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ABSTRACT

Rocks in geothermal systems are porous, compressible, and
elastic. The presence of a moving fluid in the porous rock
modifies its mechanical response. Its easticity is evidenced
by the compression that results from the decline of the fluid
pressure, which can shorten the pore volume. This reduction
of the pore volume can be the principal source of fluid
released from storage. Poroelasticity explains how the fluid
inside the pores bears a portion of the total load supported
by the porous rock. The skeleton supports the remaining part
of the load. The skeleton is treated as an elastic solid with a
laminar flow of pore fluid coupled to the framework by
equilibrium and continuity conditions.

This paper introduces an origina tensorial formulation of
Biot's isotherma theory of linear porous rocks and of its
extension to thermoporoel astic processes. By defining atotal
stress tensor in four dimensions and three basic porodlastic
coefficients, it is possible to deduce a system of eguations
coupling two tensors, one for the bulk rock and one for the
fluid. The inclusion of the fourth dimension is necessary to
extend the theory of solid linear eadticity to
thermoporoelastic rocks, taking into account the effect of
both, the fluid phase and the temperature. In linear thermo-
poroelasticity, we need five poroelastic modules to describe
the relations between strains and stresses. Introducing three
volumetric thermal dilation coefficients, one for the fluid
and two for the skeleton, a complete set of parameters for
geothermal poroelastic rocks are obtained.

This formulation makes more comprehensible the linear
theory. The Finite Element Method is very convenient to
solve the resulting equations. To illustrate the practical use
of this tensor four-dimensiona formulation three
applications are outlined: &) Full deduction of the classical
Biot's theory coupled to thermal stresses; b) deformation of
an aquifer under cold isotherma conditions and c)
simulation of the same aquifer when its temperature changes
to ageothermal state.

1. INTRODUCTION

Severa factors affect the geomechanical behavior of porous
crustal rocks containing fluids: porosity, temperature, and
pressure, characteristics of the fluids, fissures, and faults. In
classic elastic solids only the two Lamé moduli, (4, G) or
Young's elastic coefficient and Poisson’s ratio (E, v), are
sufficient to describe the relations between strains and
stresses. In poroelasticity, we need five poroelastic moduli
for the same relationships, but only three of these parameters
are independent. The Biot's field variables for an isotropic
porous rock are the stress ¢ acting in the rock, the bulk
volumetric strain &g, the pore pressure p and the variation of

fluid mass content . The linear relationships among these
variables are the experimental foundations of Biot's
poroelastic theory (Biot & Willis, 1957; Wang, 2000).

In matrix form these relationships are:
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Where Kg, H and R are porodastic coefficients that are
experimentally measured as follows (Wang, 2000):
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Here V3 is the bulk volume, consisting of the rock skeleton
formed by the union of the volume of the pores V4 and the
volume of the solid matrix Vs. The control volume is AVg;
my is the fluid mass content per unit volume Vg, and pg is
the initial fluid density. The drained coefficients Kg and Cg
are the bulk modulus and the bulk compressibility of the
rock, respectively; 1/H is a poroelastic expansion
coefficient, which describes how much ¢ changes when ¢
changes when p; remains constant. Findly 1/R is an
unconstrained specific storage coefficient, which represents
the changes of { when p; changes. This parameter is
measured when the applied stress ¢ remains constant. The
value of /R is determined by the compressibilities of the
frame, the pores, the fluid and the solid grains (Wang, 2000).
The poroelastic coefficients given by equation (2) entirely
describe the poroelastic response of the rock for isothermal,
isotropic processes. Inverting the matrix equation (1) and
replacing the value of ¢ in {'we obtain:
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The sign conventions are: stress ¢ > 0 in tension and ¢ < 0
in compression; the volumetric strain gz > 0 in expansion
and eg < 0 in contraction; ¢ > 0 if fluid is added to the
control volume AVg and ¢ < O if fluid is extracted from AVg;
the pore pressure pr > 0 if it is larger than the atmospheric
pressure. Biot (1941) and (Biot & Willis, 1957) introduced
three additional poroelastic parameters, b, M and C, that are
fundamental for the tensorial formulation herein presented.
1/M is called the constrained specific storage, which is equal
to the change of { when p; changes measured at constant
strain. Both parameters M and C are dependent and
expressed in terms of the three fundamental ones defined in
equation (2):
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Let Cs = 1/Kg be the compressibility of the solid matrix. The
Biot-Willis coefficient b is defined as the change of
confining pressure p, with respect to the fluid pressure
change when the total volumetric strain remains constant:

b= aﬂ zl_ﬁzgzﬁ (5)
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The coefficient C represents the coupling of deformations
between the solid grains and the fluid. The coefficient M is
the inverse of the constrained specific storage, measured at
constant strain (Wang, 2000); this parameter characterizes
the elastic properties of the fluid because it measures how
the fluid pressure changes when ( changes. These three
parameters b, M and C are at the core of the porodastic
equations (Bundschuh and Suarez, 2009).

2. RELATIONSHIPS WITH OTHER POROELASTIC
PARAMETERS UNDER DIFFERENT CONDITIONS

In the tests carried out to measure any poroelastic parameter,
there are two type of experimental situations:

A) under drained conditions, the rock is confined and
subjected to support an external hydrostatic pressure cy; the
fluid in the pores is allowed to escape. Biot (1962) called
these conditions, “an open system”. The tota stress is
entirely supported by the rock skeleton and the deformations
are achieved at constant pore fluid pressure p.

B) For the undrained conditions test, the deformations are
measured at constant fluid mass content (A = 0). The rock
is entirely submerged in a fluid in such a way that the
external hydrostatic pressure is balanced by the pore
pressure oy = - pr. The fluid in the pores remains constant;
no fluid is alowed to move into or out of the control
volume. The fluid remains trapped in the skeleton. For this
reason, Biot (1962) called thistest a“closed system”.

2.1 The Skempton Coefficient and the Undrained Bulk
M odulus

The Skempton coefficient B is an additional parameter,
which represents the change in pore pressure when the
applied stress changes for undrained conditions:
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The undrained bulk compressibility Cy is defined as the
undrained deformation obtained when the rock is subjected
to compressive stresses in al directions and the fluid
contained in the pores remains constant:
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The undrained bulk modulus is related to the previous
defined coefficients:

K, = ,and B=—y_B_"7 (73)

Consequently:
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2.2 Rigidity, Lamé and Poisson M oduli

Other elastic parameters, such as the Lame moduli A and G
should be measured under the same conditions. Since there
are no shear stresses in the fluid, the shear coefficient must
be the same in both situations drained and undrained. Thus,
G = Gy = Gg (Biot, 1962; Wang, 2000). For the undrained
Lamé modulus A, we have:
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The undrained Poisson’s coefficient is deduced in a similar
way:
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2.3 TheThreeClassic Biot’s Coefficients

Introducing the bulk modulus of the fluid K;, the Biot's
coefficients b, C and M can be expressed in terms of the
other moduli and the porosity (Bundschuh & Suérez, 2009):
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Using these expressions, the tangent modulus N (Biot, 1962)
is defined as the pressure variation with respect to the
porosity variation when both strain and temperature are held
constant (Coussy, 1995):
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2.4 The Gassmann-Biot Formula and the Por osity

The Gassmann-Biot equation is easily derived from
equations (7) and (11):
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From this equation, a useful formula for the porosity is
obtained, which includes the Biot's coefficients and the
Skempton parameter:
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The experimental limits of poroelasticity can be deduced
from the Gassmann-Biot equation (12). Numerical values of
all the introduced poroelastic parameters are shown in Table
1. Both limit values of the Biot-Willis coefficient 0< b <1
are aso included and explained.

2.5 Experimental Values of the Poroelastic Constants

To construct Table 1 the basic experimental data set used
was {E, G, ¢, Ksand K;}. Where ¢ is porosity and E is the
drained Y oung's elastic modulus. The rock types are:

[0].- Clay, (K = 3.9 GPa).

[1].- Boise sandstone, (K; = 2.0 GPa).

[2].- Berea sandstone (K¢ = 3.5 GPa);

[3].- Indianalimestone, (K; = 3.1 GPa).

[4].- Andesite, (K¢ = 2.1 GPa, p, = 250 bar, T = 25°C).
[5].- Tennessee marble, (K¢ = 3.5 GPa).

[6].- Rock with celestite, (K; = 2.0 GPa).

Table 1. Poro€elastic Parameter s of Different Rocks.

Rock ¢ E v W G ) A
Type (%) (GPa) (GPa) (GPa) (GPa)

[0 650 018 001 049 009 .001 6.1

[1] 260 97 015 031 42 18 7.3
[2] 190 131 017 030 56 29 109
[3] 130 305 026 032 121 131 232
[4 85 358 031 032 137 217 248
[5] 20 600 025 027 240 242 283

[6] 05 422 042 042 149 739 740

Rock Kg Ky Ks B b M R
Type (GPa) (GPa) (GPa) (GPa) (GPa)

[0 0062 62 10° 099 1.0 61 006

[1] 46 101 420 061 089 69 32
[2] 66 146 289 071 077 134 6.1
[3] 212 312 726 046 071 200 136
[4 308 339 497 024 038 216 196
[5] 400 443 500 049 019 107.3 970

[6] 838 839 850 0.06 0.01 3843 384.0

References used: Rocks [0], [1], [2] and [3], Wang (2000);
[4], Bundschuh and Suarez (2009); [5], Detournay and
Cheng (1993); [6], Mavko (et al., 2003). The figures in
italics were estimated using the poroelastic formulas (4-13).
Rocks of type [0] and [6] are the two limit cases of linear
poroelastic theory, for b= 1 and b = O, respectively.

For the case of a hard volcanic rock with very low porosity
(Table 1):
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The parameter C depends on both, the fluid properties and
the bulk rock properties. Whereas coefficient M depends
only on the porosity and on the fluid bulk modulus. This is
the case of arigid frame.
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The other limit case is for sedimentary rocks with high
porosity, for example sandstones (Table 1). In this case
equations (7a,b) and (12) become:

K
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We need many porodastic coefficients to support
poroelastic theory, but only three of these parameters are
actually independent. The basic parameters selected to
congtitute an experimental reference set can be the drained
bulk compressibility Cg =1/Kg, the expansion coefficient 1/H
and the unconstrained specific storage /R (Wang, 2000).
Other three possible basic coefficients are the drained bulk
modulus Kg, the undrained bulk modulus Ky, and the Biot
coefficient b (Detournay and Cheng, 1993). However, it is
impossible to compute al the coefficients of the theory
using only the classica elastic constants; at least five mixed
coefficients are necessary for the poroelastic coupling. It is
proved in a recent publication (Bundschuh and Suérez,
2009) that a sufficient set of measured parameters is for
example {E, G, ¢, Kg, K{}; with these coefficients, we can
compute the full set of 16 poroelastic constants (C and H are
not included in Table 1). To describe the saturating fluid, we
need its pressure and its temperature. It is possible to make
other choices of the basic experimental parameters using the
relationships developed in this section.

3. FOUR DIMENSIONAL-TENSOR FORMULATION
OF BIOT'SPOROELASTIC THEORY

Let us and u; be the displacements of the solid and fluid
particles; let u = u; — ug be the displacement of the fluid
phase relative to the solid matrix respectively. Let &g, &, @
¢, Vs and V; be the volumetric dilatations, porosities and
volumes of each phase; —¢y, is the volumetric deformation of
the fluid phase relative to the solid phase. The mathematical
expressions of these variables are:

AVs o AVt . v
VS s S Vf f f
Ey =Eg—Ef ; Gzl]f _GS = (96)
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Biot and Willis (1957) introduced the strain variable ' (u, t),
defined in equation (3), to describe the volumetric
deformation of the fluid relative to the deformation of the
solid with homogeneous porosity:

(Ut)=9V-(Us-Us )= pes—peg =pey  (107)

The function ¢ represents the variation of fluid content in the
pore during a poroelastic deformation. The total applied
stresses in the porous rock are similar to the equations of
classic elasticity. However, we need to couple the effect of
the fluid in the pores. The linear components of the global
stresses, deduced experimentally by Biot, (Biot, 1941; Biot
and Willis, 1957; Biot, 1962; Wang, 2000) are:
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The fluid stress is equal to the fluid pressure and is deduced
from equation (3):
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3.1 The4D — Tensorial Equation for Stresses

We define a two-order tensor 61 = (oj;) which includes the
bulk stress tensor o acting in the porous rock and the fluid
stress o acting in the fluid filling up the pores, positive in
compression. This global tensor is in four dimensions,
because it is represented by a (4 4) matrix related to alinear
map in 4D. Both parts of the tensor are influencing the bulk
rock deformation in the following way:

O Oy Ox O
B B |9y oy Oy 0 ~
or =0 +or =(0; ) = Oy Oy 05 0|
Xz yz z
0 0 0 oy

Ay 0 0 O Exx &y Ex O
c 0 A4y, 0 O 126 Ey Ey &y O+
0 0 Ay O &z &y €z O
0 0 0 -C 0O 0 0 O
«— 6 -
C 00 O
0CO0 O
“looc o
0 0 0 -M
«— 6p -
(20)

This tensoria equation become identical to the equation of
Hookean solids, when the rock has zero porosity and b = 0.
The inclusion of the fourth dimension is necessary to extend
the classical theory of solid elasticity to linear poroelastic
rocks, taking into account the effect of the fluid phase.

3.2 The Terzaghi Effective Stresses
From equations (8) and (19), we deduce that:
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Therefore:

7y =Aeg g +2Gg; = ’0i1=7ij—bpf 5.," (22)

Tensor 7; is called the Terzaghi effective stresses that act
only in the solid matrix; bps is the pore-fluid pressure. For
this reason, b is called the effective stress coefficient. Since
there are no shear tensions in the fluid, the pore fluid
pressure affects only the normal tensions G; (i = X, y, 2). The
functions o are the applied stresses acting in the porous
rock saturated with fluid. They express that the poroelastic
response is controlled by the difference between effective
stress and pore pressure. Thisis the Law of Effective Stress
(Wang, 2000; Terzaghi, 1943). Equation (22) illustrates the
mechanism of the poroelastic coupling. The solid matrix ()
supports one portion of the total applied tensions in the rock
and the fluid in the pores (bp; ) supports the other part. This
is a maximum for soils, when b = 1 and is minimum for
rocks with very low porosity whereb = 0 (Table 1).

The matrix form of equation (22) becomes:

Oy Oy Oy, O
- ()= Y € -
or =00 +or =(0] ) = oy 0, 0, 0|
xz 4 z

T Ty Txz 0 b 00 O
T T T 0 0Ob 0O
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Ty Ty Tz O 00b O
0 0 0 0 0 00 1
(23)

The simplicity of the 4D poroelastic formulation becomes
clear and evident with this tensor formula.

3.3ThedD —Tensorial Equation for Strains

Inverting the matrices of equation (20), we arrive to the
following tensoria form of the porodlastic strains:

i 3v P Ojj
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Note that both tensorial equations (20) and (24) only need
four basic poroelastic constants. The presence of fluid in the
pores adds an extra tension due to the hydrostatic pressure,
which is identified with the pore pressure, because it is
supposed that all the pores are interconnected. This linear
theory is appropriate for isothermal, homogeneous and
isotropic porous rocks.

4. THE GIBBS POTENTIAL IN THE 4D-TENSORIAL
FORM OF NON-ISOTHERMAL POROELASTICITY

The basic equations of state in a saturated porous rock are
the interna energy and the specific enthalpy for the fluid
phase. For the skeleton, the appropriate function is the free
enthalpy or Gibbs potential (Coussy, 1995). This potential,
completely describe the exchanges of energy in a porous
medium. The Gibbs free internal enthalpy Gs (subindex S
means skeleton), is useful to derive the equations of the rock
skeleton in non-isothermal, reversible processes. If we



assume that the internal energy dissipation is zero and that
the processes involved are reversible, then the heat
exchanged is equal to the product of the absolute
temperature T [K] and the entropy S5 [JK] of the skeleton.
The function Gs = Gs (g, p, T) establishes mathematical
relationships among heat, strains, stresses and pore pressure.
This potential is equa to the algebraic difference of the
enthalpy Hs minus the heat exchanged Qs = TSs. It is more
convenient to formulate this function per unit volume of
rock:

_Gs_Hs ;Ss
VB VB Vg

J _N-
g5 =s-Tss - [ =N0fpa)

=
(25)

The functions gs, hs, and s, represent the volumetric Gibbs
potential, the volumetric enthalpy and the volumetric
entropy of the skeleton respectively. The total differential of
s (&ij, p, T) is by definition:

ng:O'i]- dgij—(pdp—SSdT =
% ,_ s o _ s (26)
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These partial differential equations are integrated between
an initial state gs*(s;j (0) = 0, pr = P, T = To) when the strain
was zero, and afina state gs(sij, p, T). In this case, an initial
reference temperature Ty and an initial pore pressure p, are
necessary because both thermodynamic variables T and p are
going to change in non-isothermal processes occurring in the
geothermal reservoir.

4.1 The Skeleton Energy Dissipation Function. Analytic
definition of the Gibbs Potential

The potential gs (s, p, T) is the thermoporoelastic available
enthalpy per unit volume [J¥m®]. Coussy (2004) deduced the
energy dissipation function Wg of the skeleton, using this
volumetric Gibbs potential, in terms of the stresses, the
porosity, the pore pressure and the density of entropy per
unit volume of porous rock Ss[J¥m®/K] as follows:

d¥, deg; _ dT  dpr  dgg
=0 —t-S§——p———2 >0 (27
a Cig S 9 (27)

If there is no energy dissipation (d¥s/dt = 0) and for small
changes in AVg, the Gibbs' potentia describes the behavior
of the skeleton. Its analytical expression is obtained by
integrating all the equations (26) (Coussy, 1995):

Initial State: g2 = gs(gij =0, p= Py, T=To)
Find State: gs =0s(&;.p.T) =

£
Js =0m €5 +(0'icj)_o'l(\)/1 8 )[gij _?Bélj J+

K 28
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+7o(P=Po)(T-To)-Kg 78(T-To)es +
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The parameters yg and vy, [I/K] are the volumetric thermal
dilatation coefficients. The first one yg measures the
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dilatation of the skeleton, while vy, is related to the porosity.
Cy is the skeleton volumetric heat capacity coefficient under
congtant deformations (strains and pore pressure are held
constants). Their mathematical definitions are:

1(9Vg 1 (9 pg [1}
=== =——|== = 29
78 VB(aT jpk pS[aT Py K ( a)
) e
o= =
~1(oe 1
- y¢_¢(aij M

4.2 The Thermo-Poroelastic Equations in Geothermal
Reservoirs

Using the differential relationships of equations (26) we
obtain:

(29b)

0 :ag—szai? +1eg 6 +2Gg; +
08 (30)

—b(p-po) & —Kg 78(T-To )4

(p:—aag—;=(p0+beB—7¢(T—T0)+—(p_po) (314)
boy  P—P
{=(o+ ;Z: st ot )(T-To) (3
T-T
SSZ—?—TSZSg+7BKBSB—7¢(p—Do)+CV TOO)
(33)

The bulk modulus K; and the thermal expansivity y; [1/K] of
the fluid are defined as follows:

9
1, :i[ﬁ]
Kt pe\ 9P )

) oL (avf] ~ —1(%}
(= | — | =—| =
Vf E)T y pf E)T Dy

Note that for isothermal processes in rocks with zero
porosity ¢ = 0, T = Ty and p = po, the system of equations
(30), (31), (32) and (33), is reduced to Hooke's Law, for
linear elastic solids. If only the temperature is constant, T =
To, the system of poroelastic equations (18) is recovered.
The pore pressure is equa to the fluid pressure (p = p; ),
which can be measured in the field or calculated using the
equation of state for the fluid.

(34)

4.3 TheHeat Equation in Thermopor oelasticity

Using the classic relationship between heat and entropy for
reversible processes:

oQ 0Sg =

S 1,535 __y.

st %t ar (35)
qT:_kT'ﬁT

Where g is the heat flow of the Fourier’s law of conduction
and kr [W/m/K] isthe average rock thermal conductivity.
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Developing this expression in terms of the entropy function

Ss (g, T):

.G =T, 0 o[ 25 %6, 080T |
%ot dg; ot OT o (36)
g aT dg
TO(KBVB% at” +T&¥J= BB oa—tBJrC\/

Introducing the expression for the volumetric heat capacity
in terms of the average specific isobaric heat capacity ¢, and
the fluid-solid density p = ¢ ps + (1- @) ps, the heat equation
for the isotropic skeleton is deduced:

Ks }/BTOaaLtB_’_Cpp E%—IHT?Tj:kTVZTnLq\, (37

This formula is a thermoporoelastic equation coupling the
rate of changes of the strains and the heat transported by
conduction. To take into account the reservoir heat
production and the effect of the advective transport of
energy by the moving fluid in the porous rock, the fluid
velocity term and the volumetric heat produced are included.
v is the Darcy’'s velocity and qy is the volumetric thermal
energy production [W/m?].

44 The 4D Tensorial Formulation of Geothermal
Porodlasticity

Aswedid for the isothermal poroelasticity, we can writein a
single four-dimensional tensoriad equation the results of
thermoporodasticity relating stresses and strains. We solve
first equation (32) in terms of the pore pressure:

P-Po=M({~Co)-Cea—Mo(7, -7 )(T-To) (38)

Expanding the terms of eguations (30) and (36), and
grouping them in their respective positions, we obtain the
4D thermoporoelastic matrix formulae, which include the
thermal tensions in the tota stress tensor:

Oy Oy Ox O

Oy Oy Oy 0

—_ 0: =
eroor Oy Oy, 0, 0
0 0 0 o
A 0 0 & &y &g O
041 0 Ey & &y O
£ +26] ¥ Y +
0 042 O &z &y & O
0 0 0 -C 0 0 0 O
b 0O 0
0OboO 0
—(p-p){0 O b 0 +
000 -ME=£0
P=Po
8 0 O 0
0 0 0
7B (39)
-Kg(T-Tp)| 0 0 3 0

Findly, from equation (33), we deduce an important
relationship to compute the fluid pressure variation when the
temperature changes keeping constant the confining pressure
and the fluid content:

d
(a—ﬂ; =-Mo(7,-71) (40)

As a general trend, thermal expansion increases when
temperature rises. The volumetric therma expansivity g is
about 10° K for solids, 10 K™* for liquids and 10° K™ for
gases. For water, at 80°C and 1 bar, ys = 5.0 10“ K™. For
the expansivity of the pores, y, = 1.0 10° K™. For low
porosity hard volcanic rocks such as granite, a measured
valueof v =5.0 10° K™ was obtained.

4.5 A Consolidation Diffusion Equation

Consolidation is a transient process occurring in porous
rocks when pore pressure equilibrium is re-established after
a change in the stress state. This process involves a flow of
the pore fluid through the porous rock. This fluid flow obeys
Darcy’s law. From the definition of the variable fluid mass
content { given in equation (17):

) =—gV-i = %}(p %‘: (415)

Neglecting gravity, Darcy’s velocity is given by:

v_o and V:—E?pf (42
g ot u

Where k is the rock permeability and p is its viscosity.
Equating both equations (41) and (42) we obtain:

vvzw.a_“_-ivvm:af Kvzp, @)
ot U ot u

This parabolic type partia differentiad equation is a
consolidation diffusion equation, which characterizes the
transient laminar fluid flow in a porous rock as function of
the fluid pressure and of the variation of fluid content. We
apply the diffusion equation (43) to a vertical stratum of
homogeneous porous rock, of volume V. We suppose that
the laterd strains are negligible, the rock has high
permeability, especialy at the top of the column, and it is
impermeable at the bottom, at a depth equal to hy. Assuming
that the vertical stress does not change with time, the
differential problemis:

ops
Pr (Mo, t)= Pai —(0.1)=0: Py (2.0)=po
(44)
ops 2
—=CpV
pm DY Pt
Where the poroelastic diffusion coefficient is:
c M(dy +2G)-C? | [
D™ A,+2G6 4 | s (45)

ze [O, ho]; t>0



5.DYNAMIC POROELASTICITY EQUATIONS

The preceding brief reconstruction of Biot’'s theory and the
definition of the corresponding parameters, give the basis to
establish a full tensorial model to represent linear, isotropic
poroelasticity for Hookean rocks. This formulation is very
convenient to be solved using the Finite Element Method.
The fundamental poroelastic differentia equation is the
tensoria form of Newton's second law in continuum porous
rock dynamics:

divé: +|5—pﬁ' divéy =L" -&
! a2’ T T (46)
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The terms o1 and & are the equivaent vectoria form of
tensoria eguations (20) and Cg is the matrix of poroelastic
constants derived from this expression. While F is the body
force acting on the rock and the tensor differential operator
L isgiven by:
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Where u = (uy, Uy, Uy) is the displacement vector of equation
(16). Using the operator L in equation (46), the dynamic
poroel astic equation becomes:

(L"-ca-L)u+ F=p=3 (48)

5.1 Solution of Thermoporoelastic Equations: The Finite
Element Method

Equation (48) includes Biot’'s poroelastic theory. It can be
formulated and numerically solved using the Finite Element
Method (FEM). Let Q be the bulk volume of the porous
rock, and let 0Q be its boundary, u is the set of admissible
displacements in equation (48); f, is the volumetric force
and fs is the force acting on the surface 0Q. After doing
some matrix algebra we arrive to a FEM fundamental
equation for every element V® in the discretization:

=F®% e=1M (49)

d® is a vector containing the displacements of the nodes in
each V°. Equation (49) approximates the displacement u of
the poroelastic rock. F° is the vector of total nodal forces. K®
and M€ are the stiffness and equivaent mass matrices for the
finite element V°. The mathematica definitions of both
matrices are:

Ke:jBT-CBB dv; e=1M
VE
B=L-N; Mezj.pNT-NdV

ve

(50)
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WhereN isthe matrix of shape functions that interpolate the
displacements. Matrix B is called the strain porodastic
matrix (Liu and Quek, 2003).

6. DEFORMATIONS OF A POROELASTIC AQUIFER

This section contains two applications of the theory herein
presented. The first one reproduces the deformation of an
isothermal aquifer already published (Leake & Hsieh, 1997).
The second one illustrates the form in which a temperature
change can affect the poroelastic deformation of the same
aquifer. In the first example, we assume that the aquifer
contains cold water at 20°C, with a density of 1000 kg/m®.
After, we consider a higher temperature of 250°C (50 bar,
800.4 kg/m®. The program code of the model and the
computations were done using COMSOL-Multiphysics
(2006). The description of the reservoir is as follows.

6.1 I sothermal Defor mation of a Poroelastic Aquifer

Three sedimentary layers overlay an impermeable bedrock
in a homogeneous and isotropic basin where faulting created
a bedrock step (BS) near the mountain front. Figure 1
illustrates the idealized geometry of the basin and the BS.
Figure 2 shows the mesh constructed to model this problem
with finite elements. The sediment stack totals 420 m at the
deepest point of the basin (x = 0 m) but thinsto 120 m above
the BS (x > 4000 m). The top two layers of the sequence are
each 20 m thick. The first and third layers are aquifers; the
middle layer is relatively impermesable to flow.

Initial State of the Aquifer without deformation (m) t = 0. Ma6<: 0

500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5200 Min: -440

Figure 1. The simplified geometry of the aquifer and the
impermeable bedrock in the basin. Initial state

-40

-500 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5200

Figure 2: The mesh of the basin with 2967 finite elements



Suarez-Arriaga.

The water in the aquifer obeys Darcy’s law for head h:

a(, any a(, an ah
— | Ky — — | Ky — = —_— 1
ax[ Xax}’ay( Yay}’qv at 1)

Where Ky and Ky are the hydraulic conductivities and Ssis
the specific storage. The flow field isinitialy at steady state,
but pumping from the lower aquifer reduces hydraulic head
by 6 m per year at the basin center. The head drop moves
fluid away from the step. The fluid supply in the upper
reservoir is limitless. The period of interest is 10 years. For
the computations, data of Table 1 were used. To facilitate
the comparison of the results with the non-isothermal case,
both group of graphics are shown together in figures (3) to
(8) in the same page. A discussion of numerical results
follows.

Aquifer deformation (m), T = 20°C, t = 10 years. Max: 1.00 Mag: 0

0.95
-10
0.9
0.85 20
0.8
0.75 -30
0.7
-40
0.65
0.6 _50
0.55
-500 L 60
0 1000 2000 3000 4000 5200 Min: 0.510 Min: -60.0

Figure 3:Poroelastic deformation of the basin with water
at 20°C after ten years of fluid extraction.
Streamlines represent the fluid - porous rock
coupling

Aquifer Horizontal Strain: 1, 2, 5 and 10 years. (T = 20°C)

x10°

ux

1000 1500 2000 2500 3000 3500 4000 4500 5000
x-coordinate [m]

Figure 4: Horizontal strain at the basin with a BS. Case
of cold water at 20°C

Aquifer Vertical Strain: 1, 2, 5 and 10 years. (T = 20°C)
-4
x10

-13000 1500 2000 2500 3000 3500 4000 4500 5000
x-coordinate [m]

Figure 5: Vertical strain at the basin with a BS. Case of
cold water (20°C)

Aquifer deformation (m), T = 250°C, t = 10 years. Max: 1.00 Maz)(: 8.882e-16
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Figure 6: Thermoporoelastic deformation of the basin
with hot water (250°C) after ten years of fluid
extraction. Streamlines represent the fluid -
porousrock coupling

Aquifer Horizontal Strain: 1, 2, 5 and 10 years. (T = 250°C)

4
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1 ; : : H : H ;
]?000 1500 2000 2500 3000 3500 4000 4500 5000
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Figure 7: Horizontal strain at the basin with aBS for the
case of geothermal water at 250°C



Aquifer Vertical Strain: 1, 2, 5, 8 and 10 years. (T = 250°C)

1000 1500 2000 2500 3000 3500 4000 4500 5000
x-coordinate [m]

Figure 8: Vertical strain at the basin with a BS for the
case of geothermal water at 250°C

6.2 Non-lsothermal Deformation of the Aquifer and
Discussion of Results

The same three sedimentary layers overlay the impermeable
bedrock, but in this non-isothermal case, the water in the
aquifer is a geothermal fluid, at 250°C. The two examples
presented herein were solved using the Finite Element
Method (COMSOL - Multiphysics, 2006) for a known
problem of linked fluid flow and solid deformation near a
bedrock step in a sedimentary basin. The problem in both
examples concerns the impact of pumping for a basin filled
with sediments draping an impervious fault block.

The basin is composed of three layers having atotal depth of
500 m and is 5000 m long in both cases. The Darcy’s law
(eg. 51) for ssimple water is coupled to the rock deformation
via equation (22) through the porosity ¢, which isimplicit in
the storage coefficient Sg:

Ss=p;9(Cs+9Cy) (52)

Where g (9.81 m/s?) is gravity acceleration, p; is the water
density, Cg (0.22 10 1/Pa) isthe bulk rock compressibility
and C; (0.4 10° 1/Pa) is the compressibility of water. All
units are in the Sl. Figures (3) and (6) show simulation
results of the basin for years 1, 2, 5, and 10, respectively, for
cold and for hot water. The results of the first example are
shown in figures (3, 4 and 5). They correspond to a coupled
isothermal poroelastic deformation when the water in the
aquifer is cold (fluid density of 1000 kg/m®, temperature of
20 °C, and pressure of 50 bar).

The results of the second simulation (Figs. 6, 7 and 8)
correspond to a coupled thermoporoelastic deformation
when the water in the aquifer is under geothermal conditions
(fluid density of 800.4 kg/m®, temperature of 250°C, and
pressure of 50 bar). Figures (4) and (7) compare the
horizontal strains, illustrating the evolution of lateral
deformations that compensate for the changing surface
elevation above the bedrock step. Figures (5) and (8)
compare the vertica strains in both cases, cold and
geothermal respectively. Note that except in figures (3) and
(6), vertical scales are different in both examples for clarity.
Table 2 contains some data used for the computations.
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Table 2. Numerical Values of the Parameters Used in the

Simulations.
Hydraulic Poroelastic
conductivity, K. =25 storage
upper, lower (r>r<1/ day) coefficient, S=10°
aquifers upper
aquifer
Hydraulic Poroelastic
conductivity - storage
confining | i 7ost | coefficient, | =107
layer lower
agquifer
Biot-Willis Biot-Willis
coefficient | _03 | coefficient | b=10
(cold water) (hot water)
Young's _ 8 P
E=8.0 10 Poisson’s _
modulus (Pa) ratio v=0.25

CONCLUSIONS

m  All crustal rocks forming aquifers and geothermal
reservoirs are poroelastic and the fluid presence inside the
pores affects their geomechanical properties. Several other
factors affect the behavior of reservoir rocks. porosity,
pressure, temperature, type of fluid, fissures and faults. The
eadticity of aquifers and geothermal reservoirsis evidenced by
the compression resulting from the decline of the fluid
pressure, which can shorten the pore volume. This reduction of
the pore volume can be the principal source of fluid released
from storage.

m A full 4D tensorial formulation of the classic Biot's
poroelasticity theory was presented and its extension to non-
isothermal phenomena was included. The equations
developed are useful for the analysis of linear porous
geotherma reservoirs with an elastic skeleton containing
interconnected pores and non-isotherma fluids. With the
inclusion of the fourth dimension, it is relatively simple and
clear to extend the theory of solid linear elagticity to
thermoporoelastic rocks, taking into account the effect of
both, the fluid phase and the temperature.

m Theimmediate physical experience shows that the supply
or extraction of heat produces deformations in the rocks.
Any variation of temperature induces a thermo-poroelastic
behavior that influences their elastic response. Two
numerical examples of a poroelastic aquifer were presented:
one with cold water, and another with geothermal water. For
cold water, the estimated value of the vertical strain ¢, is
about -1.5x10% while for hot water ¢, is -7.5x10™
Therefore, the poroelastic deformations are much higher in
geothermal reservoirsthan in cold isothermal aquifers. In the
first case the bulk modulus of water K,= 0.45 GPa,
corresponding to T = 250°C. For cold aquifer K,= 2.5 GPa.

m The bulk modulus of water affects other poroelastic
coefficients, including the expansivity of rocks The
expansivity of geothermal rocks is relatively small, but its
effects can produce severe structural damages in rocks
subjected to strong temperature gradients, as happens during
the injection of cold fluids. This is of great importance for
enhanced geotherma systems, when the injected fluid
circulates in the underground. This action can change both,
the permeability and the rock thermal conductivity.

m The final conclusion is that changes in applied stress
produce changes in fluid pressure or in fluid mass. Any
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change in fluid pressure or in temperature or in fluid mass
can produce a change in the volume of the porous rock.
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