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ABSTRACT 

Rocks in geothermal systems are porous, compressible, and 
elastic. The presence of a moving fluid in the porous rock 
modifies its mechanical response. Its elasticity is evidenced 
by the compression that results from the decline of the fluid 
pressure, which can shorten the pore volume. This reduction 
of the pore volume can be the principal source of fluid 
released from storage. Poroelasticity explains how the fluid 
inside the pores bears a portion of the total load supported 
by the porous rock. The skeleton supports the remaining part 
of the load. The skeleton is treated as an elastic solid with a 
laminar flow of pore fluid coupled to the framework by 
equilibrium and continuity conditions.  

This paper introduces an original tensorial formulation of 
Biot’s isothermal theory of linear porous rocks and of its 
extension to thermoporoelastic processes. By defining a total 
stress tensor in four dimensions and three basic poroelastic 
coefficients, it is possible to deduce a system of equations 
coupling two tensors, one for the bulk rock and one for the 
fluid. The inclusion of the fourth dimension is necessary to 
extend the theory of solid linear elasticity to 
thermoporoelastic rocks, taking into account the effect of 
both, the fluid phase and the temperature. In linear thermo-
poroelasticity, we need five poroelastic modules to describe 
the relations between strains and stresses. Introducing three 
volumetric thermal dilation coefficients, one for the fluid 
and two for the skeleton, a complete set of parameters for 
geothermal poroelastic rocks are obtained.  

This formulation makes more comprehensible the linear 
theory. The Finite Element Method is very convenient to 
solve the resulting equations. To illustrate the practical use 
of this tensor four-dimensional formulation three 
applications are outlined:  a) Full deduction of the classical 
Biot’s theory coupled to thermal stresses; b) deformation of 
an aquifer under cold isothermal conditions and c) 
simulation of the same aquifer when its temperature changes 
to a geothermal state. 

1. INTRODUCTION  

Several factors affect the geomechanical behavior of porous 
crustal rocks containing fluids: porosity, temperature, and 
pressure, characteristics of the fluids, fissures, and faults. In 
classic elastic solids only the two Lamé moduli, (λ, G) or 
Young’s elastic coefficient and Poisson’s ratio (E, ν), are 
sufficient to describe the relations between strains and 
stresses. In poroelasticity, we need five poroelastic moduli 
for the same relationships, but only three of these parameters 
are independent. The Biot’s field variables for an isotropic 
porous rock are the stress σ acting in the rock, the bulk 
volumetric strain εB, the pore pressure pf and the variation of 

fluid mass content ζ. The linear relationships among these 
variables are the experimental foundations of Biot’s 
poroelastic theory (Biot & Willis, 1957; Wang, 2000).  

In matrix form these relationships are: 

1

1 1

B B

f

C H
pH R

σε
ζ

−

− −

⎛ ⎞⎛ ⎞⎛ ⎞
= ⋅⎜ ⎟⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠ ⎝ ⎠
     (1) 

Where KB, H and R are poroelastic coefficients that are 
experimentally measured as follows (Wang, 2000): 
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Here VB is the bulk volume, consisting of the rock skeleton 
formed by the union of the volume of the pores VΦ and the 
volume of the solid matrix VS. The control volume is ∆VB; 
mf   is the fluid mass content per unit volume VB, and ρ0 is 
the initial fluid density. The drained coefficients KB and CB 
are the bulk modulus and the bulk compressibility of the 
rock, respectively; 1/H is a poroelastic expansion 
coefficient, which describes how much ζ changes when σ 
changes when pf remains constant. Finally 1/R is an 
unconstrained specific storage coefficient, which represents 
the changes of ζ when pf changes. This parameter is 
measured when the applied stress σ remains constant. The 
value of 1/R is determined by the compressibilities of the 
frame, the pores, the fluid and the solid grains (Wang, 2000). 
The poroelastic coefficients given by equation (2) entirely 
describe the poroelastic response of the rock for isothermal, 
isotropic processes. Inverting the matrix equation (1) and 
replacing the value of σ in ζ we obtain: 
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The sign conventions are: stress σ > 0 in tension and σ < 0 
in compression; the volumetric strain εB > 0 in expansion 
and εB < 0 in contraction; ζ  > 0 if fluid is added to the 
control volume ∆VB and ζ < 0 if fluid is extracted from ∆VB; 
the pore pressure pf > 0 if it is larger than the atmospheric 
pressure. Biot (1941) and (Biot & Willis, 1957) introduced 
three additional poroelastic parameters, b, M and C, that are 
fundamental for the tensorial formulation herein presented. 
1/M is called the constrained specific storage, which is equal 
to the change of ζ when pf changes measured at constant 
strain. Both parameters M and C are dependent and 
expressed in terms of the three fundamental ones defined in 
equation (2): 
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Let CS = 1/KS be the compressibility of the solid matrix. The 
Biot-Willis coefficient b is defined as the change of 
confining pressure pk with respect to the fluid pressure 
change when the total volumetric strain remains constant: 
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The coefficient C represents the coupling of deformations 
between the solid grains and the fluid. The coefficient M is 
the inverse of the constrained specific storage, measured at 
constant strain (Wang, 2000); this parameter characterizes 
the elastic properties of the fluid because it measures how 
the fluid pressure changes when ζ changes. These three 
parameters b, M and C are at the core of the poroelastic 
equations (Bundschuh and Suárez, 2009). 

2. RELATIONSHIPS WITH OTHER POROELASTIC 
PARAMETERS UNDER DIFFERENT CONDITIONS 

In the tests carried out to measure any poroelastic parameter, 
there are two type of experimental situations:  

A) under drained conditions, the rock is confined and 
subjected to support an external hydrostatic pressure σH; the 
fluid in the pores is allowed to escape. Biot (1962) called 
these conditions, “an open system”. The total stress is 
entirely supported by the rock skeleton and the deformations 
are achieved at constant pore fluid pressure pf.  

B) For the undrained conditions test, the deformations are 
measured at constant fluid mass content (∆ζ = 0). The rock 
is entirely submerged in a fluid in such a way that the 
external hydrostatic pressure is balanced by the pore 
pressure σH = - pf. The fluid in the pores remains constant; 
no fluid is allowed to move into or out of the control 
volume. The fluid remains trapped in the skeleton. For this 
reason, Biot (1962) called this test a “closed system”. 

2.1 The Skempton Coefficient and the Undrained Bulk 
Modulus 

The Skempton coefficient B is an additional parameter, 
which represents the change in pore pressure when the 
applied stress changes for undrained conditions: 
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The undrained bulk compressibility CU is defined as the 
undrained deformation obtained when the rock is subjected 
to compressive stresses in all directions and the fluid 
contained in the pores remains constant:  
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The undrained bulk modulus is related to the previous 
defined coefficients: 
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2.2 Rigidity, Lamé and Poisson Moduli 

Other elastic parameters, such as the Lame moduli λ and G 
should be measured under the same conditions. Since there 
are no shear stresses in the fluid, the shear coefficient must 
be the same in both situations drained and undrained. Thus, 
G = GU = GB (Biot, 1962; Wang, 2000). For the undrained 
Lamé modulus λU, we have: 
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The undrained Poisson’s coefficient is deduced in a similar 
way: 
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2.3 The Three Classic Biot’s Coefficients 

Introducing the bulk modulus of the fluid Kf, the Biot’s 
coefficients b, C and M can be expressed in terms of the 
other moduli and the porosity (Bundschuh & Suárez, 2009): 
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Using these expressions, the tangent modulus N (Biot, 1962) 
is defined as the pressure variation with respect to the 
porosity variation when both strain and temperature are held 
constant (Coussy, 1995): 
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2.4 The Gassmann-Biot Formula and the Porosity 

The Gassmann-Biot equation is easily derived from 
equations (7) and (11): 

2

U B

f S

b
K K

b

K K

ϕ ϕ= +
−+

       (42) 

From this equation, a useful formula for the porosity is 
obtained, which includes the Biot’s coefficients and the 
Skempton parameter: 
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The experimental limits of poroelasticity can be deduced 
from the Gassmann-Biot equation (12). Numerical values of 
all the introduced poroelastic parameters are shown in Table 
1. Both limit values of the Biot-Willis coefficient 0 ≤ b ≤ 1 
are also included and explained. 

2.5 Experimental Values of the Poroelastic Constants 

To construct Table 1 the basic experimental data set used 
was {E, G, φ, KS and Kf }. Where φ is porosity and E is the 
drained Young’s elastic modulus. The rock types are: 

[0].- Clay, (Kf  = 3.9 GPa).  
[1].- Boise sandstone, (Kf  = 2.0 GPa).  
[2].- Berea sandstone (Kf  = 3.5 GPa);  
[3].- Indiana limestone, (Kf  = 3.1 GPa). 
[4].- Andesite, (Kf = 2.1 GPa, pk = 250 bar, T = 25°C).  
[5].- Tennessee marble, (Kf  = 3.5 GPa).  
[6].- Rock with celestite, (Kf  = 2.0 GPa). 

Table 1. Poroelastic Parameters of Different Rocks. 

Rock 
Type 

φ 

(%) 

E   
(GPa) 

ν νU G 
(GPa) 

λ 
(GPa) 

λU 

(GPa) 
[0] 65.0 0.18 0.01 0.49 0.09 .001 6.1 

[1] 26.0 9.7 0.15 0.31 4.2 1.8 7.3 
[2] 19.0 13.1 0.17 0.30 5.6 2.9 10.9 
[3] 13.0 30.5 0.26 0.32 12.1 13.1 23.2 
[4] 8.5 35.8 0.31 0.32 13.7 21.7 24.8 
[5] 2.0 60.0 0.25 0.27 24.0 24.2 28.3 

[6] 0.5 42.2 0.42 0.42 14.9 73.9 74.0 

Rock 
Type 

KB  

(GPa) 
KU  

(GPa) 
KS  

(GPa) 
B 
 

b M 
(GPa) 

R 
(GPa) 

[0] 0.062 6.2 10 5 0.99 1.0 6.1 0.06 

[1] 4.6 10.1 42.0 0.61 0.89 6.9 3.2 
[2] 6.6 14.6 28.9 0.71 0.77 13.4 6.1 
[3] 21.2 31.2 72.6 0.46 0.71 20.0 13.6 
[4] 30.8 33.9 49.7 0.24 0.38 21.6 19.6 
[5] 40.0 44.3 50.0 0.49 0.19 107.3 97.0 
[6] 83.8 83.9 85.0 0.06 0.01 384.3 384.0 

 
References used: Rocks [0], [1], [2] and [3], Wang (2000); 
[4], Bundschuh and Suárez (2009); [5], Detournay and 
Cheng (1993); [6], Mavko (et al., 2003). The figures in 
italics were estimated using the poroelastic formulas (4-13). 
Rocks of type [0] and [6] are the two limit cases of linear 
poroelastic theory, for b ≈ 1 and b ≈ 0, respectively.  

For the case of a hard volcanic rock with very low porosity 
(Table 1): 
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The parameter C depends on both, the fluid properties and 
the bulk rock properties. Whereas coefficient M depends 
only on the porosity and on the fluid bulk modulus. This is 
the case of a rigid frame.  

The other limit case is for sedimentary rocks with high 
porosity, for example sandstones (Table 1). In this case 
equations (7a,b) and (12) become: 

       1, ,  f
U B B S

K
b K K K K

ϕ
≈ ≈ + << ⇒          (75a) 

1
+  ,  

fS

U f S

K
C M

K K K

ϕϕ
ϕ

≈ ≈ ≈         (85b) 

We need many poroelastic coefficients to support 
poroelastic theory, but only three of these parameters are 
actually independent. The basic parameters selected to 
constitute an experimental reference set can be the drained 
bulk compressibility CB =1/KB, the expansion coefficient 1/H 
and the unconstrained specific storage 1/R (Wang, 2000). 
Other three possible basic coefficients are the drained bulk 
modulus KB, the undrained bulk modulus KU, and the Biot 
coefficient b (Detournay and Cheng, 1993). However, it is 
impossible to compute all the coefficients of the theory 
using only the classical elastic constants; at least five mixed 
coefficients are necessary for the poroelastic coupling. It is 
proved in a recent publication (Bundschuh and Suárez, 
2009) that a sufficient set of measured parameters is for 
example {E, G, ϕ, KS, Kf}; with these coefficients, we can 
compute the full set of 16 poroelastic constants (C and H are 
not included in Table 1). To describe the saturating fluid, we 
need its pressure and its temperature. It is possible to make 
other choices of the basic experimental parameters using the 
relationships developed in this section. 

3. FOUR DIMENSIONAL-TENSOR FORMULATION 
OF BIOT’S POROELASTIC THEORY  

Let us and uf be the displacements of the solid and fluid 
particles; let u = uf – us be the displacement of the fluid 
phase relative to the solid matrix respectively. Let εs, εf, ϕs, 
ϕ, Vs and Vf be the volumetric dilatations, porosities and 
volumes of each phase; – εV is the volumetric deformation of 
the fluid phase relative to the solid phase. The mathematical 
expressions of these variables are: 
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Biot and Willis (1957) introduced the strain variable ζ (u, t), 
defined in equation (3), to describe the volumetric 
deformation of the fluid relative to the deformation of the 
solid with homogeneous porosity: 

( )s f s f V( u ,t ) u uζ ϕ ϕ ε ϕ ε ϕ ε= ∇ ⋅ − = − =
rr r r

       (107) 

The function ζ represents the variation of fluid content in the 
pore during a poroelastic deformation. The total applied 
stresses in the porous rock are similar to the equations of 
classic elasticity. However, we need to couple the effect of 
the fluid in the pores. The linear components of the global 
stresses, deduced experimentally by Biot, (Biot, 1941; Biot 
and Willis, 1957; Biot, 1962; Wang, 2000) are: 
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The fluid stress is equal to the fluid pressure and is deduced 
from equation (3): 
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3.1 The 4D – Tensorial Equation for Stresses 

We define a two-order tensor σT = (σij) which includes the 
bulk stress tensor σB acting in the porous rock and the fluid 
stress σF acting in the fluid filling up the pores, positive in 
compression. This global tensor is in four dimensions, 
because it is represented by a (4 4) matrix related to a linear 
map in 4D. Both parts of the tensor are influencing the bulk 
rock deformation in the following way: 
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This tensorial equation become identical to the equation of 
Hookean solids, when the rock has zero porosity and b = 0. 
The inclusion of the fourth dimension is necessary to extend 
the classical theory of solid elasticity to linear poroelastic 
rocks, taking into account the effect of the fluid phase. 

3.2 The Terzaghi Effective Stresses 

From equations (8) and (19), we deduce that: 
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Therefore: 

2ij B ij ij ij ij f ije G b pτ λ δ ε σ τ δ= + ⇒ = −        (22) 

Tensor τij is called the Terzaghi effective stresses that act 
only in the solid matrix; bpf is the pore-fluid pressure. For 
this reason, b is called the effective stress coefficient. Since 
there are no shear tensions in the fluid, the pore fluid 
pressure affects only the normal tensions σi (i = x, y, z). The 
functions σij are the applied stresses acting in the porous 
rock saturated with fluid. They express that the poroelastic 
response is controlled by the difference between effective 
stress and pore pressure. This is the Law of Effective Stress 
(Wang, 2000; Terzaghi, 1943). Equation (22) illustrates the 
mechanism of the poroelastic coupling. The solid matrix (τij) 
supports one portion of the total applied tensions in the rock 
and the fluid in the pores (bpf ) supports the other part. This 
is a maximum for soils, when b ≈ 1 and is minimum for 
rocks with very low porosity where b ≈ 0 (Table 1). 

The matrix form of equation (22) becomes: 
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The simplicity of the 4D poroelastic formulation becomes 
clear and evident with this tensor formula. 

3.3 The 4D – Tensorial Equation for Strains 

Inverting the matrices of equation (20), we arrive to the 
following tensorial form of the poroelastic strains: 

2

3
;

2 3 2

3
2

; , , ,
3

f ijii
ii M ij

M U ffM

U

xx yy zz
M B B

B

p

G E H G

C K pp

H R M K C

K b M

K G i j x y z

σσ νε σ ε

σσζ

σ σ σ
σ ε ζ

λ

= − + =

+
= + =

−

+ +
= = −

= + =

   (24) 

Note that both tensorial equations (20) and (24) only need 
four basic poroelastic constants. The presence of fluid in the 
pores adds an extra tension due to the hydrostatic pressure, 
which is identified with the pore pressure, because it is 
supposed that all the pores are interconnected. This linear 
theory is appropriate for isothermal, homogeneous and 
isotropic porous rocks. 

4. THE GIBBS POTENTIAL IN THE 4D-TENSORIAL 
FORM OF NON-ISOTHERMAL POROELASTICITY  

The basic equations of state in a saturated porous rock are 
the internal energy and the specific enthalpy for the fluid 
phase. For the skeleton, the appropriate function is the free 
enthalpy or Gibbs potential (Coussy, 1995). This potential, 
completely describe the exchanges of energy in a porous 
medium. The Gibbs free internal enthalpy GS (subindex S 
means skeleton), is useful to derive the equations of the rock 
skeleton in non-isothermal, reversible processes. If we 
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assume that the internal energy dissipation is zero and that 
the processes involved are reversible, then the heat 
exchanged is equal to the product of the absolute 
temperature T [K] and the entropy SS [J/K] of the skeleton. 
The function GS = GS (εij, p, T) establishes mathematical 
relationships among heat, strains, stresses and pore pressure. 
This potential is equal to the algebraic difference of the 
enthalpy HS minus the heat exchanged QS = TSS. It is more 
convenient to formulate this function per unit volume of 
rock: 

3 3
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m m
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= = − ⇒
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The functions gS, hS, and sS, represent the volumetric Gibbs 
potential, the volumetric enthalpy and the volumetric 
entropy of the skeleton respectively. The total differential of 
gS (εij, p, T) is by definition: 
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S S S
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g g g
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σ ϕ
ε
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  (26) 

These partial differential equations are integrated between 
an initial state gS

0(εij (0) = 0, pf = p0, T = T0) when the strain 
was zero, and a final state gS (εij, p, T). In this case, an initial 
reference temperature T0 and an initial pore pressure p0 are 
necessary because both thermodynamic variables T and p are 
going to change in non-isothermal processes occurring in the 
geothermal reservoir. 

4.1 The Skeleton Energy Dissipation Function. Analytic 
definition of the Gibbs Potential 

The potential gS (εij, p, T) is the thermoporoelastic available 
enthalpy per unit volume [J/m3]. Coussy (2004) deduced the 
energy dissipation function ΨS of the skeleton, using this 
volumetric Gibbs potential, in terms of the stresses, the 
porosity, the pore pressure and the density of entropy per 
unit volume of porous rock SS [J/m3/K] as follows: 

0
ij fs s
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d dpd dgd T
 = S

d t d t d t d t d t

ε
σ ϕΨ

− − − ≥  (27) 

If there is no energy dissipation (dΨS /dt = 0) and for small 
changes in ∆VB, the Gibbs’ potential describes the behavior 
of the skeleton. Its analytical expression is obtained by 
integrating all the equations (26) (Coussy, 1995): 
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( )

( )
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( )( ) ( )
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2 2
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g g p p T T

g g p T

g

K
p S T b p p

p p T T K T T

p p C T T
G

N T

ϕ

ε

ε

εσ ε σ σ δ ε δ

ϕ ε ε

γ γ ε

εε δ

= = =

= ⇒

⎛ ⎞= + − − +⎜ ⎟
⎝ ⎠

− − + − − +

+ − − − − +

− − ⎛ ⎞− − + −⎜ ⎟
⎝ ⎠

 (28) 

The parameters γB and γϕ [1/K] are the volumetric thermal 
dilatation coefficients. The first one γB measures the 

dilatation of the skeleton, while γϕ is related to the porosity. 
CV is the skeleton volumetric heat capacity coefficient under 
constant deformations (strains and pore pressure are held 
constants). Their mathematical definitions are: 

1 1 1

K
k k

SB
B

B Sp p

  V
   

V  T  T

ργ
ρ

∂∂ ⎛ ⎞⎛ ⎞ ⎡ ⎤= = − ⎜ ⎟⎜ ⎟ ⎢ ⎥∂ ∂ ⎣ ⎦⎝ ⎠ ⎝ ⎠
       (29a) 

( )1 1
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K
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ϕ
ϕ

ϕ

ϕ

ϕ
γ

ϕ

ϕγ
ϕ

⎛ ⎞∂⎛ ⎞ ∂
= = ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

∂⎛ ⎞ ⎡ ⎤⇒ ⎜ ⎟ ⎢ ⎥∂⎝ ⎠ ⎣ ⎦

   (29b) 

4.2 The Thermo-Poroelastic Equations in Geothermal 
Reservoirs 

Using the differential relationships of equations (26) we 
obtain: 

( ) ( )

0

0 0

2S
ij ij B ij ij

ij

ij B B ij

g
G

b p p K T T

σ σ λ ε δ ε
ε

δ γ δ

∂
= = + + +

∂

− − − −
  (30) 

( ) ( )0
0 0

S
B

p pg
b T T

p Nϕϕ ϕ ε γ
−∂

= − = + − − +
∂

    (314) 

( )( )0
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M
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p pb
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K M ϕ
σζ ζ ϕ γ γ

−
= + + + − −       (32) 

( ) ( )00
0

0

S
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T Tϕγ ε γ
−∂

= − = + − − +
∂

 

   (33) 

The bulk modulus Kf and the thermal expansivity γf [1/K] of 
the fluid are defined as follows: 

1 1
 

1 1

f f

f
f

f f T

f f
f

f fp p

C
K p

V

V T T

ρ
ρ

ρ
γ

ρ

∂⎛ ⎞
= = ⎜ ⎟⎜ ⎟∂⎝ ⎠

∂ ∂⎛ ⎞ ⎛ ⎞−= =⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠

  (34) 

Note that for isothermal processes in rocks with zero 
porosity ϕ = 0, T = T0 and p = p0, the system of equations 
(30), (31), (32) and (33), is reduced to Hooke’s Law, for 
linear elastic solids. If only the temperature is constant, T = 
T0, the system of poroelastic equations (18) is recovered. 
The pore pressure is equal to the fluid pressure (p = pf ), 
which can be measured in the field or calculated using the 
equation of state for the fluid. 

4.3 The Heat Equation in Thermoporoelasticity 

Using the classic relationship between heat and entropy for 
reversible processes: 

0
S

T

T T

sQ
T q

t t

q k T

δ
δ

∂
= = −∇ ⋅

∂
= − ⋅∇

r r

rr
   (35) 

Where qT is the heat flow of the Fourier’s law of conduction 
and kT [W/m/K] is the average rock thermal conductivity.  
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Developing this expression in terms of the entropy function 
sS (εij, T): 

0 0

0 0
0

ijs s s
T

ij

ij V B
B B ij B B V

s s s T
q T T

t t T t

C T T
T K K T C

t T t t t

ε
ε

ε εγ δ γ
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⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠

∂⎛ ⎞ ∂∂ ∂+ = +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

r r

 (36) 

Introducing the expression for the volumetric heat capacity 
in terms of the average specific isobaric heat capacity cp and 
the fluid-solid density ρ = ϕ ρf + (1- ϕ) ρs, the heat equation 
for the isotropic skeleton is deduced: 

2
0

B
B B p T V

T
K T c v T k T q

t t

εγ ρ∂ ∂⎛ ⎞+ + ⋅∇ = ∇ +⎜ ⎟∂ ∂⎝ ⎠

rr
     (37) 

This formula is a thermoporoelastic equation coupling the 
rate of changes of the strains and the heat transported by 
conduction. To take into account the reservoir heat 
production and the effect of the advective transport of 
energy by the moving fluid in the porous rock, the fluid 
velocity term and the volumetric heat produced are included. 
v is the Darcy’s velocity and qV is the volumetric thermal 
energy production [W/m3]. 

4.4 The 4D Tensorial Formulation of Geothermal 
Poroelasticity 

As we did for the isothermal poroelasticity, we can write in a 
single four-dimensional tensorial equation the results of 
thermoporoelasticity relating stresses and strains. We solve 
first equation (32) in terms of the pore pressure: 

( ) ( )( )0 0 0B fp p M C M T Tϕζ ζ ε ϕ γ γ− = − − − − −     (38) 

Expanding the terms of equations (30) and (36), and 
grouping them in their respective positions, we obtain the 
4D thermoporoelastic matrix formulae, which include the 
thermal tensions in the total stress tensor: 
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     (39) 

Finally, from equation (33), we deduce an important 
relationship to compute the fluid pressure variation when the 
temperature changes keeping constant the confining pressure 
and the fluid content: 

( )f
p

M
T ϕ

ζ
ϕ γ γ

⎛ ⎞∂ = − −⎜ ⎟∂⎝ ⎠
   (40) 

As a general trend, thermal expansion increases when 
temperature rises. The volumetric thermal expansivity γB is 
about 10-5 K-1 for solids, 10-4 K-1 for liquids and 10-3 K-1 for 
gases. For water, at 80°C and 1 bar, γB = 5.0  10-4 K-1. For 
the expansivity of the pores, γϕ ≈ 1.0  10-5 K-1. For low 
porosity hard volcanic rocks such as granite, a measured 
value of γB = 5.0  10-5 K-1 was obtained. 

4.5 A Consolidation Diffusion Equation 

Consolidation is a transient process occurring in porous 
rocks when pore pressure equilibrium is re-established after 
a change in the stress state. This process involves a flow of 
the pore fluid through the porous rock. This fluid flow obeys 
Darcy’s law. From the definition of the variable fluid mass 
content ζ given in equation (17): 

( , )
u

u t u
t t

ζζ ϕ ϕ∂ ∂= − ∇ ⋅ ⇒ = − ∇ ⋅
∂ ∂

rr rr r
  (415) 

Neglecting gravity, Darcy’s velocity is given by: 

and   f
v u k

v p
tϕ µ

∂= = − ∇
∂

r r rr
   (42) 

Where k is the rock permeability and µ is its viscosity. 
Equating both equations (41) and (42) we obtain: 

2
f f

u k k
v p p

t t

ζϕ
µ µ

∂ ∂∇ ⋅ = ∇ ⋅ = − ∇ ⋅∇ ⇒ = ∇
∂ ∂

rr r r rr
       (43) 

This parabolic type partial differential equation is a 
consolidation diffusion equation, which characterizes the 
transient laminar fluid flow in a porous rock as function of 
the fluid pressure and of the variation of fluid content. We 
apply the diffusion equation (43) to a vertical stratum of 
homogeneous porous rock, of volume VB. We suppose that 
the lateral strains are negligible, the rock has high 
permeability, especially at the top of the column, and it is 
impermeable at the bottom, at a depth equal to h0. Assuming 
that the vertical stress does not change with time, the 
differential problem is: 

( ) ( ) ( )0 0

2

, ;  0, 0;  , 0
f
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f
D f

p
p h t p t p z p

z
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     (44) 

Where the poroelastic diffusion coefficient is: 

( ) 2 2
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  (45) 
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5. DYNAMIC POROELASTICITY EQUATIONS 

The preceding brief reconstruction of Biot’s theory and the 
definition of the corresponding parameters, give the basis to 
establish a full tensorial model to represent linear, isotropic 
poroelasticity for Hookean rocks. This formulation is very 
convenient to be solved using the Finite Element Method. 
The fundamental poroelastic differential equation is the 
tensorial form of Newton’s second law in continuum porous 
rock dynamics: 

2

2
;

where :     ;

T
T T T

T B T T

u
div F div

t

u

σ ρ σ σ

σ ε ε

∂+ = = ⋅
∂

= ⋅ = ⋅

ruuur uuurrr r r

r rr r

L

C L

  (46) 

The terms σT and εT are the equivalent vectorial form of 
tensorial equations (20) and CB is the matrix of poroelastic 
constants derived from this expression. While F is the body 
force acting on the rock and the tensor differential operator 
L is given by: 

0 0 0

0 0 0

0 0 0
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x y z x
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y x z y
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u  e
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⎝ ⎠

r

L

L

 (47) 

Where u = (ux, uy, uz) is the displacement vector of equation 
(16). Using the operator L in equation (46), the dynamic 
poroelastic equation becomes: 

( )
2

2
T

B
u

u F
t

ρ ∂⋅ ⋅ ⋅ + =
∂

rrr
L C L   (48) 

5.1 Solution of Thermoporoelastic Equations: The Finite 
Element Method 

Equation (48) includes Biot’s poroelastic theory. It can be 
formulated and numerically solved using the Finite Element 
Method (FEM). Let Ω be the bulk volume of the porous 
rock, and let ∂Ω be its boundary, u is the set of admissible 
displacements in equation (48); fb is the volumetric force 
and fs is the force acting on the surface ∂Ω. After doing 
some matrix algebra we arrive to a FEM fundamental 
equation for every element Ve in the discretization: 

2
e e

2
;  1

e
e ed

d F e , M
t

∂⋅ + ⋅ = =
∂

r
r r

K M   (49) 

de is a vector containing the displacements of the nodes in 
each Ve. Equation (49) approximates the displacement u of 
the poroelastic rock. Fe is the vector of total nodal forces. Ke 
and Me are the stiffness and equivalent mass matrices for the 
finite element Ve. The mathematical definitions of both 
matrices are: 

e

e

e T
B

V

e T

V

d V ; 1,

; d V

e M

ρ

= ⋅ ⋅ =

= ⋅ = ⋅

∫

∫

K B C B

B== L N M N N
  (50) 

Where N is the matrix of shape functions that interpolate the 
displacements. Matrix B  is called the strain poroelastic 
matrix (Liu and Quek, 2003). 

6. DEFORMATIONS OF A POROELASTIC AQUIFER  

This section contains two applications of the theory herein 
presented. The first one reproduces the deformation of an 
isothermal aquifer already published (Leake & Hsieh, 1997). 
The second one illustrates the form in which a temperature 
change can affect the poroelastic deformation of the same 
aquifer. In the first example, we assume that the aquifer 
contains cold water at 20°C, with a density of 1000 kg/m3. 
After, we consider a higher temperature of 250°C (50 bar, 
800.4 kg/m3). The program code of the model and the 
computations were done using COMSOL-Multiphysics 
(2006). The description of the reservoir is as follows. 

6.1 Isothermal Deformation of a Poroelastic Aquifer 

Three sedimentary layers overlay an impermeable bedrock 
in a homogeneous and isotropic basin where faulting created 
a bedrock step (BS) near the mountain front. Figure 1 
illustrates the idealized geometry of the basin and the BS. 
Figure 2 shows the mesh constructed to model this problem 
with finite elements. The sediment stack totals 420 m at the 
deepest point of the basin (x = 0 m) but thins to 120 m above 
the BS (x > 4000 m). The top two layers of the sequence are 
each 20 m thick. The first and third layers are aquifers; the 
middle layer is relatively impermeable to flow.  

 

Figure 1: The simplified geometry of the aquifer and the 
impermeable bedrock in the basin. Initial state 

 

Figure 2: The mesh of the basin with 2967 finite elements 
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The water in the aquifer obeys Darcy’s law for head h: 

X Y V S
h h h

K K q S
x x y y t

⎛ ⎞∂ ∂ ∂ ∂ ∂⎛ ⎞ + + =⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
 (51) 

Where KX and KY are the hydraulic conductivities and SS is 
the specific storage. The flow field is initially at steady state, 
but pumping from the lower aquifer reduces hydraulic head 
by 6 m per year at the basin center. The head drop moves 
fluid away from the step. The fluid supply in the upper 
reservoir is limitless. The period of interest is 10 years. For 
the computations, data of Table 1 were used. To facilitate 
the comparison of the results with the non-isothermal case, 
both group of graphics are shown together in figures (3) to 
(8) in the same page. A discussion of numerical results 
follows.

 

Figure 3:Poroelastic deformation of the basin with water 
at 20°C after ten years of fluid extraction. 
Streamlines represent the fluid - porous rock 
coupling 

 

 

Figure 4: Horizontal strain at the basin with a BS. Case 
of cold water at 20°C 

 

 

Figure 5: Vertical strain at the basin with a BS. Case of 
cold water (20°C) 

 

Figure 6: Thermoporoelastic deformation of the basin 
with hot water (250°C) after ten years of fluid 
extraction. Streamlines represent the fluid - 
porous rock coupling 

 

 

Figure 7: Horizontal strain at the basin with a BS for the 
case of geothermal water at 250°C 
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Figure 8: Vertical strain at the basin with a BS for the 
case of geothermal water at 250°C 

6.2 Non-Isothermal Deformation of the Aquifer and 
Discussion of Results 

The same three sedimentary layers overlay the impermeable 
bedrock, but in this non-isothermal case, the water in the 
aquifer is a geothermal fluid, at 250°C. The two examples 
presented herein were solved using the Finite Element 
Method (COMSOL - Multiphysics, 2006) for a known 
problem of linked fluid flow and solid deformation near a 
bedrock step in a sedimentary basin. The problem in both 
examples concerns the impact of pumping for a basin filled 
with sediments draping an impervious fault block.  

The basin is composed of three layers having a total depth of 
500 m and is 5000 m long in both cases. The Darcy’s law 
(eq. 51) for simple water is coupled to the rock deformation 
via equation (22) through the porosity φ, which is implicit in 
the storage coefficient SS: 

( )S f B fS g C Cρ ϕ= +       (52) 

Where g (9.81 m/s2) is gravity acceleration, ρf  is the water 
density, CB (0.22 10-9 1/Pa) is the bulk rock compressibility 
and Cf (0.4 10-9 1/Pa) is the compressibility of water. All 
units are in the SI. Figures (3) and (6) show simulation 
results of the basin for years 1, 2, 5, and 10, respectively, for 
cold and for hot water. The results of the first example are 
shown in figures (3, 4 and 5). They correspond to a coupled 
isothermal poroelastic deformation when the water in the 
aquifer is cold (fluid density of 1000 kg/m3, temperature of 
20 °C, and pressure of 50 bar).  

The results of the second simulation (Figs. 6, 7 and 8) 
correspond to a coupled thermoporoelastic deformation 
when the water in the aquifer is under geothermal conditions 
(fluid density of 800.4 kg/m3, temperature of 250°C, and 
pressure of 50 bar). Figures (4) and (7) compare the 
horizontal strains, illustrating the evolution of lateral 
deformations that compensate for the changing surface 
elevation above the bedrock step. Figures (5) and (8) 
compare the vertical strains in both cases, cold and 
geothermal respectively. Note that except in figures (3) and 
(6), vertical scales are different in both examples for clarity. 
Table 2 contains some data used for the computations. 

 

 

Table 2. Numerical Values of the Parameters Used in the 
Simulations. 

Hydraulic 
conductivity, 
upper, lower 

aquifers 

KX  = 25 
(m/day) 

Poroelastic 
storage 

coefficient, 
upper 

aquifer 

SS = 10-6 

Hydraulic 
conductivity 

confining 
layer 

KY  = 0.01 
(m/day) 

Poroelastic 
storage 

coefficient, 
lower 

aquifer 

SS = 10-5 

Biot-Willis 
coefficient 

(cold water) 
b = 0.3 

Biot-Willis 
coefficient 
(hot water) 

b = 1.0 

Young’s 
modulus 

E = 8.0 108   

(Pa) 
Poisson’s 

ratio 
ν = 0.25 

 
CONCLUSIONS  

■  All crustal rocks forming aquifers and geothermal 
reservoirs are poroelastic and the fluid presence inside the 
pores affects their geomechanical properties. Several other 
factors affect the behavior of reservoir rocks: porosity, 
pressure, temperature, type of fluid, fissures and faults. The 
elasticity of aquifers and geothermal reservoirs is evidenced by 
the compression resulting from the decline of the fluid 
pressure, which can shorten the pore volume. This reduction of 
the pore volume can be the principal source of fluid released 
from storage. 

■  A full 4D tensorial formulation of the classic Biot’s 
poroelasticity theory was presented and its extension to non-
isothermal phenomena was included. The equations 
developed are useful for the analysis of linear porous 
geothermal reservoirs with an elastic skeleton containing 
interconnected pores and non-isothermal fluids. With the 
inclusion of the fourth dimension, it is relatively simple and 
clear to extend the theory of solid linear elasticity to 
thermoporoelastic rocks, taking into account the effect of 
both, the fluid phase and the temperature. 

■   The immediate physical experience shows that the supply 
or extraction of heat produces deformations in the rocks. 
Any variation of temperature induces a thermo-poroelastic 
behavior that influences their elastic response. Two 
numerical examples of a poroelastic aquifer were presented: 
one with cold water, and another with geothermal water. For 
cold water, the estimated value of the vertical strain εz is 
about -1.5x10-4, while for hot water εz is -7.5x10-4. 
Therefore, the poroelastic deformations are much higher in 
geothermal reservoirs than in cold isothermal aquifers. In the 
first case the bulk modulus of water Kw= 0.45 GPa, 
corresponding to T = 250°C. For cold aquifer Kw= 2.5 GPa. 

■  The bulk modulus of water affects other poroelastic 
coefficients, including the expansivity of rocks The 
expansivity of geothermal rocks is relatively small, but its 
effects can produce severe structural damages in rocks 
subjected to strong temperature gradients, as happens during 
the injection of cold fluids. This is of great importance for 
enhanced geothermal systems, when the injected fluid 
circulates in the underground. This action can change both, 
the permeability and the rock thermal conductivity.  

■  The final conclusion is that changes in applied stress 
produce changes in fluid pressure or in fluid mass. Any 
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change in fluid pressure or in temperature or in fluid mass 
can produce a change in the volume of the porous rock.  
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