-rock interactions, especially for estimating effects on CO₂ storage or scaling in engineering geothermal systems (EGS) or hot dry rock (HDR) systems.

In the Hijiori HDR test field, dissolved anhydrite near the injection well is the primary source of calcium that leads to calcite precipitation in pipelines. HDR-2 has a lower temperature, and about 2.7 tons of calcite precipitated in the pipeline and well during the 3 months of CO₂ circulation. HDR-3 has a higher temperature and about 0.6 tons of calcite precipitated in the deep well.

The transport of CO₂ in HDR system including river water and atmosphere was estimated. From river water, production well and atmosphere, about 6 tons of CO₂ were injected over a 3 month period. Of the CO₂ that reached HDR-2, 68% was precipitated as calcite and 3% CO₂ was discharged as gas by the atmosphere. In HDR-3, 20% CO₂ precipitated as calcite and 30% CO₂ was discharged as gas to the atmosphere.

1. INTRODUCTION

Recently, CO₂ geological storage has become an important strategy for decreasing the release of CO₂, a greenhouse gas, to the atmosphere. It is important to estimate the effect of CO₂ geological storage, including transport rates and reactions of CO₂ with Ca and other elements.

One method of geological storage is to inject CO₂ into high temperature (about 200°C) granitic rock. Calcite (CaCO₃) tends to precipitate at high temperature, so injected CO₂ will likely change to calcite early (Ueda et al., 2005). CO₂ injection tests are currently ongoing at the Ogachi site, northeast of Japan, into high temperature geothermal fields (Kaijeda et al., 2009).

Until 2002, the Ogachi site was used for research and development of Hot Dry Rock (HDR) systems, after which time the site was used to test CO₂ injection. The CO₂ injection technology is similar to a HDR system. Recently the idea of CO₂-EGS was described by Pruess (2006) where understanding CO₂ transport and reaction processes in the reservoir becomes important.

In Japan, the other HDR project was carried out at Hijiori, Yamagata. At the Hijiori site a long term circulation test was carried out until 2002 where calcite and anhydrite scaling was observed in pipelines and deep wells (Yanagisawa et al., 2008).

Mineral precipitation was a result of Ca and CO₂ transport within the HDR reservoir circulation system. In order to

consider the possibility of CO₂ storage in a HDR circulation system, it is important to estimate the behavior of Ca and CO₂ to prevent scaling.

2. HIJIORI HDR SITE

2.1 Circulation and Fluid Chemistry

The Hijiori HDR field test was created through a series of hydraulic stimulation experiments and is located in Yamagata Prefecture of Japan. A heating reservoir was created at 2000 m depth, after which river water was injected fractured reservoir, heated in reservoir and returned to installations on the ground surface. The circulation system is shown in figure 1.

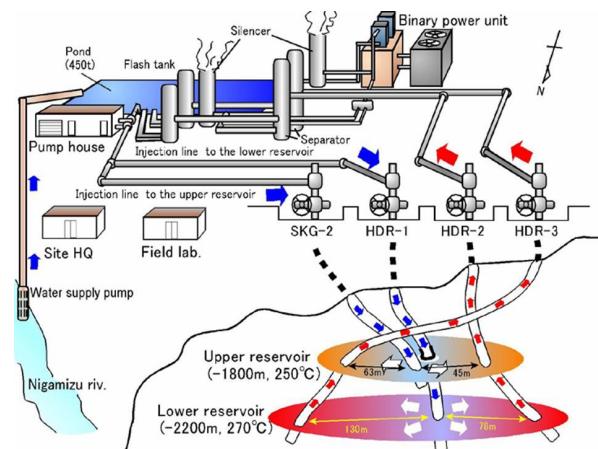


Figure 1: Schematic diagram of circulation system at Hijiori HDR site

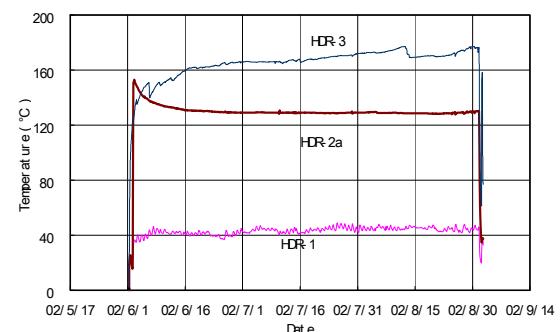


Figure 2: Wellhead temperature of injection and production well

At the Hijiori site, a long term circulation test was carried out from November 2000 to August 2002. During circulation, the injection water ratio between SKG-2 and HDR-1 was changed in December 2001 and April 2002. Also, pipeline scale was removed in May 2002 before conducting a binary power generation test.

From June 2002 to August 2002, fluid circulation was carried out along with a binary power generation test. During this 3 month period, fluid chemistry, injection and production temperatures were almost constant (figure 2). Table 1 shows the mean chemical composition of fluids in river water, injection water (HDR-1) and production water (HDR-2 and HDR-3).

Table 1. Total Water and Vapor Mass During 3 Month Binary Power Plant Test.

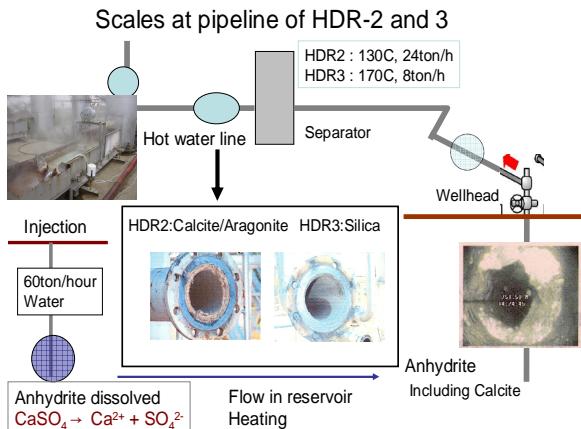
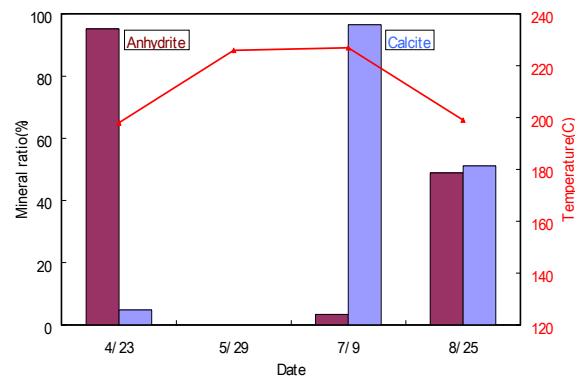

	Water mass	Vapor mass
HDR- 1	129000	
HDR- 2	53600	1930
HDR- 3	16500	1350
River water	58900	

Table 2. Average Fluid Chemical Composition of River Water, HDR-1, HDR-2 and HDR-3 During 3 Month Test.


	River water	HDR-1	HDR-2	HDR-3
pH	6.43	7.74	8.7	9.03
Na	6.0	118.6	166.4	373.9
K	1.0	17.0	26.8	54.6
Ca	4.7	64.7	145.8	8.3
Mg	5.7	4.5	3.4	0.1
SiO ₂	5.8	111.4	164.5	370.5
Cl	5.4	96.2	119.4	391.4
SO ₄	13.2	246.6	563.6	202.1
HCO ₃	53.0	64.8	32.7	125.0

2.2 Scaling in HDR System

Scaling at surface installations and in deep wells (HDR-2 and HDR-3) are shown in figure 3. Anhydrite deposited in the deeper parts of the production wells, while silica and calcium carbonate precipitated at the surface downstream of the wellhead. Amounts of precipitation depended on the temperature and chemical composition of the produced fluid. In HDR-2, which is closer to the injection well, most of the scale was calcium carbonate; in HDR-3, which is further away from the injection well, there was slight precipitation of amorphous silica. As fluid circulation progressed and temperature decreased, scaling in the flow line of well HDR-2 changed from amorphous silica to calcium carbonate.

Figure 3: Scale sampling site and photo

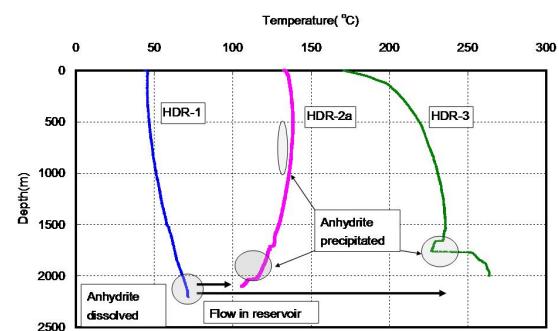


Figure 4: Temperature at 1750 m depth (red line) and the ratio of anhydrite to calcite in deep well scale at HDR-3

Figure 4 shows the temperature in HDR-3 at 1750 m depth and the ratio of anhydrite to calcite of the deep well scale. During a 1 month circulation interruption, temperature increased from 200 to 230°C, after which calcite mainly precipitated in the deep well. With continued circulation, temperature decreased again and the anhydrite ratio increased. At HDR-2, the anhydrite precipitation ratio is above 90% during the 3 month circulation test.

Figure 5 shows the depth temperature profile. As water was injected anhydrite dissolved around the injection well, the water heated as it flowed through the reservoir, and anhydrite precipitated due to lower solubility at higher temperatures.

As fluid reaches the production well, scaling depends on temperature. In HDR-2, maximum temperature was 130°C and Ca remained in solution. On ground pipeline of HDR-2, Ca reacts with CO₂ and calcite precipitated. In contrast, in HDR-3, with a maximum temperature was 260°C, led Ca to precipitate as anhydrite and calcite in the reservoir and deep well and not in the surface pipeline.

Figure 5: Temperature profiles in the Hijiori wells measured in July 2002

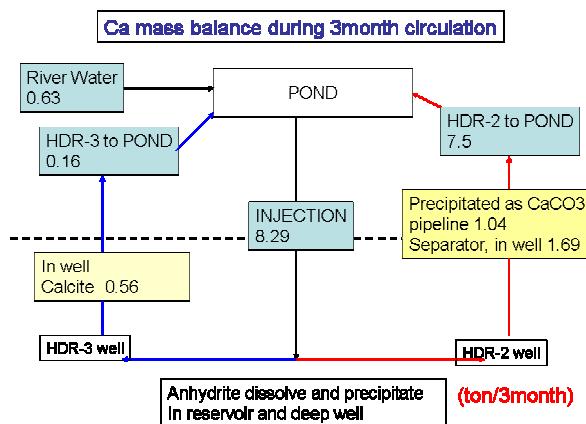
3. MASS BALANCE IN HDR SYSTEM

3.1 Ca Transportation

Table 3 shows the thickness of scale and chemical composition in pipeline of HDR-2. From this thickness and pipeline length, the weight of calcium in calcite scale in HDR-2 was estimated at about 1.04 ton. From the difference of SO₄ and Ca between injection well and

production well, we can estimate the mass of calcium for calcite precipitation in circulation system.

Table 3. Chemical Ratio and Thickness of Several Sampling Points in HDR-2 Well.


	Chemical ratio (%))			Thickness
	CaO	SO ₄	CO ₂	
Wellbore	40.6	53.8	4.0	
Swivel Joint	54.94	1.25	42.30	45mm
Two phase line	55.25	1.38	42.50	40-60mm
Hot water line	52.99	2.75	40.30	20mm
Sampling pool	51.2	3.7	38.6	

In the case of HDR-2 the difference of calcium concentration between HDR-1 and HDR-2 is 81 ppm and that of SO₄ is 317 ppm. From this, about 51 ppm of calcium precipitated as calcite and the total mass of calcium is estimated to be 2.7 ton from total production fluid, or 53,600 ton during the 3 month test period.

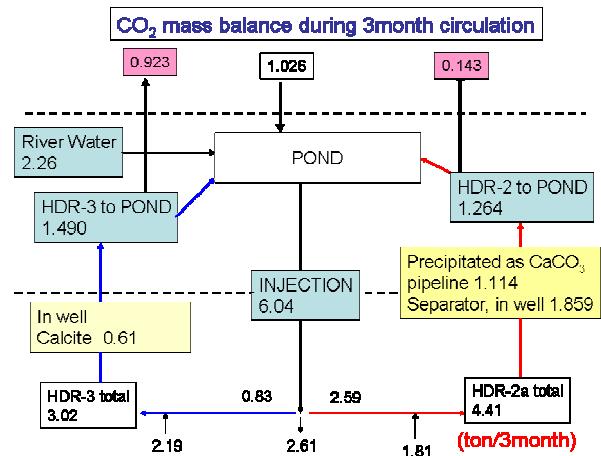
By using same method, about 0.56 tons of calcium were precipitated as mostly calcite in the production well HDR-3, which is a higher temperature than HDR-2.

And total mass of calcium in fluid is calculated from concentration and total flow mass.

Figure 6 shows the diagram of calcium mass balance (in tons) with transportation during the 3 month circulation. From the pond, 8.29 tons of calcium were injected into the reservoir. Calcium concentration increased by dissolving anhydrite and decreased via precipitation in the reservoir and deep wells. After anhydrite precipitated, the total mass calcium in production fluid is about 2.66 ton to injection fluid. And in HDR-2, total calcium mass for calcite and fluid is 10.23 ton due to lower temperature. In contrast, only 0.72 ton in higher temperature HDR-3.

Figure 6: Calcium transportation mass (in tons) during 3 month circulation test

3.2 CO₂ Transportation

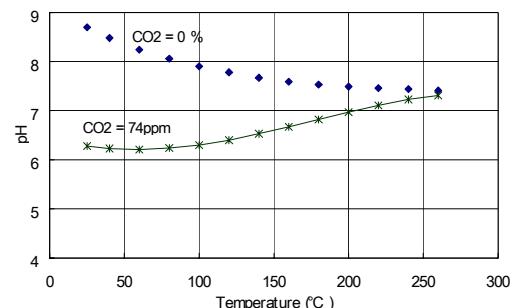

The mass transport of CO₂ in HDR systems including river water and atmosphere was estimated (results are shown in figure 7).

Firstly, CO₂ concentration in production vapor gas was measured at 75 ppm in HDR-2 and 682 ppm in HDR-3. From this value and total vapor mass (Table 1), about .143 ton and 0.923 ton CO₂ gas mass was released to atmosphere.

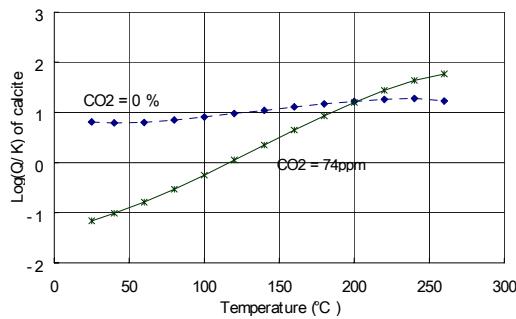
In terms of fluid chemistry, the mass balance of HCO₃ conversion to CO₂ were calculated. About 6 ton CO₂ were injected via the fluid from the pond. But total dissolved CO₂ in fluids from HDR-2, HDR-3 and river water was about 5 tons. Then the pond water is estimated to absorb about 1 ton CO₂ from atmosphere.

Secondly, injected CO₂ dispersed in reservoir and to HDR-2 and HDR-3. Also, CO₂ gas in reservoir added to fluid to production well. In total, about 1.4 tons CO₂ was added from the reservoir. After fluid flow through the reservoir, 4.41 tons CO₂ reached HDR-2 and 3.02 tons CO₂ reached HDR-3 during the 3 month circulation test.

Of the CO₂ that reached HDR-2, 68% CO₂ precipitated as calcite and 3% CO₂ was discharged as gas to the atmosphere. In HDR-3, 20% CO₂ precipitated as calcite and 30% CO₂ was discharged as gas to the atmosphere.


Figure 7: Carbon dioxide transportation mass balance (in tons) during 3 month circulation test

4. DISCUSSION


4.1 CO₂ Release and Calcite

In the HDR-2 line, about 2.97 tons of CO₂ precipitated as calcite that is about 20 times the mass that was released to atmosphere. This means the fluid chemistry and temperature of HDR-2 is favorable to calcite precipitation.

The equilibrium of calcite and CO₂ gas was calculated using SOLVEQ-CHILLER (Reed, 1982). The relation between temperature and pH is shown in figure 8. Before CO₂ release, pH is about 6.5 at temperatures lower than 130°C in pipelines of HDR-2. With CO₂ release, pH increased to 7.7 at temperatures of 130°C. After decreasing temperature, pH increased to 8.7, which is higher than injection waters.

Figure 8: Change of pH profile of HDR-2 by CO₂ release

Figure 9: Change of Log (Q/K) of calcite of HDR-2 by CO₂ release

And the relation between temperature and mineral saturation states, log (Q/K), of calcite is shown in figure 9. Before CO₂ release, log (Q/K) of calcite is 0 at 120°C and almost at equilibrium between the fluid and calcite. After release of CO₂ gas, log (Q/K) increases to 1. This means about 10 times super-saturation of calcite for fluid in HDR-2 and calcite will easily precipitate.

CO₂ gas affects the log (Q/K) of calcite and pH in production well, and calcium concentration is important for calcite precipitation. In HDR-3, CO₂ gas concentration is 682 ppm, higher than that of HDR-2. In HDR-3, the pH and log (Q/K) diagram is similar to HDR-2 but calcite did not precipitate in the surface pipeline due to low calcium concentration. In HDR-3, calcite appeared in the deep well.

The log (Q/K) of calcite with dissolved CO₂ is higher than after CO₂ release at temperatures higher than 200°C. As temperatures at the deep well of HDR-3 is around 250°C, calcite precipitated before CO₂ release. This suggests that CO₂ will precipitate at high temperatures and high Ca concentrations from anhydrite dissolution.

4.2 Virtual CO₂ Injection to Hijiori HDR Site

As mentioned above, calcite precipitation in geothermal system shows the possibility of CO₂ storage in high temperature reservoirs.

In the case of the Hijiori HDR site, injection fluid has potential to dissolve CO₂ gas. We then considered the virtual CO₂ injection at Hijiori site and calculate pH and log (Q/K) of calcite with 0, 0.01, 0.1 and 1% dissolved CO₂ in the HDR-1 injection fluid.

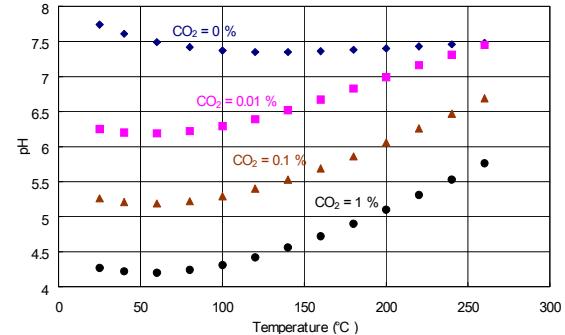
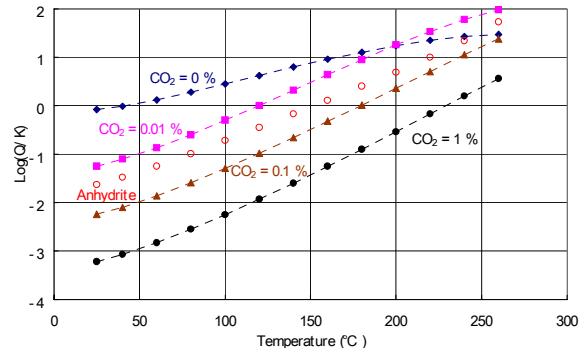

Figure 10 shows the dependency of virtual storage CO₂ ratio to pH of HDR-1 fluid. After 0.01% CO₂ added, pH decreased from 7.7 to 6.2 at 25°C. But at about 260°C, pH remained constant at 7.5, for both concentrations of 0.01% and 0% CO₂.

Figure 11 shows log (Q/K) of calcite. In the case of the original HDR-1 fluid, log (Q/K) was greater than 0. But with 0.01% CO₂ added and log (Q/K) = 0, the temperature is about 120°C. At log (Q/K) = 0, the temperature was observed to increase with increasing CO₂ concentrations. At temperatures over 200°C, log (Q/K) shows higher value with 0.01% CO₂ than original fluid. This shows the potential of CO₂ storage as calcite under 64 ppm of calcium fluid at HDR-1 and especially over 200°C 0.01% CO₂ injection is desirable for storage.


Actual river water will be used for CO₂ injection, therefore figure 12 shows log (Q/K) of calcite in the case of river water. The temperature at log (Q/K) = 0 is higher than the

case of HDR-1 and at 180°C, log (Q/K) reach 0 at 0.01% CO₂ case. And at over 140°C, log (Q/K) shows higher value with 0.01% CO₂ than original fluid.

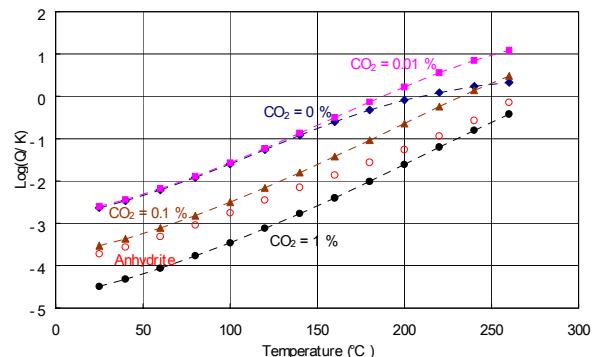

Then, from the equilibrium of calcite in the case of CO₂ injection to HDR system, 0.01% CO₂ injection is desirable for storage because log (Q/K) is higher than without CO₂ at high temperature conditions.

Figure 10: Temperature and virtual storage CO₂ ratio dependence of pH in the case of HDR-1

Figure 11: Temperature and virtual storage CO₂ ratio dependence of log (Q/K) in the case of HDR-1

Figure 12: Temperature and virtual storage CO₂ ratio dependence of log (Q/K) in the case of river water

CONCLUSIONS

- 1) At the Hijiori HDR test field, anhydrite dissolution near the injection well is the primary source of calcium for calcite precipitation in pipelines. In lower temperature HDR-2, about 2.7 tons of calcium precipitated as calcite in the pipeline and well during the 3 month circulation test. In higher temperature HDR-3, about 0.6 ton calcium precipitated as calcite in the deep well.

2) The transport of CO₂ including river water and atmosphere was estimated. From river water, production well and atmosphere, a total of about 6 tons CO₂ was injected over 3 months. Of the CO₂ that reached HDR-2, about 68% CO₂ precipitated as calcite and 3% CO₂ was discharged as gas to the atmosphere. In HDR-3, about 20% CO₂ precipitated as calcite and 30% CO₂ was discharged as gas to the atmosphere.

3) Virtual CO₂ injection scenarios at the Hijiori HDR system were considered. The system has the possibility for CO₂ storage and 0.01% CO₂ injection is desirable for storage because log (Q/K) is higher than without CO₂ at high temperature conditions.

REFERENCES

Kaieda, H., Ueda, A. Wakahama, H., Mito, S., Sugiyama, K., Ozawa, A., Kuroda, Y., Sato, H., Yajima, T., Kato, K., Kubota, K. and Kaji, Y.: Field Experiments for Studying on CO₂ Sequestration in Solid Minerals at the Ogachi HDR Geothermal Site, Japan, *Proceedings*,

34th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, CA (2009).

Pruess, K.: Enhanced geothermal systems (EGS) using CO₂ as working fluid – A novel approach for generating renewable energy with simultaneous sequestration of carbon, *Geothermics*, **35**, (2006) 351-367. <Reference Style>

Reed, M.H.: Calculation of multicomponent chemical equilibria and reaction process in systems involving minerals, gasses and an aqueous phase, *Geochemica Cosmochimica Acta*, **46**, (1982) 513-528

Ueda, A., Kato, K., Ohsumi, T., Yajima, T., Kaieda, H., Ito, H., Savage, D., Metcalfe, R. and Takase, H.: Experimental and Theoretical Studies on CO₂ Sequestration into Geothermal Fields, *Proceedings of World Geothermal Congress 2005*, (2005) 213,1-5

Yanagisawa, N., Matsunaga, I., Sugita, H., Sato, M. and Okabe, T.: Temperature dependent scale precipitation in the Hijiori Hot Dry Rock system., *Geothermics*, **37**, (2008), 1-18