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ABSTRACT  

Thermal injection backflow tests are the best method of 
determining heat transport parameters in geothermal and 
sensible energy storage reservoirs. The tracer injection 
backflow tests, on the other hand, are important tools for 
characterizing the nearby region of potential injectors. 

Developing models of design and interpretation for both 
type of tests is of great importance for two reasons. First, the 
models help designing of these tests appropriately to recover 
maximum amount of information with minimum cost.  
Second, reliable estimates of parameters are of vital 
importance in optimal reservoir management specifically 
designing and operating reinjection operations.  

This work presents, separate new analytical models of 
thermal and tracer injection backflow tests in geothermal 
reservoirs. Then, a parameter sensitivity analysis is applied 
to each model to identify the best combination of decision 
variables. Each combination of the decision variables are 
referred to as the design alternatives. The decision variables 
for thermal and tracer tests are,  the amount of tracer to be 
injected, duration of injection and backflow periods and 
hence the distance of investigation, ratio of the injection to 
backflow rates, sampling domain in time (sampling interval) 
and frequency of sampling and finally the temperature of the 
injected water.  

As a result, as interpretation tools, the new models provide 
in situ and hence, the most reliable estimates of transport 
parameters. As design tools, they help fixing the most 
desirable combination of the decision variables for the 
injection and backflow thermal and tracer tests. A parameter 
sensitivity analysis is employed to carry out the designing of 
both types of test. We have found that transverse tracer 
Peclet number and transverse thermal Peclet number are the 
most influential parameters. In addition, the injection to 
backflow ratio is effective to a lesser degree than the 
transverse Peclet number. The possible values of these two 
parameters set the best combination of decision variables. 

Finally note that, the results of this work are directly 
applicable to assessing efficiency of sensible energy storage 
in aquifers as well. 

1. INTRODUCTION  

Reinjection may be the safest and most convenient method 
of disposal for heat-depleted geothermal brines. In addition, 
the pressure support is an important benefit of reinjection. 
However, premature breakthrough and injection induced 
cooling is a major concern associated with injection into 
geothermal reservoirs (Stefansson, 1997; Axelsson et al., 
2001). 

In a reinjection scheme, one would like to site the reinjection 
wells as far away from producing zones and fractures as they 
may cause the reinjected colder water to move rapidly into 
the production zones causing an undesired thermal 
drawdown.  However, as the distance from the production 
zones increases the likelihood of recharging the reservoir 
(and maintaining its pressure) decreases. A reinjection 
scheme must reconcile two contrasting requirements on the 
distance between the reinjection and production wells, 
namely the adequate pressure support from reinjection 
demands decreasing distance between wells, and the danger 
of thermal drawdown demands increasing it.   

Thus, the design of reinjection scheme reduces to 
determining a safe distance between injection and 
production wells based on our understanding of the flow and 
heat transport characteristics of the reservoir being 
considered. The identification of major flow paths and 
estimation of major flow and heat transport parameters 
accurately, and hence, the design of reinjection schemes, 
continue to be major challenges for researchers and field 
operators (Stefansson, 1997, Axelsson et al., 2001). 

Kocabas (2004) has proposed that a joint the interwell tracer 
test with a thermal injection backflow test for estimating 
both hydrodynamic and thermal parameters, fast, reliable 
and in situ. The design of a thermal injection backflow test  
to estimate the heat transfer parameters with the least 
uncertainty is an important issue and should be explored in 
depth. 

Estimation of parameter values from experimental data 
involves employment of a mathematical model through an 
inverse problem application.  The most commonly employed 
method in inverse problems is the nonlinear regression 
analysis (Dogru et.al. 1977). In a regression analysis, usually 
one is interested in both the best estimate value of a 
parameter and how reliable that estimated value is.  
Furthermore, one would like to improve the reliability of the 
estimated parameters through a better design of laboratory 
and/or field experiments and sampling. The parameter 
sensitivity analysis has been the primary tool used to 
investigate abovementioned aspects of parameter estimation 
(Beck & Arnold 1977). 

The sensitivity analysis is defined as the study of a system’s 
responses to various disturbances whose  central figure is the 
sensitivity coefficient (McElwee & Yukler 1978). The 
sensitivity coefficient is a partial derivative of the dependent 
variable of the model with respect to a parameter, and hence, 
represents the magnitude of the change in the dependent 
variable due to perturbations in the values of the parameters. 
For instance, the dimensionless temperature designated by 
TD, is the dependent variable of the heat transport in porous 
media during nonisothermal injections.  The dimensionless 
temperature is a function of dimensionless time, tD, 
dimensionless distance, xD, and a parameter vector α 
representing the physical processes included in the model.  
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Hence, the normalized sensitivity coefficient for a heat 
transport in fracture/ matrix configuration is defined as: 
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Note that the normalized sensitivity coefficient is 
independent of the dimension and unit of a particular 
parameter (Jiao &Rushton 1995), thus allows one to 
compare the sensitivity to different parameters visually 
(McElwee 1987).    

The functions of sensitivity coefficients in parameter 
estimation (Beck & Arnold 1977) are:  (1) the uncertainty 
involved in the estimated values of the parameters is 
quantified via the sensitivity coefficients, (2) they function 
as the key figure of identifiability problem, (3) they allow 
optimal design of experiments where parameter estimation 
will be carried out.   

The effect of sensitivity coefficient on the uncertainty of 
estimate will appear in the calculated confidence interval 
and variance. For a given confidence level, the width of the 
confidence interval is a measure of the uncertainty in the 
estimated parameter value (Knopman & Voss 1987).  The 
larger the interval width the lesser the model sensitivity to 
that parameter, and hence, the more uncertainty in the 
estimated parameter value. 

The identifiability is described as that the parameters can be 
better estimated if the sensitivity coefficients over the range 
of observations are linearly independent (Beck & Arnold 
1977). The estimated parameter values will be nonunique if 
the sensitivity coefficients over the range of measurements 
are correlated or linearly dependent. Therefore, any 
combinations of parameters satisfying the linear dependency 
relation will equally produce the same observed profile.  
Hence, for models with multiple parameters, the normalized 
sensitivity coefficients should be plotted and examined for 
presence of a linear dependence. The linear dependence can 
be approximately verified by graphically adding the 
normalized sensitivities to obtain a zero for each observation 
point. 

In an inverse problem, the uncertainty of each parameter 
estimate is related to the sensitivity of the model to that 
parameter and the measurement errors. First of all, if the 
variance in random error in observations is sufficiently 
large, then sensitivities can be obscured by that noise and the 
estimated parameters will have limited value. Considering 
reasonable measurement errors, the parameters can be best 
estimated if the absolute values of sensitivity coefficients are 
as large as possible and changing with time as well. 
Therefore, it makes little sense to try to determine a 
parameter if model sensitivity is low (Knopman & Voss 
1987).  In addition, if the model sensitivity reaches to 
constant value additional measurements will contribute little 
to reduce the uncertainty in the parameter estimate.   

Owing to above facts, that information about a physical 
parameter can be most accurately obtained at points in space 
and time with high sensitivity to model parameters 
(McElwee, 1987.  Therefore, sensitivity coefficients are used 
to determine those parts of spatial and temporal domains 
where model sensitivity to a parameter is highest.  In other 
words, sensitivity coefficients are used to identify the most 
informative observation interval in time and observation 
point in space to refine the estimates of parameters.  In 

addition, specifying the values of decision variables which 
lead to high sensitivity coefficients is another important 
objective. Achieving these two objectives are considered as 
the optimal design of experiments. 

The optimal design and interpretation of a thermal injection 
backflow test through a novel mathematical model and its 
parametric sensitivity analysis form the main objective of 
this work and will be detailed below. 

2. INJECTION BACKFLOW TESTS 
During a thermal injection backflow testing a tracer may 
also be used investigate hydrodynamic characteristics of 
nearby area of the test well.  A low temperature water is 
used as the tracer carrier as well as the driving fluid.  First, a 
tracer slug is introduced into the water injected into the 
reservoir. This is followed by a continuous injection of low 
temperature water.  When the predetermined injection time 
is reached the injection well is backflowed at the same rate 
or a different flow rate.  During the backflow period, both 
feed-zone temperatures and the tracer concentrations in the 
backflowed fluid are recorded.  After the temperatures of the 
produced fluid approach the preinjection reservoir 
temperature and an adequate amount of injected tracer is 
recovered, the backflow (i.e. production) of the injection 
well is stopped. 

While the tracer return profiles are interpreted for estimating 
the hydrodynamic parameters, the temperature recovery 
profile is used to estimate the thermal parameters controlling 
the heat transfer in the system.  This constitutes the 
procedure of the joint tracer and thermal injection backflow 
test application. 

3. MATHEMATICAL MODELING 

This work employs two conceptual models and both of them 
results in the same dimensionless mathematical models. The 
first model assumes a single vertical fracture of constant 
porosity, aperture, height, and the fracture is located in a low 
porosity rock matrix of infinite extent. The assumption of a 
flow through vertical fracture demands linear coordinate 
system; the flow velocity is constant within the fracture and 
the fluid in the matrix is virtually immobile.  The injected 
low temperature water travels through the fracture and 
warms up due to heat transfer from adjacent matrix.  The 
temperatures across the fracture are uniform and water and 
rock within the fracture and the matrix as well are in thermal 
equilibrium. The second model assumes a constant thickness 
reservoir of uniform porosity and permeability and a radial 
flow geometry extending from the wellbore far into the 
reservoir. The reservoir is confined by two impermeable 
layers of infinite extend. The temperature across the 
reservoir thickness is uniform and heat is transferred to/from 
the confining layers by conduction.  The water and rock 
within the reservoir and the confining layers are in thermal 
equilibrium.  While the first system is suitable for fractured 
geothermal reservoirs (Kocabas and Horne, 1990), the 
second system represents a sensible energy storage aquifer 
(Sauty et. al.1978 and Sauty et. al. 1982). The 
fracture/matrix system in a geothermal reservoir is the 
conceptual model employed in the following mathematical 
developments.  The governing equations of heat flow in a 
sensible energy storage reservoir are presented in appendix 
A. The heat is a special type tracer, and hence, the governing 
differential equations of temperature transients are identical 
to that of tracer transients. Only the injection modes are 
different as we usually employ an instantaneous injection of 
a tracer slug called instantaneous injection whereas a 
continuous injection of a constant temperature fluid referred 
to as continuous injection. Therefore, the solutions for 
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thermal transients may be employed for tracer transients 
with slight modifications. 

There is only a limited number of analytical solutions 
available for models of tracer injection backflow tests 
(Kocabas and Horne, 1987; Falade et al., 1987; and Falade 
and Brigham, 1989) or thermal injection backflow tests 
(Kocabas and Horne, 1990, and Kocabas, 2004).  Among 
these models, the one which specifically considers the 
previously described fracture/matrix system is used by 
Kocabas and Horne (1987) for tracer flow, and Kocabas and 
Horne (1990) and Kocabas (2004) for heat flow in an 
injection backflow test.  In both cases, an equal injection 
backflow flow rate is assumed, a double Laplace transform 
with respect to injection and backflow times is applied to 
obtain the solution in Laplace space and real space solution 
is also presented. A Laplace space solution has been 
presented for unequal injection and backflow rates 
(Kocabas, 1995)  but  left uninverted into the real space and 
the values were computed using a double numerical 
inversion technique. The equal flow solutions indicated that 
there is a large amount of numerical errors in the double 
numerical inversion specially in case of hyperbolic 
equations when Stehfest algorithm is used. This work 
employs the iterated Laplace transform technique to present 
a novel real space solution for unequal injection and 
backflow flow rates and the technique is detailed in the 
following. 

2.1 Model Development for Thermal Injection Backflow 
Tests  

Within that fracture/matrix geological configuration, while 
heat conduction in the flow direction is neglected, an infinite 
lateral thermal conductivity in the fracture and a constant 
thermal conductivity in the matrix are assumed. Thus, the 
governing equations become: 
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The initial and boundary conditions are: 

0TTT m ==  at 0=t             (4) 

iTT =  at 0=x                    (5) 

TTm =  at 0=z                            (6) 

0→mT as ∞→z                         (7) 

To simplify the mathematical formulation the following 
dimensionless variables are used. 
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Using the above dimensionless variables yields: 
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The dimensionless initial and boundary conditions become: 

0== mDD TT  at 0=Dt           (13) 

1=DT  at 0=Dx            (14) 

DmD TT =  at 0=Dz            (15) 

0→mDT  as ∞→Dz           (16) 

Using the Laplace transform, the following Laplace domain 
solutions of injection period are obtained (Kocabas, 2004): 
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For the backflow period the relevant governing equations 
must be solved treating the injection period solutions as the 
initial condition values. 

During the backflow period, the governing equations change 
due to both the reversal in the flow direction and presence of 
a different backflowflow rate than that in injection period. 
Using tp as the time variable for the backflow period, 
dimensionless governing equations for the backflow period 
are: 
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Where the ratio of the injection rate to backflow rate and 
dimensionless backflow time are defined respectively as:      

bu
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The other dimensionless variables are defined by Equations 
8, 9 and 10. The initial and boundary conditions for the 
backflow period are specified in Equations 23, 25 and 26: 

),( DDiDD xtTT =  at 0=pDt         (23) 
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Where ti is the total injection time and, hence, 
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The boundary conditions for the bounding layer remain 
unchanged, and hence, Equations 15 and 16 apply. 

Using a second Laplace transform with respect to tpD, one 
may arrive at the solution for the backflow period (Kocabas, 
2004, also see Appendix B). Since the only point of 
observation during the backflow period is the injection well, 
the temperature recovery with time for the feed-zone in the 
injection well is given by: 
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The real space solution given by Eq. 28, has been obtained 
by applying the technique of iterated Laplace transform to 
Eq. 27. The iterated Laplace transform ( Sneddon, 1972) is 
an easy yet highly powerful technique to invert significantly 
complicated Laplace space equations. Note for a unit λ 
value, Eq. 28 reduces to the previously presented to solution 
(Kocabas, 2004) for the equal injection and backflow rates. 
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2.2 Designing Thermal Injection Backflow Tests  and 
Estimation of Thermal Parameters 

Equations 28 through 31 show that the temperature recovery 
profile is a function of three operational variables and a 
model parameter group designated by α. The operational 
parameters are the temperature difference between the 
injected fluid and reservoir temperatures, the total injection 
time, ti,  and the ratio of injection flow rate to backflow rate, 
λ.  The design of a thermal injection backflow test requires 

us to select the combination of three operational (decision) 
variables so that the model parameter λ have the highest 
sensitivity coefficient in the measurement domain of 
backflow period. 

The parameter group α= θtDi, represents the collective role 
of a number of parameters.  In order to investigate the 
influence of the product  θtDi , first a thermal characteristic 
time, tth, is defined:   
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In Eq. 33, the parameter θ represents the ratio of the heat 
storage capacity of the confining matrix to that of the 
fracture.  The characteristic time for heat transport from the 
matrix to the fracture zone is represented by tth which is a 
strong function of fracture width and , ti is the total injection 
time.  One can deduce that the heat extraction/addition 
from/to the injected fluid depends directly on θ and total 
injection time, and inversely on the characteristic time tth.   

By using a nonlinear regression technique we can match 
temperature recovery profile from a thermal injection 
backflow test to a mathematical curve described by Eq. 28 
and obtain an estimate of the only model parameter product 
α=θtDi. Once the parameter is estimated, we can readily 
calculate the product θ/tth from Eq. 33 as ti is the total 
injection time.   

The first objective in our design is identifying the most 
informative observation interval of backflow time domain 
for the physical parameter α which will be estimated.  The 
normalized sensitivity coefficient of α must be plotted to 
identify the interval of backflow time domains where model 
sensitivity to the parameter α is highest.  In practice, the 
most informative interval of a domain and most informative 
values of decision variables are those which result in the 
highest absolute normalized parametric sensitivities.  Also 
note that a high but constant sensitivity domain is less 
informative than  that where  the normalized sensitivity is 
varying.  In other words, if there is a region with high 
sensitivity but the normalized sensitivity does not vary any 
additional measurement in this range will not contribute to 
the information about the parameter of interest. 

The second objective is to select values of the operational 
variables (the decision variables of an engineering design) 
such that the sensitivity coefficient of α is highest in the 
measurement domain.  In addition, considering the 
uncertainty of a parameter estimate is related to the 
sensitivity of the model to that parameter and the 
measurement errors,  if the variance in random error in 
observations is sufficiently large, then sensitivities can be 
obscured by that noise.  Thus, setting decision variable 
values such that measurement errors will be minimized is 
the other half of the second objective of design. 

Thus design of an injection backflow test using the 
fracture/matrix model requires us specify the most 
informative values of operational variables, the time domain 
to sample and the required frequency of sampling so that 
model parameter α is estimated with the least uncertainty.   
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The abovementioned design aspects of thermal injection 
backflow tests are illustrated in the following. 

Fig. 1 shows the dimensionless temperature return profiles 
for a typical α=θtDi value of 0.1 and a range of ratios of 
injection rate to backflow rate, namely λ values.    The figure 
show that if the value of  the parameter λ is greater than 1 
then the sampling domain increases without significant loss 
of  information. 
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Figure 1: Variation of sampling domain with various 
ratios of injection rate to backflow rate, λ, and for 
α=0.1. 

Fig. 2 shows that normalized sensitivities to α, for various λ 
values all have similar values in magnitude.  It also show 
that sensitivity profile is varying significantly over the 
normalized time domain.  However, the greatest time range 
where sensitivity  profile is varying belongs to the curve of 
λ=1.2.  Therefore,  the figure shows that  a slower backflow 
rate will allow more sampling data with less uncertainty in 
the estimates. 
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Figure 2: Normalized sensitivity profiles of α for various 
λ values and at α = θtDi=0.1 

Fig.3 show the normalized sensitivities to α, for various α 
values and for a fixed value of λ=1.2.  All curves show that 
sensitivities vary over the measurement domain.  However, 
the greatest absolute sensitivity values belong to α values 
less than 1.   This means that  as the α values become greater 
than 1 the uncertainty in the estimates will increase. 

The value of the parameter α increases with increasing θ/tth 
and/or increasing total injection time. There arise the 
dilemma of injection backflow design. To be able to 
investigate a larger distance into the reservoir one should 
keep total injection time as high as possible. On the other 
hand, increasing injection time reduces the sensitivity of the 
estimated parameter which leads to estimates with less 
confidence. 
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Figure 3: The Normalized sensitivity profiles of α for 
various α     values and at λ= 1.2.  

In order to resolve this issue one should take a closer look 
into the sensitivity of α=10 exhibited in Fig.4.  Fig. 4 show 
that the normalized sensitivity to α do in fact vary 
significantly.  However, the absolute value of sensitivity 
values are significantly smaller than those of α less than 1.   
In this case, to be able to estimate the parameter one should 
minimize the magnitude of measurement errors relative to 
the measured temperatures.    This requires that one needs to 
increase the difference between the injected fluid 
temperature and the original reservoir temperature.  In such 
a case, even the small variations in normalized temperatures 
will be distinguishable in actual temperature values. 
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Figure 4: Normalized sensitivity profile of α for α=10 
and λ=1.2 

Thus the design reduces to balancing between the desired  
total injection time and the difference between the injected 
fluid and original reservoir temperatures. 

Finally, Figures 3 and 4 show that the sampling frequency 
should be maximum around a normalized time of 1 for α 
values equal to 1 or less. On the other hand, the sampling 
frequency must be increased at much earlier  backflow times 
for significantly greater than 1. The high frequency is 
required to capture the greatest variation zone of the 
sensitivities which contains the most reliable information 
about the physical parameter. 

CONCLUSIONS 

Novel solutions to a thermal injection backflow test in a 
fractured geothermal reservoir and  in a sensible energy 
storage aquifer have been developed to estimate heat 
transport parameters in situ. The new analytical model of the 
thermal injection backflow test presented provides valuable 
insight into the collective roles of parameters controlling 
heat transport in a single vertical fracture or a radial flow of 
heat in a sensible energy storage reservoir. 
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The double Laplace transform technique is used to develop 
the Laplace space solutions of governing equations. Then, 
the Laplace space solutions were inverted into real space 
using the powerful technique of iterated Laplace transform. 

The developed solutions are employed in a parametric 
sensitivity analysis to design the field test.  The sensitivity 
analysis showed that a slower backflow is more informative.  
Hence, the decision variable of injection to backflow ratio 
should be specified as greater than 1 somewhere close to 1.2.    

The total injection time as a second decision variable must 
be balanced between the requirement of a larger distance of 
investigation and lower sensitivity of return profiles which 
means more uncertainty in the estimated values. This 
shortcoming can be overcome by controlling the third 
decision variable namely the difference between the injected 
fluid and original reservoir temperature. 

Finally the sampling frequency requirement over the time 
domain has been specified based on the expected value of 
the model parameter α. 

It is also shown that the proposed testing procedure based on 
a parametric sensitivity analysis reduces the uncertainty in 
the parameter estimates greatly.   

Consequently, the presented design procedure and the new 
interpretation models will help the operators to improve the 
design of injection backflow tests, and hence,  reinjection 
schemes. 

 

NOMENCLATURE 

b = half fracture width, m 

cm  =  specific heat of the matrix, J/kg.oC  

cr =  specific heat of fracture bulk material, J/kg.oC 

cs =  specific heat of reservoir rock, J/kg.oC 

cw =  specific heat of geothermal water, J/kg.oC 

km  =  thermal conductivity of the matrix, W/m.oC 

x   =  distance along flow direction, m 

xD =  dimensionless distance along flow direction 

xDL = dimensionless distance of convective front at total 
injection time 

T =   temperature in the fracture, .oC 

Ti  =  temperature of the injected fluid, .oC 

T0  =  initial reservoir temperature, .oC  

TD  =  dimensionless temperature of fracture 

Tm =   temperature of the matrix, .oC 

TmD =   dimensionless temperature of matrix 

tD    =  dimensionless time 

tDi =   dimensionless total injection time 

td =   characteristic time for dispersive transport, hr 

ti       =  total injection time, hr 

tn = backflow period time normalized by total injection 
time, tp/ti 

tp =   time variable during backflow period, hr 

tpD =   dimensionless time during backflow period 

 

tth =   thermal characteristic time, hr 

s    =  Laplace transform variable of injection time. 

p    =  Lapace transform variable of backflow time. 

q =   injection rate, m3/hr 

u    =  interstitial flow velocity, m/hr 

z =   distance normal to flow direction, m 

zD =   dimensionless distance normal to flow direction 

θ =   ratio of the heat storage capacity of  matrix to that 
of fracture 

τ =   convolution variable 

η =  dummy variable 

φ =  fracture porosity 

φm =  matrix porosity 

ρm   =  bulk density of the matrix, kg/m3 

ρr   =  bulk density of the fracture, kg/m3 

ρs   =  density of the reservoir rock, kg/m3 

ρw    = density of the geothermal water, kg/m3 
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APPENDIX A:  DERIVATION OF GOVERNING 
EQUATIONS FOR RADIAL FLOW 

Within that reservoir confined by impermeable cap and base 
rocks configuration, while heat dispersion in the flow 
direction is neglected, an infinite vertical thermal 
conductivity in the reservoir and a constant thermal 
conductivity in the confining layers are assumed.  Thus, the 
governing equations become: 
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(A.2) 

The initial and boundary conditions are specified as the 
same as those given by Eq. 4 through 7 except, Eq. 5.   The 
radial inner boundary condition is specified follows 

iTT =   at 0=r                  (A.3) 

While the dimensionless temperatures are defined by Eq. 8, 
the dimensionless variables are defined as follows: 
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Using the above defined dimensionless variables one 
obtains: 
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(A.6) and (A.7) are of the same form of Eq. 11 and Eq. 12.  
The dimensionless initial and boundary conditions also 
become the same as those Eq. 13 through 16 except, eq. 14. 
The inner boundary condition in dimensionless form 
becomes: 

1=DT   at 0=Dr                    (A.8) 

Thus the solution of Eq. 11 and Eq. 12 are also the solution 
of radial flow systems for the considered models in this 
work. 

APPENDIX B:  DERIVATION OF THE REAL SPACE 
TEMPERATURE RECOVERY PROFILE FOR A 
THERMAL INJECTION BACKFLOW TEST 

Applying a double Laplace transform ( Ditkin and 
Prudnikov, 1962) with respect to the dimensionless variables 
tDi and tpD to the dimensionless backflow equations and their 
initial and boundary conditions ( equations 19 through 26 ), 
yields the double Laplace transformed solution of the 
fracture equation, Eq. 19,  given by (B.1): 
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where 
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Since we can only measure the temperatures at the well (i.e. 
0=Dx ), the solution (B.1) at 0=Dx  may be expressed 

as: 
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In real space, (B.3) will have the form : 
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Where H is the Heaviside step function.   

Since during the injection period the farthest distance 

traveled by the injected fluid is equal to iut , using 

Equations 24 and 26, we can show: 
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         (B.5) 

Since, according to Eq. (B.5)  DLDi xt ≤  the Heaviside 

step function and as a result the second term of Eq. (B.4) 
will always be zero.  Therefore, the nonzero part of the 
solution will be the inverse of only (B.2).  

To obtain a real space solution, we rewrite (B.2) as: 
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In order to invert (B.6), we employ the method of iterated 
Laplace transform.  In order to proceed let’s first divide 
(B.6) into three parts, namely each part within the left square 
brackets multiplied by that in the right square brackets and 
call them TD1, TD2 and TD3. Then, iterative Laplace 
transform inversion is applied to each term separately.   

For TD1, the first iteration of Laplace inversion is applied to 
the s in the denominator of the term in right square brackets 
to obtain: 
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The second iteration is applied to the remaining s terms in 
(B.7) to obtain: 
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Since the inversion is applied iteratively, the final result 
must be convolution of the results of the two steps, yielding: 
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Inversion of exponential function in (B.9) with respect to 
Laplace variable p results in: 
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Thus, the double Laplace inversion of TD1 becomes: 
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Similarly, first the iterated Laplace inversion and 
then the double Laplace inversion of TD2 can be obtained.  
For the third term, however, we the utilize the following 
operational relation [ Voelker, 1950] 
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and the iterated and double Laplace transform inversions are 
sequencially applied to the part of the third term which 
remains after excluding 1/(s-p) term.    Finally, the real 
space solution becomes: 
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Where 
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Normalizing all variables by tDi, and setting the normalized 
backflow time tn as: 

p

i
n t

t
t = ,  

 
   (B.16) 

we obtain Eq. 33. 
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