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ABSTRACT

In this work, we present a methodology within the context
of stochastic simulation for assessing uncertainty in future
pressure changes simulated by using history-matched
lumped models for low-temperature geotherma systems.
Specifically, we consider the randomized maximum
likelihood method (RML) for the assessment of uncertainty.
We show that this methodology allows us to incorporate
into the performance predictions any uncertainties in both
the model and the measured data. In this way, we are able
to characterize or appraise the uncertainty in the predicted
future pressure changes. Once the uncertainty in predicted
performance is characterized or assessed, it is possible to
make reservoir management decisions that account for an
incomplete knowledge of the actua geothermal system.
One synthetic example application is presented to show the
use of the methodology proposed in this work.

1. INTRODUCTION

The behavior of low-temperature geothermal reservoirs
under exploitation can be simulated using either analytical
lumped-parameter models (Grant et. al., 1982; Axelsson,
1989; Axelsson et al., 2005, Sarak et al., 2005) or
distributed (numerical) models (Bodvarsson et al., 1986;
O'Sullivan et al., 2001). Numerical models are, of course,
more general than lumped-parameter models in that one can
account for spatial variations in thermodynamic conditions
and reservoir properties as well as for different well spacing
and locations. However, they require a large amount of
input data for modeling, simulation and prediction studies.
This work specifically focuses on modeling of low-
temperature geothermal reservoirs through the use of
simple lumped-parameter models.

Over the last years, lumped-parameter models have been
used for history matching and predicting pressure (or water
level) changes in low-temperature geotherma systems in
Iceland, Turkey, The Philippines, China, Mexico and other
countries. Axelsson et al. (2005) and Sarak et al. (2005)
have presented severa field applications of various lumped-
parameter models to low-temperature geothermal systems.
When |umped-parameter models are used, model
parameters can be obtained by applying nonlinear |east-
squares estimation techniques in which measured field
pressure (or water level) data are history matched to the
corresponding model response (Axelsson, 1989, and Sarak
et al., 2005). Then, by using history-matched models, the
future performance (in terms of pressure changes or water
levels) of the reservoir can be predicted for different
production/re-injection  scenarios to optimize the
management of a given low-temperature geothermal
system.

The ultimate goal in any geothermal reservoir study is to
predict future performance and even more important to
predict the uncertainty in future predictions under different
management options. This is necessary to determine the
production/re-injection  practices that will provide
sustainable exploitation of the geotherma system in
consideration. Uncertainty in all future predictions of
pressure changes is inherent due to (i) measurement errors
or noise in observed data, (ii) modeling errors, (iii) span of
the available observed data (pressure change data and
production history), and (iv) nonlinear relationship between
model parameters and observed response.

The objective of this paper is to discuss the uncertainty in
performance predictions and provide a methodology for the
assessment of uncertainty in performance predictions. This
is accomplished with a stochastic method of modeling that
incorporates uncertainties both in the model and observed
data to future performance predictions. Specifically, we
consider the application of the randomized maximum
likelihood method (RML) for the assessment of uncertainty
to lumped-parameter modeling. This method has been
shown to be quite efficient for the assessment of uncertainty
in performance predictions for nonlinear problems
(Kitanidis et al., 1995; Oliver et al., 1996; Liu and Oliver,
2003; Gao et al., 2005).

The paper begins with a brief review of lumped-parameter
models considered in this study. Then, history matching and
performance prediction problems within the context of
maximum likelihood and randomized maximum likelihood
methods are discussed. Finadly, a synthetic example
application is presented to demonstrate the methodology
proposed in this study for the assessment of uncertainty in
performance predictions by lumped-models for low-
temperature geothermal systems.

2. LUMPED PARAMETER MODELING

The lumped-parameter modeling considered here is very
similar in concept to the one presented originaly by
Axelsson (1989) and identical to the one presented later by
Sarak et al. (20033, 2003b, and 2005). As in these works,
our lumped-parameter models are based on the
conservation of mass only and hence are valid for low-
temperature liquid reservoirs under the assumption that
variations in temperature within the system can be
neglected (i.e. the simulated systems are assumed to be
isothermal).

Lumped-parameter modeling can be regarded as a highly
simplified form of numericad modeling. In numerical
models, a geothermal system is represented by many (>100
to 10°) gridblocks. On the other hand, in lumped-parameter
modeling, a geothermal system is represented by only a few
homogeneous tanks and is visualized as consisting of
mainly three parts: (1) the central part of the reservoir; (2)
outer parts of the reservair, and (3) the recharge source. The
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first two are treated as series of homogeneous tanks with
average properties. The recharge (or constant pressure)
source can be connected to the other parts of the reservoir
or directly to the central part of the reservoir and is treated
as a“point source” that recharges the system. If there is no
connection to the recharge source, the model would be
closed, otherwise would be open. Two different open
lumped-parameter models are depicted in Fig. 1.

The model shown in Fig. 1(a) represents a two-tank open
lumped model, where the first tank, in which
production/injection occurs, represents the innermost (or
central) part of the geothermal system. The changes in
pressure in this part are monitored and production/injection
rates are recorded. In the second tank, representing the
outer part of the reservoir that is connected to the recharge
source, there is neither production nor injection, and it
recharges the central reservoir. Fluid production causes the
pressure in the reservoir to decline, which results in water
influx from the outer to the central part of the reservoir. The
recharge source represents the outermost part of the
geothermal system.

When using the lumped-parameter models considered in
this work (Fig. 1), the simulated model (output) response
represents pressure or water level changes for an
observation well for a given net production history (input).
The number of model parameters increases as the number
of tanks or the complexity of the lumped model increases.

Here and throughout, o represents the recharge constant
between the tanks in kg/(bar-s), x represents the storage
capacity (or coefficient) of a tank in kg/bar, and p
represents the initial pressure of the recharge source in bar.
The geothermal system is assumed to be in hydrodynamic
equilibrium initialy; i.e., the initial pressure, p;, is uniform
in the system. In cases for which the initial system pressure
(or initial water level), p;, is known, p; can be eliminated
from the unknown set of model parameter vector. Further
details about the lumped-parameter models used in this
study can be found in Sarak et al. (2003a, b, and 2005).

3. HISTORY MATCHING PROBLEM

After a period of production from a geothermal reservoir,
and based on the production/injection rate history given, a
lumped-parameter model can be matched to the observed

pressure (or water level) data to obtain the parameters of
that particular model.

Here and throughout, y, . refersto the vector of measured

or observed pressure change data, and contains al Ny
pressure change measurements that will be used for
estimating the model parameters by nonlinear regression.
We let Cp be the NgxNg symmetric positive-definite
covariance matrix for pressure change measurement errors,
and assume that measurement errors for pressure data are
Gaussian with mean zero (vector) and covariance matrix Cp
[i.e., N(O, Cp)]. N(O, Cp) represents a normal distribution
with mean zero and covariance matrix Cp. Throughout, a
boldface capital letter denotes a matrix, while a boldface
lower case letter denotes a column vector.

Letting € denote the Ng-dimensional vector of errors for
observed data and m=(m,m,,---,m, )" denote the vector

of unknown model parameters that are estimated, it follows
that

)

Ve = T (M) +e€

Here f refers to the Ng-dimensiona vector of computed
pressure-change data from a considered lumped model, for
a givenm. M represents the tota number of unknown
model parameters.

As noted above, € is N(O, Cp). Thus, the likelihood
function for the model conditional to observed datais given
by (Bard, 1974)

L7 o) = @]~ v~ (W] €[ Yoo ()]}
@

where the superscripts “T” and “-1" represent transpose of a
vector and inverse of a matrix, respectively. The maximum
likelihood estimate of m, which honors measured pressure
data, is obtained by maximizing Eq. 2, or equivalently,
minimizing the objective function O(m) given by

T
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Figure 1: Two different lumped-parameter models. (a) two tank open lumped parameter model (b) threetank open lumped
parameter model
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Eqg. 3 is the objective function for the well known general
nonlinear least-squares method, and assumes that the data
error covariance matrix Cp is known. Often we do not have
enough information to construct the data error covariance
matrix Cp that may account correlation between
measurement errors. Hence, the commonly used assumption

isthat the N, x N, Cp is adiagonal matrix in Eq. 3. If data
measurement errors are independent random variables with
mean zero and known variance o ; for each observed data

Yobsj» then Cp is a diagonal matrix with diagonal entries
equal to o5 | ,j=1,2,...,Ng. In this case, Eq. 3 reduces to the
well known wel ghted | east-squares objective function:

2

Ng - f
o(m) = Z{y"k’sl—l(m)} (4)
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If we further assume that error variances aj ; are identical,
i.e,o;, =05 for al j, then Eq. 4 with 1/(o]) deleted

defines the objective function for the un-weighted
(ordinary) least-squares procedure.

The lumped-parameter model responses are nonlinear with
respect to the model parameters. Thus, Eq. 3 (or 4) calls for
nonlinear minimization techniques. Over the past, we have
found that the gradient based algorithms such as the
Levenberg-Marquardt method based on a restricted
procedure described by Fletcher (1987) is quite efficient to
minimize Eq. 3 or 4.

It is important to note that within the context of maximum
likelihood estimation, the observed data Y., would
represent a single realization of the observed data from a
normal distribution with mean zero and known covariance
matrix, Cp, and thus the model vector m is considered as a
random variable because different realizations of y,,s would
provide different estimates of m. Thus, when history-
matching problem is viewed within the context of the
principle of maximum likelihood estimation, one can attach
statistical measures to quantify the quality of a match as
well as the uncertainty of the model parameters estimated.
The standard statistical measures used for assessing the
quality of a match and the reliability of estimated
parameters are the root-mean-square error (RMS) and
confidence (usualy 95% percent) intervals.

The value of RMS defined by Eq. 5 shows the quality of fit
quantitatively.

1 .
RMS=\/N_Z|:yObS,j — fj (m ):| 2 (5)

d i=1

where m” represents the optimized parameter vector. The
lower the RMS value, the better the fit between field and
computed data. As we will discuss later, this does not
necessarily mean that the lumped-model giving the smallest
RMS vaue be the most appropriate model for the history-
matched data and should give the most reliable predictions.

While it is important to improve the overall match of
available data, it is equally or even more important that the
history-matched model be able to predict reliably the
uncertainty (from a statistical point of view) in predictions
due to the fact that a certain amount of error (i.e., modeling
and measurement errors, etc) will always be introduced into
the estimated parameters from the history-matching
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process. In history matching, increasing complexity of the
lumped-model (or equivalently increasing the number of
tank and hence the model parameters) may improve the
overal fitting of the model to the current data at the
expense of destroying and ignoring the underlying
statistical  basis for nonlinear least-squares parameter
estimation based on the principle of maximum likelihood.

Statistical confidence intervals are known as a useful tool to
give a quantitative evaluation of model discrimination and
assessment of uncertainty in the estimated parameters
(Dogru et al., 1977; Anraku and Horne, 1995). From the
least-squares theory under the assumption that a nonlinear

model can be linearized around the optimal estimatem”,
we know that confidence intervals contain information
about both the statistical standard deviation (s, see Eq. 7) of
the match (related to the RMS value) and the sensitivity of
observed data to the parameters. In generd, the larger the
confidence interval, the higher the uncertainty in the
estimated model parameters. The yx100% approximate
confidence intervals are computed from (Bard, 1974; Dogru
et al. 1977)

M —t(1-7/2,N, -M)s\[ (G C,'G, )| <m <

m +t(1-7/2,N, ~M)s[(G].CG, )|

(6)

where m” denotes the estimate obtained by minimizing O
(Eg. 3), M denotes the estimate of i"™ model parameter at

the minimum, G _. denotes the N, XM sengitivity matrix

(containing derivatives of observed data with respect to
model parameters) evaluated at the estimate m*, m
represents the true, but unknown vaue of the model
parameter, m, and t(1-y/2,N, —M) is the value that

cuts off (1—y)/2x100%in the upper tail of t-distribution

with N, —M degrees of freedom. (Taking y=0.95in Eq.

6 gives %95 percent confidence intervals.) In Eq. 6, s is
computed from

_ [ .O(m)
s_\j Ny —M @

It may be worth noting that s computed from Eq. 7 is a
dimensionless quantity. If the quantity s is significantly
greater than unity, this indicates either that the lumped-
model is inappropriate to reproduce the pressure data, or
that the magnitude of the pressure measurement errors
reflected by the covariance matrix Cp is underestimated. If
the model is correct, and s computed from Eq. 7 is
significantly larger than 1, this indicates that the covariance
matrix Cp used in Eq. 3 underestimates the true, but
unknown covariance matrix Cp. If the modd used for
observed data is correct, and we use the correct error
covariance matrix, then we should expect s to be close to
unity.

We should perhaps dedicate a few words to the philosophy
underlying the use of RMS and confidence intervals to
discriminate the best fitting model among the candidate
lumped models selected for history matching. There is a
relationship between the confidence intervals and the RMS.
This relationship could be complicated in the models
having large number of model parameters and when the
parameters show correlation among them. One may expect
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the uncertainty as reflected by the confidence intervals for
some parameter estimates to increase with the increasing
complexity of a model, while the value of RMS (or
equivaently the quality of a fit as defined by Eq. 7)
improves. However, in our view, as long as the lumped
model selected is appropriate and there are sufficient
observed data available to support the model, all parameters
should have “acceptable” confidence interval ranges and
the RMS value should be close to the standard deviation of
measurement errors in observed pressure data. Then, one
can accept the model. Otherwise, one rejects the model
because confidence intervals do not support the model from
a statistical point of view. In short, in our view, the best
fitting lumped model is the one providing not only the
smallest possible acceptable confidence intervals for all
parameters but also the smallest possible RM S value among
the lumped-models used for history matching. Here, our
definition is that an estimate of a parameter is acceptable if
its confidence interval range is less than 95% of the
estimated value itself. As aso shown later by a synthetic
example application, it is important to compute the
confidence intervals for the parameters in addition to the
RMS (or the value of s given by Eq. 7). The application of
this same methodology to a few field examples has aso
been demonstrated by Sarak et al. (2005).

4. PREDICTION OF FUTURE PERFORMANCE

The most important objective of |lumped-parameter
modeling is to predict future responses to given production
scenario. The parameter estimation (or history-matching)
procedure provides values of the model parameters to be
inserted into the prediction model equations. Although
forecasting future performance is similar to parameter
estimation in that they both involve the history matching of
measured data, in performance prediction we have aso to
tackle the element of uncertainty in the model parameters
and in the data observations, caused by measurement errors.
First we discuss the linear |east-squares theory, and then the
more general nonlinear case how to characterize the
uncertainty in future predicted response.

Assuming that a nonlinear model can be linearized around
the optimum parameter vector and that the measurement
errors on the observed past and future data to be observed
are independent, identically distributed random variables

with mean zero and variance o7 (i.e, Cp in Eg. 3 is a
diagonal matrix with all diagonal entries equa to o7 or
o} =0, in Eq. 4), we can show that the variance of the
predicted value of y,; a agiventimet; such that t; >t

is given by (Bard, 1974; Dogru et al., 1977; Sen and
Srivastava, 1990)

-1
ob, =05 +5°9' (GI.C,'G ) g 8)

Here, ¢ is the M-dimensional sensitivity vector of
predicted response at any time t;:

P | Yo Yo
' om om, am,

©)

where each senditivity is evaluated at the optimized
parameter vector, M’ obtained from history matching

-1
period. (G;*C;Gm; ) is the Mx M approximate Hessian

matrix evaluated a& M" and also represents the covariance

matrix of the estimatedm”. The diagona entries of this
matrix represent the variances of model parameters, while
its off diagonal entries represent the covariances (or
correlations) between the two model parameters. This
matrix does not vary with the prediction time t; becauseiit is
determined from the history-matching period by

minimizing Eq. 3. If adz is not known, it can be estimated
from the history-matching period:

Ng

> Yoo = 11 ()]

of =12 10
‘ Ny =M (0

As is clear from Eq. 8, the uncertainty (or O';i) in the

predicted response is controlled by the variance and
covariance of the estimated parameters through the matrix

(GF.Cy'G,, ) and the qua i
+CoG . quality of fit s computed from

history matching period as well as the sensitivity of the
predicted response to the estimated model parameters

through the vector g, computed in the prediction period. In
general, the behavior of aivi can be quite complicated

depending on the magnitudes of 0'§ (or the qudity of

match, &) andg' (G;;C[’,le* )_1 g. However,

theoretically, we would expect that as the complexity of the
mode! increases, the magnitude of s* (or the variance adz in
the case where it is unknown and estimated from Eq. 10)

: T (AT -1 Rl
decreases, while that of ¢ (Gm;CD Gm*) 0, increases.

We usualy expect that the behavior of the predicted
response is more controlled by the magnitude of

g’ (G;*C;Gm; )_1 g than that of §* for the lumped

models. In fact, as shown later, our results show that when
an over parameterized model instead of the correct lumped
model is used for history matching, the uncertainty in
predicted performance is overestimated, while using a less
parameterized model provides an underestimated variance
in the predicted response. Approximate confidence limits
based on Eq. 8 for the predicted responses can be aso
constructed (Dogru et a., 1977; Sen and Srivastava, 1990).
These limits can characterize the uncertainty in future
predicted responses.

As mentioned above, Eq. 8 is based on linearization of the
predicted response around the optimal parameter vector.
Hence, Eg. 8 may not provide a reliable estimate of the
uncertainty on the predicted response if the linearization is
not valid.

For nonlinear problems, it has been shown that although it
is approximate, the randomized maximum likelihood
method (RML) does a good job for assessing the
uncertainty in the predicted response (Kitanidis et al., 1995;
Oliver et al., 1996; Liu and Oliver, 2003; Gao et al., 2005).
By these authors, the RML has been considered within the
Bayesian estimation framework for under-determined
problems (i.e., the unknown model parameters far exceeds
the number of observed data, M > Ny) with a prior model
for the parameters. Here, we apply the RML method for the
lumped-parameter modeling without a prior model, which
usualy constitutes an over-determined problem (Ng >> M).



In this case, the RML would provide sampling of the
likelihood probability density function for the model
conditional to observed data, given by (Bard, 1974)

(M| Vo) = ceXp{—%O(m)} 11)

where O(m) is given by Eg. 1 and ¢ is a normalizing
constant.

In the RML sampling procedure of Eq. 11, a conditional
realization of the model parameters to observed data can be
generated as follows: (i) provide an initial guess of the
model parameter vector m, (ii) add noise to the observed
data (i.e, a redization of observed data) by
Yoo = Yoo + Ch?2Z, , where z, is an Ny-dimensional vector
of independent standard random normal deviates. In the
applications considered in this paper, Cp”is a diagonal

matrix with entries equal to the square roots of the
corresponding diagonal entries of Cp; (iii) generate a
conditional realization of the model parameter vector m;
by minimizing Eq. 1 with y,s replaced by y,; (iv) check to
see if the estimated model parameter vector m: gives an
acceptable match of the data. This is done based on the
assumption that if m: is alegitimate realization of Eq. 11,
then it should satisfy:

1-5 LSON(m:)lers 2 (12
N, —M N, —M

where O (M) =0(m; )/2(N,—M) is the normalized
objective function. Eqg. 12 is obtained from the fact that
O(m’) is achi-squared () distribution with mean Ng-M

and variance 2(Ng-M) (Barlow, 1989; Gao et a. 2005). In
Eqg. 12, it is assumed that the realization should be within

five standard deviations. If the realizationm’ does not
satisfy Eq. 12, then it may mean that the nonlinear

Tureyen and Onur.

minimization of Eq. 1 has resulted in a local minimum or
that the noise level in observed data has been
underestimated/overestimated or the model is not
appropriate (Gao et al., 2005). To generate n conditional
realizations, we repeat the procedure described by items (i)
through (iv) n times. After n acceptable realizations of the

model parameter vector, m: , for r=1,2,...,n, are generated,
we can predict n redizations of the future response using
thessn M, redlizations in the lumped-parameter model

r
considered for a given future production scenario. Then, we
can characterize the uncertainty in the predicted response
by constructing the histogram and/or cumulative frequency
based on these n redlizations of the predicted responses at
any given prediction time ti such that t;>ty.

5.EXAMPLE APPLICATION

Here, we consider one synthetic example application to
demonstrate the application of the methodology proposed in
this work.

Suppose that our true model for the geothermal systemis a
two-tank open lumped-parameter model as shown in Fig.
1(a). The true pressure change and net production history
datafor atwenty-year period are shown in Fig. 2. (Note that
pressure change is initial pressure minus the reservoir
pressure, and thus as reservoir pressure decreases with
production, pressure change increases.) The true input
model parameters are shown in the second column of Table
1.

To simulate a “real case,” we corrupted the true pressure
change data using normal random variables with mean zero

and variance o2 =0.49 bar’. Note that we assume that the
data error covariance matrix Cp is a diagonal matrix with
diagonal entries equal to o> = 0.49 . The corrupted pressure
change data represent our observed data (yq,s) and contain
193 data points. The observed pressure data are shown in
Fig. 2 by solid circular data points, whereas the true
pressure change data are shown by a solid curve. The net
production rate history is shown as the red dashed curve in
Fig. 2 and is assumed to contain no errors.
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Figure 2: True and observed (noisy) pressure change data and net production rate history.
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Table 1: Estimated model parameter s by history matching of observed data with three different lumped parameter models.

Estimated parameters
Model Parameters True parameters
2-tank closed 2-tank 3-tank
open closed
K 9.5x10’ 8.9x10’ 8.9x10’
8.9x107
(kg/bar) (x1.2x107) (+1.3x107) | (+1.3x10")
o 27.9 30.6 30.6
30
(kg/bar-s) (x1.0) (x1.7) (x2.1)
Kot 2.4x10% 1.2x10% 1.2x10%
1.1x10%
(kg/bar) (+2.1x10°% (+3.1x10% | (+6.5x10%
Oy 31.0 31.0
37 -
(kg/bar-9) (26.1) (¢43)
Koo 2.9x10%
(kg/bar) (x1.3x10%)
RMS (bar) 0.7 0.73 0.69 0.69

Asin the redl life, we assume that we did not know the true
lumped-parameter model, and that we can consider the two-
tank closed, two-tank open, and three-tank closed models as
three candidates of the lumped-parameter models to be used
for history matching. The two-tank closed model is similar
to the two-tank open modd in Fig. 1(a), but without
recharge source to the outer tank. This model contains three
unknown parameters (Ko, o, K;) to be estimated by history-
matching. The two-tank open model contains four unknown
parameters (0lo1, Ko1, O, X;). The three-tank closed model is
similar to the three-tank open model, but without recharge
to the outer tank 2 and contains five unknown parameters
(Kop» Oloz, Kot Oy, ¥;). SO, a two-tank closed model
represents a less parameterized model, while the three-tank
closed model represents an over parameterized model.

We performed history matching of the observed data
(circular data points in Fig. 2) with each of these three
different models. The estimated parameters and their
associated 95% confidence intervals (given in parentheses)
are summarized in Table 1.

An inspection of the results of Table 1 indicates that the
two-tank open and three-tank closed models yield the same
RMS values of 0.69 bar, which are very close to the actual
noise (0.7 bar) in the observed data. On the other hand, the
less parameterized two-tank closed model yields dightly
higher RMS value (0.73 bar) than the other two lumped-
parameter models. The common model parametersin al the
three models are x;, o, and K. It is clear that the estimated
values of these parameters by history matching are close to
the true values for the two-tank open and three-tank closed
models, but not very close to the true values for the two-
tank closed model. Particularly, the estimated vaues of «;
and ¥, for the two-tank closed model are far from the
corresponding true values.

In addition, it can be seen that the less parameterized two-
tank closed mode gives the narrowest (and “acceptable”)
confidence intervals for al of the estimated parameters,

while the over parameterized three-tank closed model gives
the widest confidence intervals for all parameters. The
three-tank closed model gives very wide (unacceptable)
confidence intervals for the parameters xy, and ool. The
reason for obtaining quite wide confidence intervals for k02
and 00l can be explained as follows: The observed data do
not have any sensitivity at al to the parameter k02 in the
three-tank closed model and thus we have very large
uncertainty in its estimated value, as expected. An
inspection of correlation coefficients (not given here)
between the parameters indicates that there is a strong
negative correlation between k02 and ool in the three-tank
closed model. Because of this correlation, the uncertainty
for the parameter k02 is reflected to the parameter aol, and
hence we have large uncertainty for the estimated value of
aol.

Based on our view that the best fitting model of al the
possible models for a given low-temperature geothermal
system is the one having both the smallest possible RMS
for the fit, and acceptable confidence intervals for al
parameters, one will be able to identify the most appropriate
model as the two-tank open model, which is the true model
used in this example application. If the confidence intervals
were not computed for the estimated parameters and we
used only the RMS as a criterion to identify the most
appropriate model, we would identify both the two-tank
open and threetank closed models as two possible
candidates to be used for performance predictions. On the
other hand, if only the confidence intervals were used as a
criterion for model identification, we would identify the
two-tank closed model as the most appropriate model
because it gives the narrowest (and acceptable) confidence
intervals for al the parameters. As we show next,
identifying the true (or the most appropriate) model from
the history-matching period is essentiad to be able to
correctly characterize the uncertainty in performance
predictions.



Next, we used the RML method to generate future
predictions of pressure changes for characterizing the
uncertainty in predictions. First, we generated 1000

realizations of observed data by y,. = Yy, +Cp?z, with

1000 different seeds of z,. (Our results not shown here
indicate that a thousand readlizations are sufficient to
characterize the uncertainty in predictions) Then, we
history matched each of the 1000 generated realizations of
Vi 10 estimate the model parameters for each lumped-
parameter moddl. All the realizations of model parameters
for each lumped model considered were legitimate because
they satisfied Eq. 12. Consequently, we obtained 1000
acceptable realizations of the estimated model parameters
for each lumped-model considered. Then, each realization

of the model parameter vector m: is input into the
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corresponding lumped-parameter model to predict the
future pressure performance for an additiona twenty-five
year period with a constant net production rate of 187 kg/s.
Thus, for each conditional redlization of the model
parameters for a given lumped-parameter model, we
predicted the future pressure changes for atotal of 45 years.

Shown in Figures 3, 4, and 5 are predicted 1000 realizations
of future pressure changes for the two-tank closed, two-tank
open, and the three-tank closed models, respectively. The
blue circular points in Figs. 3-5 are used to represent a
prediction generated with the true lumped-model (two-tank
open) parameters. Note that the true prediction (blue curve)
will not be known in redlity. Here, it is shown for
comparison purposes. The green triangular data points
represent the predictions based on the estimated parameters
by history matching the observed data set yps.
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Figure 3: Realizations of predicted pressure change generated by RML, 2-tank closed model.
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Figure 4: Realizations of predicted pressure change generated by RM L, 2-tank open model.
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The results of Fig. 3 indicate that the performance predicted
with the two-tank closed model is biased; all realizations
result in pressure change greater than the truth. Note that
the band of the predictions (or the uncertainty in
predictions) is quite narrow (or small). In fact, thisis due to
the fact that the uncertainty in the estimated model
parameters by history-matching of 1000 realizations, as
clearly reflected by the confidence intervals (see Table 1),
are quite small, and thus the predictions made using these
estimates have a narrow band. The main conclusion isthat a
less parameterized model, which is the two-tank closed
model in this example, is unable to correctly characterize
the uncertainty in predicted future performance, though it
provides the least uncertainty in predictions; or in other
words, it highly underestimates the uncertainty in predicted
response.

The results of Fig. 4 for the two-tank open model, which is
the correct model, indicate that the truth lies within the
band of predictions (i.e., predictions are unbiased) and that
the uncertainty in predictions can be correctly characterized
by the RML method because the model chosen for
predictions is correct. On the other hand, the three-tank
closed model, an over parameterized model, gives the
largest uncertainty in predictions (Fig. 5). The main reason
is that some model parameters in this model do not show
much sensitivity to the observed data and hence their
estimated values by history matching have wide variations
from one realization to ancther, as clearly identified by their
wider confidence intervals (see last column of Table 1 for
Koz, Oo1, Ko1) @nd this large uncertainty in these estimated
parameters are reflected as large uncertainty in performance
predictions. Interestingly, the band of the predictions by the
three-tank closed model contains the truth, which indicates
no bias in predictions. However, this does not mean that the
uncertainty in performance predictions is characterized
correctly, which cannot be the case in this example
application.

Figure 6 presents a box-and-whisker plot of future pressure
changes (predicted by RML) at the 45" year for al the
lumped-parameter models considered. As expected, the
bands of uncertainty for the two-tank open and three-tank

closed models include the truth, while that of the two-tank
closed model fails to do so by giving biasedness in
predictions. Assuming that the RML method provides the
correct assessment of uncertainty for the future pressure
changes for the two-tank open model, then it can be stated
that the RML predictions based on the 3-tank closed model
cannot provide the correct characterization of the
uncertainty because they yield a larger band of uncertainty
than those of the two-tank open model.

We should note that based on the results and methodology
given in this study, it is unclear to us whether the
methodology of Axelsson et al. (2005) who propose only
two redlizations of predictions; one with an open and the
another with a closed lumped-parameter model, can provide
the assessment of the inherent uncertainty in future pressure
changes. In addition, it is unclear to us whether the future
prediction changes can be expected to lie somewhere
between the predictions of open and closed models, as they
claim. To investigate this, we generated three predictions of
future pressure changes based on the parameter estimates
obtained by history-matching of the observed data set Yous
(shown as circular data points in Fig. 2) with the two-tank
closed and open models and three-tank open model (see
Table 1 for the estimated parameters). These future
predictions, in comparison with the true prediction, are
shown in Fig. 7. Asis clear from Fig. 7, the true prediction
is not contained within these predictions nor can the
uncertainty in predictions be properly characterized because
measurement errors in observed data are not accounted for
in their methodology.

The results of this example clearly indicates that one can
only characterize the uncertainty in performance predictions
correctly by the most appropriate lumped-model
representative of the geothermal system in question.
Identifying the most appropriate model to be used for
generating appropriate redizations of the future
performance by the RML method may be achieved if one
inspects both the RMS and confidence intervals during the
history-matching period by considering severa candidate
lumped-models.
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Figure 5: Realizations of predicted pressure change generated by RML, 3-tank closed model.
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Figure 7: A comparison of predictions of future pressure changes based on estimated model parameters obtained from
history matching of the observed data with the two-tank closed and open models and three-tank closed model.

6. FIELD APPLICATION

The application of the RML method on synthetic examples
of lumped parameter models for geothermal reservoirs have
been successfully performed in the previous section. Here,
we extend the application of RML method to a red field.
The field at study is the Balcova-Narlidere Geothermal
Field. This field is known as the oldest geothermal system
in Turkey and is situated 10km west of Izmir. The
geothermal water with a temperature ranging from 80°C to
140°C is produced from the wells with depths ranging from
48.5m to 1100m.

The application of RML will be performed on the data
collected from one of the wells in the field. The data
consists of net rate (production rate — injection rate)
information starting from 01/01/2000 and corresponding
water level data starting from 17/06/2001. All data have
been collected until 10/11/2005. Here it is important to note
that the net rate history is obtained from the entire field

whereas the water level datais collected only from a single
well. Fig. 8 illustrates the collected data to be used in the
RML application.

The RML method has been performed on the above data for
5 different lumped parameter models (1 tank open model, 2
tank open/closed models and 3 tank open/closed models).
For each model 100 realizations of matched responses are
generated and the results are compared.

During the application the water levels have been converted
to pressure changes. Hence all computations are performed
on the pressure changes. The redlizations of the observed
data is obtained by adding random noise from a
N(0,0.8125) distribution. The pressure change data is
treated stationary and hence the variance of the noise is
obtained as the deviation from the overall mean.

Once the history matching is complete we make future
predictions with the optimal model parameters. The rate



Tureyen and Onur.

history for the future 10 years is obtained by taking the
rates of the last year of the matching period and increasing
them by %20 each year.

Figs 9-13 illustrate the history matching period and the

closed/open models and 3 tank closed/open models
respectively. The blue circled pointsin the figures represent
the observed water level data, the solid red lines represent
the results of 100 simulations and finally the solid black
line represents the flow rate.

future 10 year predictions for the 1 tank open model, 2 tank
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Figure 9: Realization of predicted pressure change generated by RML, 1-tank open model.
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Figure 10: Realization of predicted pressure change generated by RML, 2-tank closed model.
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Figure 12: Realization of predicted pressur e change generated by RML, 3-tank closed model.
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Figure 13: Realization of predicted pressure change generated by RML, 3-tank open model.
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Based on the results provided by the Figs 9-13, we can
conclude that the band of the predictions (or the uncertainty
in predictions) is narrowest for the 1 tank-open model and
widest for the 2 tank open model.

Table-2 summarizes the history matched parameters and
various statistics (95% confidence intervals and RMS). All
these parameters and their statistics have been obtained by
averaging the results of 100 readlizations. An inspection of
the RMS values indicate that they are all amost the same
and can be considered close to the actual noise that was
added to the observed data for generating realizations of the
data. The confidence intervals in this case will probably be
the discriminating measure for the best model that
represents the actual system. &y and o o, for the 2-tank
open model, &gy, o o and iy for the 3-tank closed model
and o 41, Ay and o o, for the 3-tank open modd are
unacceptable due to their high confidence intervals (Here
our definition is that an estimate of a parameter is
acceptable if its confidence interval range is less than 95%
of the estimated value itself). Hence they can immediately
be ruled out as candidates for describing the Balcova
Narlidere geothermal field.

The reason for obtaining such wide confidence intervals for
the above mentioned model parameters can be explained as
follows: The ohserved data do not show any sensitivity to
these parameters. Hence the uncertainty regarding these
parameters are large.

Based on the above observations, since the RMS values are
relatively close to each other, we compare the confidence
intervals for the parameters of the 1-tank open model and
the 2-tank closed moddl. The 1-tank open model in this case
seems to best represent the real field due to the lower
confidenceintervals of the model parameters.

Tureyen and Onur.

To better represent the response differences of the different
models, Fig. 14 illustrates the box and whisker plot of the
responses at 5750 days. The highest water level is reached
with the 2-tank closed model. This is expected since, the
system is closed. The largest band of uncertainty on the
other hand is provided by the 2-tank open modd. It is
interesting to see that the model chosen to represent the real
field has the narrowest band of uncertainty and provides the
smallest water level at the sametime.

7. CONCLUSIONS
The following conclusions are obtained from this study:

i. A single realization of the predicted response to a
given production scenario is not sufficient to
make reservoir management decisions that
account for an incomplete knowledge of the
actual geothermal system.

ii. One needs to generate a multiple of redizations
of the predicted future pressure changes to a
given production scenario for assessing the
uncertainty inherent in performance predictions
due to noise in observed data. The RML method
can be used for this purpose.

iii. One can correctly characterize the uncertainty in
performance predictions if and only if the
lumped-parameter model chosen is correct. The
most appropriate lumped-model  for given
observed data should be identified by inspecting
both the RM S and the confidence intervals for the
estimated model parameters from history
matching with severa candidate lumped-
parameter models.

Table 2: Estimated model parameter s by history matching of observed data with five different lumped parameter models.

Estimated parameters for lumped-models
Model Parameters
1-tank open 2-tank closed 2-tank open 3-tank closed 3-tank closed
K 8.4x10’ 7.4x107 8.0x107 7.7x10° 7.6x107
(kg/bar) (%13.95) (%616.36) (%616.49) (%18.65) (%24.51)
o 44.2 47.2 46.2 46.2 46.4
(kg/bar-s) (%5.5) (%5.8) (%6.3) (%28) (%9.8)
Kot 1.5x10% 1.8x10™ 2.1x10% 2.2x10%
(kg/bar) B (%25.08) (%1x10% (%315) (%54.4)
oy 10.6 2.9 0.823
(kg/bar-s) - B (%1x107) (%1x10") (%1x10°)
Koo 3.0x10" 8.5x10"
(kg/bar) B B B (%3x10°) (%4x10°)
Olop 622.5
(kg/bar-s) - B B - (%2x10°)
RMS (bar) 0.99 0.97 0.98 0.97 0.97
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iv. Using a less parameterized |umped-parameter
model for predictions gives biased predictions
and highly underestimates the uncertainty in
future predictions, while usng an over-
parameterized lumped-parameter model gives
unbiased predictions, but overestimates the
uncertainty in future predictions.

V. The RML method has successfully been
implemented to redl field data.

vi. Based on the RML results, the authors believe
that the Balcova-Narlidere geothermal system can
best be represented by a 1-tank open model.

Vii. The uncertainty analysis show that the uncertainty
band in the predictions is aso lowest with the 1-
tank open model.
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