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ABSTRACT 

In this work, we present a methodology within the context 
of stochastic simulation for assessing uncertainty in future 
pressure changes simulated by using history-matched 
lumped models for low-temperature geothermal systems. 
Specifically, we consider the randomized maximum 
likelihood method (RML) for the assessment of uncertainty. 
We show that this methodology allows us to incorporate 
into the performance predictions any uncertainties in both 
the model and the measured data. In this way, we are able 
to characterize or appraise the uncertainty in the predicted 
future pressure changes. Once the uncertainty in predicted 
performance is characterized or assessed, it is possible to 
make reservoir management decisions that account for an 
incomplete knowledge of the actual geothermal system. 
One synthetic example application is presented to show the 
use of the methodology proposed in this work. 

1. INTRODUCTION 

The behavior of low-temperature geothermal reservoirs 
under exploitation can be simulated using either analytical 
lumped-parameter models (Grant et. al., 1982; Axelsson, 
1989; Axelsson et al., 2005, Sarak et al., 2005) or 
distributed (numerical) models (Bodvarsson et al., 1986; 
O’Sullivan et al., 2001). Numerical models are, of course, 
more general than lumped-parameter models in that one can 
account for spatial variations in thermodynamic conditions 
and reservoir properties as well as for different well spacing 
and locations. However, they require a large amount of 
input data for modeling, simulation and prediction studies. 
This work specifically focuses on modeling of low-
temperature geothermal reservoirs through the use of 
simple lumped-parameter models. 

Over the last years, lumped-parameter models have been 
used for history matching and predicting pressure (or water 
level) changes in low-temperature geothermal systems in 
Iceland, Turkey, The Philippines, China, Mexico and other 
countries. Axelsson et al. (2005) and Sarak et al. (2005) 
have presented several field applications of various lumped-
parameter models to low-temperature geothermal systems. 
When lumped-parameter models are used, model 
parameters can be obtained by applying nonlinear least-
squares estimation techniques in which measured field 
pressure (or water level) data are history matched to the 
corresponding model response (Axelsson, 1989, and Sarak 
et al., 2005). Then, by using history-matched models, the 
future performance (in terms of pressure changes or water 
levels) of the reservoir can be predicted for different 
production/re-injection scenarios to optimize the 
management of a given low-temperature geothermal 
system.  

The ultimate goal in any geothermal reservoir study is to 
predict future performance and even more important to 
predict the uncertainty in future predictions under different 
management options. This is necessary to determine the 
production/re-injection practices that will provide 
sustainable exploitation of the geothermal system in 
consideration. Uncertainty in all future predictions of 
pressure changes is inherent due to (i) measurement errors 
or noise in observed data, (ii) modeling errors, (iii) span of 
the available observed data (pressure change data and 
production history), and (iv) nonlinear relationship between 
model parameters and observed response.  

The objective of this paper is to discuss the uncertainty in 
performance predictions and provide a methodology for the 
assessment of uncertainty in performance predictions. This 
is accomplished with a stochastic method of modeling that 
incorporates uncertainties both in the model and observed 
data to future performance predictions. Specifically, we 
consider the application of the randomized maximum 
likelihood method (RML) for the assessment of uncertainty 
to lumped-parameter modeling. This method has been 
shown to be quite efficient for the assessment of uncertainty 
in performance predictions for nonlinear problems 
(Kitanidis et al., 1995; Oliver et al., 1996; Liu and Oliver, 
2003; Gao et al., 2005).  

The paper begins with a brief review of lumped-parameter 
models considered in this study. Then, history matching and 
performance prediction problems within the context of 
maximum likelihood and randomized maximum likelihood 
methods are discussed. Finally, a synthetic example 
application is presented to demonstrate the methodology 
proposed in this study for the assessment of uncertainty in 
performance predictions by lumped-models for low-
temperature geothermal systems. 

2. LUMPED PARAMETER MODELING 

The lumped-parameter modeling considered here is very 
similar in concept to the one presented originally by 
Axelsson (1989) and identical to the one presented later by 
Sarak et al. (2003a, 2003b, and 2005). As in these works, 
our lumped-parameter models are based on the 
conservation of mass only and hence are valid for low-
temperature liquid reservoirs under the assumption that 
variations in temperature within the system can be 
neglected (i.e. the simulated systems are assumed to be 
isothermal).  

Lumped-parameter modeling can be regarded as a highly 
simplified form of numerical modeling. In numerical 
models, a geothermal system is represented by many (>100 
to 106) gridblocks. On the other hand, in lumped-parameter 
modeling, a geothermal system is represented by only a few 
homogeneous tanks and is visualized as consisting of 
mainly three parts: (1) the central part of the reservoir; (2) 
outer parts of the reservoir, and (3) the recharge source. The 



Tureyen and Onur. 

 2 

first two are treated as series of homogeneous tanks with 
average properties. The recharge (or constant pressure) 
source can be connected to the other parts of the reservoir 
or directly to the central part of the reservoir and is treated 
as a “point source” that recharges the system. If there is no 
connection to the recharge source, the model would be 
closed, otherwise would be open. Two different open 
lumped-parameter models are depicted in Fig. 1. 

The model shown in Fig. 1(a) represents a two-tank open 
lumped model, where the first tank, in which 
production/injection occurs, represents the innermost (or 
central) part of the geothermal system. The changes in 
pressure in this part are monitored and production/injection 
rates are recorded. In the second tank, representing the 
outer part of the reservoir that is connected to the recharge 
source, there is neither production nor injection, and it 
recharges the central reservoir. Fluid production causes the 
pressure in the reservoir to decline, which results in water 
influx from the outer to the central part of the reservoir. The 
recharge source represents the outermost part of the 
geothermal system.  

When using the lumped-parameter models considered in 
this work (Fig. 1), the simulated model (output) response 
represents pressure or water level changes for an 
observation well for a given net production history (input). 
The number of model parameters increases as the number 
of tanks or the complexity of the lumped model increases.  

Here and throughout, α represents the recharge constant 
between the tanks in kg/(bar-s), κ represents the storage 
capacity (or coefficient) of a tank in kg/bar, and pi 
represents the initial pressure of the recharge source in bar. 
The geothermal system is assumed to be in hydrodynamic 
equilibrium initially; i.e., the initial pressure, pi, is uniform 
in the system. In cases for which the initial system pressure 
(or initial water level), pi, is known, pi can be eliminated 
from the unknown set of model parameter vector. Further 
details about the lumped-parameter models used in this 
study can be found in Sarak et al. (2003a, b, and 2005). 

3. HISTORY MATCHING PROBLEM 

After a period of production from a geothermal reservoir, 
and based on the production/injection rate history given, a 
lumped-parameter model can be matched to the observed 

pressure (or water level) data to obtain the parameters of 
that particular model.  

Here and throughout, obsy  refers to the vector of measured 

or observed pressure change data, and contains all Nd 
pressure change measurements that will be used for 
estimating the model parameters by nonlinear regression. 
We let CD be the NdxNd symmetric positive-definite 
covariance matrix for pressure change measurement errors, 
and assume that measurement errors for pressure data are 
Gaussian with mean zero (vector) and covariance matrix CD 
[i.e., N(0, CD)]. N(0, CD) represents a normal distribution 
with mean zero and covariance matrix CD. Throughout, a 
boldface capital letter denotes a matrix, while a boldface 
lower case letter denotes a column vector. 

Letting e  denote the Nd-dimensional vector of errors for 

observed data and 1 2( , , , )T
Mm m m= Lm denote the vector 

of unknown model parameters that are estimated, it follows 
that 

( )obs = +y f m e    (1) 

Here f  refers to the Nd-dimensional vector of computed 

pressure-change data from a considered lumped model, for 
a given m . M represents the total number of unknown 
model parameters. 

As noted above, e  is N(0, CD). Thus, the likelihood 
function for the model conditional to observed data is given 
by (Bard, 1974) 

[ ] [ ]11
( ) exp ( ) ( )

2

T

obs obs D obsL −⎧ ⎫∝ − − −⎨ ⎬
⎩ ⎭

m y y f m C y f m

 (2) 

where the superscripts “T” and “-1” represent transpose of a 
vector and inverse of a matrix, respectively. The maximum 
likelihood estimate of m, which honors measured pressure 
data, is obtained by maximizing Eq. 2, or equivalently, 
minimizing the objective function O(m) given by 

[ ] [ ]1( ) ( ) ( )
T

obs D obsO −= − −m y f m C y f m  (3) 
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Figure 1: Two different lumped-parameter models. (a) two tank open lumped parameter model (b) three tank open lumped 
parameter model 
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Eq. 3 is the objective function for the well known general 
nonlinear least-squares method, and assumes that the data 
error covariance matrix CD is known. Often we do not have 
enough information to construct the data error covariance 
matrix CD that may account correlation between 
measurement errors. Hence, the commonly used assumption 
is that the d dN N× CD is a diagonal matrix in Eq. 3. If data 

measurement errors are independent random variables with 
mean zero and known variance 2

,d jσ  for each observed data 

yobs,j, then CD is a diagonal matrix with diagonal entries 
equal to 2

,d jσ , j=1,2,…,Nd. In this case, Eq. 3 reduces to the 

well known weighted least-squares objective function: 

( )
2

,

1 ,

( )
dN

obs j j

j d j

y f
O

=

⎡ ⎤−
= ⎢ ⎥

σ⎢ ⎥⎣ ⎦
∑

m
m   (4) 

If we further assume that error variances 2
,d jσ are identical, 

i.e., 2 2
,d j dσ σ=  for all j, then Eq. 4 with 1/( 2

dσ ) deleted 

defines the objective function for the un-weighted 
(ordinary) least-squares procedure.  

The lumped-parameter model responses are nonlinear with 
respect to the model parameters. Thus, Eq. 3 (or 4) calls for 
nonlinear minimization techniques. Over the past, we have 
found that the gradient based algorithms such as the 
Levenberg-Marquardt method based on a restricted 
procedure described by Fletcher (1987) is quite efficient to 
minimize Eq. 3 or 4. 

It is important to note that within the context of maximum 
likelihood estimation, the observed data yobs would 
represent a single realization of the observed data from a 
normal distribution with mean zero and known covariance 
matrix, CD, and thus the model vector m is considered as a 
random variable because different realizations of yobs would 
provide different estimates of m. Thus, when history-
matching problem is viewed within the context of the 
principle of maximum likelihood estimation, one can attach 
statistical measures to quantify the quality of a match as 
well as the uncertainty of the model parameters estimated. 
The standard statistical measures used for assessing the 
quality of a match and the reliability of estimated 
parameters are the root-mean-square error (RMS) and 
confidence (usually 95% percent) intervals.  

The value of RMS defined by Eq. 5 shows the quality of fit 
quantitatively.  

( ) 2

,
1

1 dN

obs j j
id

RMS y f
N

∗

=

⎡ ⎤= −⎣ ⎦∑ m  (5) 

where ∗m  represents the optimized parameter vector. The 
lower the RMS value, the better the fit between field and 
computed data. As we will discuss later, this does not 
necessarily mean that the lumped-model giving the smallest 
RMS value be the most appropriate model for the history-
matched data and should give the most reliable predictions.  

While it is important to improve the overall match of 
available data, it is equally or even more important that the 
history-matched model be able to predict reliably the 
uncertainty (from a statistical point of view) in predictions 
due to the fact that a certain amount of error (i.e., modeling 
and measurement errors, etc) will always be introduced into 
the estimated parameters from the history-matching 

process. In history matching, increasing complexity of the 
lumped-model (or equivalently increasing the number of 
tank and hence the model parameters) may improve the 
overall fitting of the model to the current data at the 
expense of destroying and ignoring the underlying 
statistical basis for nonlinear least-squares parameter 
estimation based on the principle of maximum likelihood.  

Statistical confidence intervals are known as a useful tool to 
give a quantitative evaluation of model discrimination and 
assessment of uncertainty in the estimated parameters 
(Dogru et al., 1977; Anraku and Horne, 1995). From the 
least-squares theory under the assumption that a nonlinear 

model can be linearized around the optimal estimate ∗m , 
we know that confidence intervals contain information 
about both the statistical standard deviation (s, see Eq. 7) of 
the match (related to the RMS value) and the sensitivity of 
observed data to the parameters. In general, the larger the 
confidence interval, the higher the uncertainty in the 
estimated model parameters. The 100%γ ×  approximate 
confidence intervals are computed from (Bard, 1974; Dogru 
et al. 1977) 

( )

( )

1 1

1 1

1 / 2, ( )

1 / 2, ( )

i d D i
ii

i d D
ii

m t N M s m

m t N M s

γ

γ

∗ ∗

∗ ∗

∗ − −

∗ − −

⎡ ⎤− − − ≤ ≤⎣ ⎦

⎡ ⎤+ − − ⎣ ⎦

)T

m m

T

m m

G C G

G C G

 (6) 

where ∗m denotes the estimate obtained by minimizing O 

(Eq. 3), im∗  denotes the estimate of ith model parameter at 

the minimum, ∗m
G  denotes the dN M× sensitivity matrix 

(containing derivatives of observed data with respect to 
model parameters) evaluated at the estimate ∗m , im

)
 

represents the true, but unknown value of the model 
parameter, mi, and (1 / 2, )dt N Mγ− −  is the value that 

cuts off (1 ) / 2 100%γ− × in the upper tail of t-distribution 

with dN M− degrees of freedom. (Taking 0.95γ = in Eq. 

6 gives %95 percent confidence intervals.) In Eq. 6, s is 
computed from 

( )

d

O
s

N M

∗

=
−
m

    (7) 

It may be worth noting that s computed from Eq. 7 is a 
dimensionless quantity. If the quantity s is significantly 
greater than unity, this indicates either that the lumped-
model is inappropriate to reproduce the pressure data, or 
that the magnitude of the pressure measurement errors 
reflected by the covariance matrix CD is underestimated. If 
the model is correct, and s computed from Eq. 7 is 
significantly larger than 1, this indicates that the covariance 
matrix CD used in Eq. 3 underestimates the true, but 
unknown covariance matrix CD. If the model used for 
observed data is correct, and we use the correct error 
covariance matrix, then we should expect s to be close to 
unity. 

We should perhaps dedicate a few words to the philosophy 
underlying the use of RMS and confidence intervals to 
discriminate the best fitting model among the candidate 
lumped models selected for history matching. There is a 
relationship between the confidence intervals and the RMS. 
This relationship could be complicated in the models 
having large number of model parameters and when the 
parameters show correlation among them. One may expect 
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the uncertainty as reflected by the confidence intervals for 
some parameter estimates to increase with the increasing 
complexity of a model, while the value of RMS (or 
equivalently the quality of a fit as defined by Eq. 7) 
improves. However, in our view, as long as the lumped 
model selected is appropriate and there are sufficient 
observed data available to support the model, all parameters 
should have “acceptable” confidence interval ranges and 
the RMS value should be close to the standard deviation of 
measurement errors in observed pressure data. Then, one 
can accept the model. Otherwise, one rejects the model 
because confidence intervals do not support the model from 
a statistical point of view. In short, in our view, the best 
fitting lumped model is the one providing not only the 
smallest possible acceptable confidence intervals for all 
parameters but also the smallest possible RMS value among 
the lumped-models used for history matching. Here, our 
definition is that an estimate of a parameter is acceptable if 
its confidence interval range is less than 95% of the 
estimated value itself. As also shown later by a synthetic 
example application, it is important to compute the 
confidence intervals for the parameters in addition to the 
RMS (or the value of s given by Eq. 7). The application of 
this same methodology to a few field examples has also 
been demonstrated by Sarak et al. (2005). 

4. PREDICTION OF FUTURE PERFORMANCE 

The most important objective of lumped-parameter 
modeling is to predict future responses to given production 
scenario. The parameter estimation (or history-matching) 
procedure provides values of the model parameters to be 
inserted into the prediction model equations. Although 
forecasting future performance is similar to parameter 
estimation in that they both involve the history matching of 
measured data, in performance prediction we have also to 
tackle the element of uncertainty in the model parameters 
and in the data observations, caused by measurement errors. 
First we discuss the linear least-squares theory, and then the 
more general nonlinear case how to characterize the 
uncertainty in future predicted response.  

Assuming that a nonlinear model can be linearized around 
the optimum parameter vector and that the measurement 
errors on the observed past and future data to be observed 
are independent, identically distributed random variables 
with mean zero and variance 2

dσ  (i.e., CD in Eq. 3 is a 

diagonal matrix with all diagonal entries equal to 2
dσ  or 

2 2
,d i d=σ σ  in Eq. 4), we can show that the variance of the 

predicted value of ,p iy  at a given time ti such that 
di Nt t>  

is given by (Bard, 1974; Dogru et al., 1977; Sen and 
Srivastava, 1990) 

( ) 1
2 2 2 1

,
T T

p i d i D isσ σ ∗ ∗

−−= +
m m

g G C G g   (8) 

Here, ig is the M-dimensional sensitivity vector of 

predicted response at any time ti:  

, , ,

1 2

, , ,p i p i p iT
i

M

y y y

m m m

∂ ∂ ∂⎡ ⎤
= ⎢ ⎥∂ ∂ ∂⎣ ⎦

Kg   (9) 

where each sensitivity is evaluated at the optimized 

parameter vector, ∗m obtained from history matching 

period. ( ) 1
1T

D∗ ∗

−−
m m

G C G is the M × M approximate Hessian 

matrix evaluated at ∗m  and also represents the covariance 

matrix of the estimated ∗m . The diagonal entries of this 
matrix represent the variances of model parameters, while 
its off diagonal entries represent the covariances (or 
correlations) between the two model parameters. This 
matrix does not vary with the prediction time ti because it is 
determined from the history-matching period by 

minimizing Eq. 3. If 2
dσ  is not known, it can be estimated 

from the history-matching period: 

( ),
2 1

dN

obs i i
i

d
d

y f

N M
σ

∗

=

⎡ ⎤−⎣ ⎦
=

−

∑ m
   (10) 

As is clear from Eq. 8, the uncertainty (or 2
,p iσ ) in the 

predicted response is controlled by the variance and 
covariance of the estimated parameters through the matrix 

( ) 1
1T

D∗ ∗

−−
m m

G C G and the quality of fit s2 computed from 

history matching period as well as the sensitivity of the 
predicted response to the estimated model parameters 
through the vector ig  computed in the prediction period. In 

general, the behavior of 2
,p iσ  can be quite complicated 

depending on the magnitudes of 2
dσ  (or the quality of 

match, s2) and ( ) 1
1T T

i D i∗ ∗

−−
m m

g G C G g . However, 

theoretically, we would expect that as the complexity of the 

model increases, the magnitude of s2 (or the variance 2
dσ  in 

the case where it is unknown and estimated from Eq. 10) 

decreases, while that of ( ) 1
1T T

i D i∗ ∗

−−
m m

g G C G g  increases. 

We usually expect that the behavior of the predicted 
response is more controlled by the magnitude of 

( ) 1
1T T

i D i∗ ∗

−−
m m

g G C G g  than that of s2 for the lumped 

models. In fact, as shown later, our results show that when 
an over parameterized model instead of the correct lumped 
model is used for history matching, the uncertainty in 
predicted performance is overestimated, while using a less 
parameterized model provides an underestimated variance 
in the predicted response. Approximate confidence limits 
based on Eq. 8 for the predicted responses can be also 
constructed (Dogru et al., 1977; Sen and Srivastava, 1990). 
These limits can characterize the uncertainty in future 
predicted responses. 

As mentioned above, Eq. 8 is based on linearization of the 
predicted response around the optimal parameter vector. 
Hence, Eq. 8 may not provide a reliable estimate of the 
uncertainty on the predicted response if the linearization is 
not valid.  

For nonlinear problems, it has been shown that although it 
is approximate, the randomized maximum likelihood 
method (RML) does a good job for assessing the 
uncertainty in the predicted response (Kitanidis et al., 1995; 
Oliver et al., 1996; Liu and Oliver, 2003; Gao et al., 2005). 
By these authors, the RML has been considered within the 
Bayesian estimation framework for under-determined 
problems (i.e., the unknown model parameters far exceeds 
the number of observed data, M > Nd) with a prior model 
for the parameters. Here, we apply the RML method for the 
lumped-parameter modeling without a prior model, which 
usually constitutes an over-determined problem (Nd >> M). 
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In this case, the RML would provide sampling of the 
likelihood probability density function for the model 
conditional to observed data, given by (Bard, 1974) 

( )1
( ) exp

2obsp c O
⎧ ⎫= −⎨ ⎬
⎩ ⎭

m y m   (11) 

where O(m) is given by Eq. 1 and c is a normalizing 
constant.  

In the RML sampling procedure of Eq. 11, a conditional 
realization of the model parameters to observed data can be 
generated as follows: (i) provide an initial guess of the 
model parameter vector m, (ii) add noise to the observed 
data (i.e., a realization of observed data) by 

1/ 2
uc obs D u= +y y C z , where zu is an Nd-dimensional vector 

of independent standard random normal deviates. In the 

applications considered in this paper, 1/ 2
DC is a diagonal 

matrix with entries equal to the square roots of the 
corresponding diagonal entries of CD; (iii) generate a 

conditional realization of the model parameter vector *
rm  

by minimizing Eq. 1 with yobs replaced by yuc; (iv) check to 

see if the estimated model parameter vector *
rm  gives an 

acceptable match of the data. This is done based on the 

assumption that if *
rm  is a legitimate realization of Eq. 11, 

then it should satisfy: 

2 2
1 5 ( ) 1 5N r

d d

O
N M N M

− ≤ ≤ +
− −

*m  (12) 

where ( )( ) ( ) / 2N r r dO O N M= −* *m m  is the normalized 

objective function. Eq. 12 is obtained from the fact that 

( )rO *m  is a chi-squared (χ2) distribution with mean Nd-M 

and variance 2(Nd-M) (Barlow, 1989; Gao et al. 2005). In 
Eq. 12, it is assumed that the realization should be within 

five standard deviations. If the realization *
rm  does not 

satisfy Eq. 12, then it may mean that the nonlinear 

minimization of Eq. 1 has resulted in a local minimum or 
that the noise level in observed data has been 
underestimated/overestimated or the model is not 
appropriate (Gao et al., 2005). To generate n conditional 
realizations, we repeat the procedure described by items (i) 
through (iv) n times. After n acceptable realizations of the 

model parameter vector, *
rm , for r=1,2,…,n, are generated, 

we can predict n realizations of the future response using 

these n  *
rm  realizations in the lumped-parameter model 

considered for a given future production scenario. Then, we 
can characterize the uncertainty in the predicted response 
by constructing the histogram and/or cumulative frequency 
based on these n realizations of the predicted responses at 
any given prediction time ti such that ti>tN.  

5. EXAMPLE APPLICATION 

Here, we consider one synthetic example application to 
demonstrate the application of the methodology proposed in 
this work.  

Suppose that our true model for the geothermal system is a 
two-tank open lumped-parameter model as shown in Fig. 
1(a). The true pressure change and net production history 
data for a twenty-year period are shown in Fig. 2. (Note that 
pressure change is initial pressure minus the reservoir 
pressure, and thus as reservoir pressure decreases with 
production, pressure change increases.) The true input 
model parameters are shown in the second column of Table 
1. 

To simulate a “real case,” we corrupted the true pressure 
change data using normal random variables with mean zero 
and variance 2 0.49d =σ  bar2. Note that we assume that the 

data error covariance matrix CD is a diagonal matrix with 
diagonal entries equal to 2 0.49d =σ . The corrupted pressure 

change data represent our observed data (yobs) and contain 
193 data points. The observed pressure data are shown in 
Fig. 2 by solid circular data points, whereas the true 
pressure change data are shown by a solid curve. The net 
production rate history is shown as the red dashed curve in 
Fig. 2 and is assumed to contain no errors. 
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Figure 2: True and observed (noisy) pressure change data and net production rate history. 
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Table 1: Estimated model parameters by history matching of observed data with three different lumped parameter models. 

Estimated parameters 

Model Parameters True parameters 
2-tank closed 

2-tank 
open 

3-tank 
closed 

κr 

(kg/bar) 
8.9x107 

9.5x107 

(±1.2x107) 

8.9x107 

(±1.3x107) 

8.9x107 

(±1.3x107) 

αr 

(kg/bar-s) 
30 

27.9 

(±1.0) 

30.6 

(±1.7) 

30.6 

(±2.1) 

κo1 

(kg/bar) 
1.1x1010 

2.4x1010 

(±2.1x109) 

1.2x1010 

(±3.1x109) 

1.2x1010 

(±6.5x109) 

αo1 

(kg/bar-s) 
37 - 

31.0 

(±6.1) 

31.0 

(±43) 

κo2 

(kg/bar) 
- - - 

2.9 x1013 

(±1.3x1017) 

RMS (bar) 0.7 0.73 0.69 0.69 

 

As in the real life, we assume that we did not know the true 
lumped-parameter model, and that we can consider the two-
tank closed, two-tank open, and three-tank closed models as 
three candidates of the lumped-parameter models to be used 
for history matching. The two-tank closed model is similar 
to the two-tank open model in Fig. 1(a), but without 
recharge source to the outer tank. This model contains three 
unknown parameters (κo1, αr, κr) to be estimated by history-
matching. The two-tank open model contains four unknown 
parameters (αo1, κo1, αr, κr). The three-tank closed model is 
similar to the three-tank open model, but without recharge 
to the outer tank 2 and contains five unknown parameters 
(κo2, αo1, κo1, αr, κr). So, a two-tank closed model 
represents a less parameterized model, while the three-tank 
closed model represents an over parameterized model.  

We performed history matching of the observed data 
(circular data points in Fig. 2) with each of these three 
different models. The estimated parameters and their 
associated 95% confidence intervals (given in parentheses) 
are summarized in Table 1.  

An inspection of the results of Table 1 indicates that the 
two-tank open and three-tank closed models yield the same 
RMS values of 0.69 bar, which are very close to the actual 
noise (0.7 bar) in the observed data. On the other hand, the 
less parameterized two-tank closed model yields slightly 
higher RMS value (0.73 bar) than the other two lumped-
parameter models. The common model parameters in all the 
three models are κr, αr, and κo1. It is clear that the estimated 
values of these parameters by history matching are close to 
the true values for the two-tank open and three-tank closed 
models, but not very close to the true values for the two-
tank closed model. Particularly, the estimated values of κr 
and κo1 for the two-tank closed model are far from the 
corresponding true values.  

In addition, it can be seen that the less parameterized two-
tank closed model gives the narrowest (and “acceptable”) 
confidence intervals for all of the estimated parameters, 

while the over parameterized three-tank closed model gives 
the widest confidence intervals for all parameters. The 
three-tank closed model gives very wide (unacceptable) 
confidence intervals for the parameters κo2 and αo1. The 
reason for obtaining quite wide confidence intervals for κo2 
and αo1 can be explained as follows: The observed data do 
not have any sensitivity at all to the parameter κo2 in the 
three-tank closed model and thus we have very large 
uncertainty in its estimated value, as expected. An 
inspection of correlation coefficients (not given here) 
between the parameters indicates that there is a strong 
negative correlation between κo2 and αo1 in the three-tank 
closed model. Because of this correlation, the uncertainty 
for the parameter κo2 is reflected to the parameter αo1, and 
hence we have large uncertainty for the estimated value of 
αo1.  

Based on our view that the best fitting model of all the 
possible models for a given low-temperature geothermal 
system is the one having both the smallest possible RMS 
for the fit, and acceptable confidence intervals for all 
parameters, one will be able to identify the most appropriate 
model as the two-tank open model, which is the true model 
used in this example application. If the confidence intervals 
were not computed for the estimated parameters and we 
used only the RMS as a criterion to identify the most 
appropriate model, we would identify both the two-tank 
open and three-tank closed models as two possible 
candidates to be used for performance predictions. On the 
other hand, if only the confidence intervals were used as a 
criterion for model identification, we would identify the 
two-tank closed model as the most appropriate model 
because it gives the narrowest (and acceptable) confidence 
intervals for all the parameters. As we show next, 
identifying the true (or the most appropriate) model from 
the history-matching period is essential to be able to 
correctly characterize the uncertainty in performance 
predictions. 
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Next, we used the RML method to generate future 
predictions of pressure changes for characterizing the 
uncertainty in predictions. First, we generated 1000 

realizations of observed data by 1/ 2
uc obs D u= +y y C z  with 

1000 different seeds of zu. (Our results not shown here 
indicate that a thousand realizations are sufficient to 
characterize the uncertainty in predictions.) Then, we 
history matched each of the 1000 generated realizations of 
yuc to estimate the model parameters for each lumped-
parameter model. All the realizations of model parameters 
for each lumped model considered were legitimate because 
they satisfied Eq. 12. Consequently, we obtained 1000 
acceptable realizations of the estimated model parameters 
for each lumped-model considered. Then, each realization 

of the model parameter vector *
rm is input into the 

corresponding lumped-parameter model to predict the 
future pressure performance for an additional twenty-five 
year period with a constant net production rate of 187 kg/s. 
Thus, for each conditional realization of the model 
parameters for a given lumped-parameter model, we 
predicted the future pressure changes for a total of 45 years.  

Shown in Figures 3, 4, and 5 are predicted 1000 realizations 
of future pressure changes for the two-tank closed, two-tank 
open, and the three-tank closed models, respectively. The 
blue circular points in Figs. 3-5 are used to represent a 
prediction generated with the true lumped-model (two-tank 
open) parameters. Note that the true prediction (blue curve) 
will not be known in reality. Here, it is shown for 
comparison purposes. The green triangular data points 
represent the predictions based on the estimated parameters 
by history matching the observed data set yobs.  
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Figure 3: Realizations of predicted pressure change generated by RML, 2-tank closed model. 
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Figure 4: Realizations of predicted pressure change generated by RML, 2-tank open model. 
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The results of Fig. 3 indicate that the performance predicted 
with the two-tank closed model is biased; all realizations 
result in pressure change greater than the truth. Note that 
the band of the predictions (or the uncertainty in 
predictions) is quite narrow (or small). In fact, this is due to 
the fact that the uncertainty in the estimated model 
parameters by history-matching of 1000 realizations, as 
clearly reflected by the confidence intervals (see Table 1), 
are quite small, and thus the predictions made using these 
estimates have a narrow band. The main conclusion is that a 
less parameterized model, which is the two-tank closed 
model in this example, is unable to correctly characterize 
the uncertainty in predicted future performance, though it 
provides the least uncertainty in predictions; or in other 
words, it highly underestimates the uncertainty in predicted 
response.  

The results of Fig. 4 for the two-tank open model, which is 
the correct model, indicate that the truth lies within the 
band of predictions (i.e., predictions are unbiased) and that 
the uncertainty in predictions can be correctly characterized 
by the RML method because the model chosen for 
predictions is correct. On the other hand, the three-tank 
closed model, an over parameterized model, gives the 
largest uncertainty in predictions (Fig. 5). The main reason 
is that some model parameters in this model do not show 
much sensitivity to the observed data and hence their 
estimated values by history matching have wide variations 
from one realization to another, as clearly identified by their 
wider confidence intervals (see last column of Table 1 for 
κo2, αo1, κo1) and this large uncertainty in these estimated 
parameters are reflected as large uncertainty in performance 
predictions. Interestingly, the band of the predictions by the 
three-tank closed model contains the truth, which indicates 
no bias in predictions. However, this does not mean that the 
uncertainty in performance predictions is characterized 
correctly, which cannot be the case in this example 
application.  

Figure 6 presents a box-and-whisker plot of future pressure 
changes (predicted by RML) at the 45th year for all the 
lumped-parameter models considered. As expected, the 
bands of uncertainty for the two-tank open and three-tank 

closed models include the truth, while that of the two-tank 
closed model fails to do so by giving biasedness in 
predictions. Assuming that the RML method provides the 
correct assessment of uncertainty for the future pressure 
changes for the two-tank open model, then it can be stated 
that the RML predictions based on the 3-tank closed model 
cannot provide the correct characterization of the 
uncertainty because they yield a larger band of uncertainty 
than those of the two-tank open model.  

We should note that based on the results and methodology 
given in this study, it is unclear to us whether the 
methodology of Axelsson et al. (2005) who propose only 
two realizations of predictions; one with an open and the 
another with a closed lumped-parameter model, can provide 
the assessment of the inherent uncertainty in future pressure 
changes. In addition, it is unclear to us whether the future 
prediction changes can be expected to lie somewhere 
between the predictions of open and closed models, as they 
claim. To investigate this, we generated three predictions of 
future pressure changes based on the parameter estimates 
obtained by history-matching of the observed data set yobs 
(shown as circular data points in Fig. 2) with the two-tank 
closed and open models and three-tank open model (see 
Table 1 for the estimated parameters). These future 
predictions, in comparison with the true prediction, are 
shown in Fig. 7. As is clear from Fig. 7, the true prediction 
is not contained within these predictions nor can the 
uncertainty in predictions be properly characterized because 
measurement errors in observed data are not accounted for 
in their methodology.  

The results of this example clearly indicates that one can 
only characterize the uncertainty in performance predictions 
correctly by the most appropriate lumped-model 
representative of the geothermal system in question. 
Identifying the most appropriate model to be used for 
generating appropriate realizations of the future 
performance by the RML method may be achieved if one 
inspects both the RMS and confidence intervals during the 
history-matching period by considering several candidate 
lumped-models. 
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Figure 5: Realizations of predicted pressure change generated by RML, 3-tank closed model. 
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Figure 6: Box and whisker plot of predicted future pressure changes generated by RML for the three different lumped-
parameter models, at the 45th year. 
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Figure 7: A comparison of predictions of future pressure changes based on estimated model parameters obtained from 
history matching of the observed data with the two-tank closed and open models and three-tank closed model. 

6. FIELD APPLICATION 

The application of the RML method on synthetic examples 
of lumped parameter models for geothermal reservoirs have 
been successfully performed in the previous section. Here, 
we extend the application of RML method to a real field. 
The field at study is the Balcova-Narlidere Geothermal 
Field. This field is known as the oldest geothermal system 
in Turkey and is situated 10km west of Izmir. The 
geothermal water with a temperature ranging from 80°C to 
140°C is produced from the wells with depths ranging from 
48.5m to 1100m. 

The application of RML will be performed on the data 
collected from one of the wells in the field. The data 
consists of net rate (production rate – injection rate) 
information starting from 01/01/2000 and corresponding 
water level data starting from 17/06/2001. All data have 
been collected until 10/11/2005. Here it is important to note 
that the net rate history is obtained from the entire field 

whereas the water level data is collected only from a single 
well. Fig. 8 illustrates the collected data to be used in the 
RML application. 

The RML method has been performed on the above data for 
5 different lumped parameter models (1 tank open model, 2 
tank open/closed models and 3 tank open/closed models). 
For each model 100 realizations of matched responses are 
generated and the results are compared. 

During the application the water levels have been converted 
to pressure changes. Hence all computations are performed 
on the pressure changes. The realizations of the observed 
data is obtained by adding random noise from a 
N(0,0.8125) distribution. The pressure change data is 
treated stationary and hence the variance of the noise is 
obtained as the deviation from the overall mean. 

Once the history matching is complete we make future 
predictions with the optimal model parameters. The rate 
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history for the future 10 years is obtained by taking the 
rates of the last year of the matching period and increasing 
them by %20 each year.  

Figs 9-13 illustrate the history matching period and the 
future 10 year predictions for the 1 tank open model, 2 tank 

closed/open models and 3 tank closed/open models 
respectively. The blue circled points in the figures represent 
the observed water level data, the solid red lines represent 
the results of 100 simulations and finally the solid black 
line represents the flow rate. 
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Figure 8: Observed rate and water level data. 
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Figure 9: Realization of predicted pressure change generated by RML, 1-tank open model. 
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Figure 10: Realization of predicted pressure change generated by RML, 2-tank closed model. 
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Figure 11: Realization of predicted pressure change generated by RML, 2-tank open model. 
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Figure 12: Realization of predicted pressure change generated by RML, 3-tank closed model. 
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Figure 13: Realization of predicted pressure change generated by RML, 3-tank open model. 
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Based on the results provided by the Figs 9-13, we can 
conclude that the band of the predictions (or the uncertainty 
in predictions) is narrowest for the 1 tank-open model and 
widest for the 2 tank open model. 

Table-2 summarizes the history matched parameters and 
various statistics (95% confidence intervals and RMS). All 
these parameters and their statistics have been obtained by 
averaging the results of 100 realizations. An inspection of 
the RMS values indicate that they are all almost the same 
and can be considered close to the actual noise that was 
added to the observed data for generating realizations of the 
data. The confidence intervals in this case will probably be 
the discriminating measure for the best model that 
represents the actual system. κo1 and α o1 for the 2-tank 
open model, κo1, α o1 and κo2 for the 3-tank closed model 
and α o1, κo2 and α o2 for the 3-tank open model are 
unacceptable due to their high confidence intervals (Here 
our definition is that an estimate of a parameter is 
acceptable if its confidence interval range is less than 95% 
of the estimated value itself). Hence they can immediately 
be ruled out as candidates for describing the Balcova-
Narlidere geothermal field. 

The reason for obtaining such wide confidence intervals for 
the above mentioned model parameters can be explained as 
follows: The observed data do not show any sensitivity to 
these parameters. Hence the uncertainty regarding these 
parameters are large. 

Based on the above observations, since the RMS values are 
relatively close to each other, we compare the confidence 
intervals for the parameters of the 1-tank open model and 
the 2-tank closed model. The 1-tank open model in this case 
seems to best represent the real field due to the lower 
confidence intervals of the model parameters. 

To better represent the response differences of the different 
models, Fig. 14 illustrates the box and whisker plot of the 
responses at 5750 days. The highest water level is reached 
with the 2-tank closed model. This is expected since, the 
system is closed. The largest band of uncertainty on the 
other hand is provided by the 2-tank open model. It is 
interesting to see that the model chosen to represent the real 
field has the narrowest band of uncertainty and provides the 
smallest water level at the same time. 

7. CONCLUSIONS 

The following conclusions are obtained from this study: 

i. A single realization of the predicted response to a 
given production scenario is not sufficient to 
make reservoir management decisions that 
account for an incomplete knowledge of the 
actual geothermal system. 

ii. One needs to generate a multiple of realizations 
of the predicted future pressure changes to a 
given production scenario for assessing the 
uncertainty inherent in performance predictions 
due to noise in observed data. The RML method 
can be used for this purpose. 

iii. One can correctly characterize the uncertainty in 
performance predictions if and only if the 
lumped-parameter model chosen is correct. The 
most appropriate lumped-model for given 
observed data should be identified by inspecting 
both the RMS and the confidence intervals for the 
estimated model parameters from history 
matching with several candidate lumped-
parameter models. 

 

Table 2: Estimated model parameters by history matching of observed data with five different lumped parameter models. 

Estimated parameters for lumped-models 
Model Parameters 

1-tank open 2-tank closed 2-tank open 3-tank closed 3-tank closed 

κr 

(kg/bar) 

8.4×107 

(%13.95) 

7.4×107 

(%16.36) 

8.0×107 

(%16.49) 

7.7×107 

(%18.65) 

7.6×107 

(%24.51) 

αr 

(kg/bar-s) 

44.2 

(%5.5) 

47.2 

(%5.8) 

46.2 

(%6.3) 

46.2 

(%28) 

46.4 

(%9.8) 

κo1 

(kg/bar) 
-- 

1.5×1010 

(%25.08) 

1.8×1012 

(%1×104) 

2.1×1010 

(%315) 

2.2×1010 

(%54.4) 

αo1 

(kg/bar-s) 
-- -- 

10.6 

(%1×107) 

2.9 

(%1×107) 

0.823 

(%1×105) 

κo2 

(kg/bar) 
-- -- -- 

3.0×1013 

(%3×108) 

8.5×1013 

(%4×105) 

αo2 

(kg/bar-s) 
-- -- -- -- 

622.5 

(%2×106) 

RMS (bar) 0.99 0.97 0.98 0.97 0.97 
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iv. Using a less parameterized lumped-parameter 
model for predictions gives biased predictions 
and highly underestimates the uncertainty in 
future predictions, while using an over-
parameterized lumped-parameter model gives 
unbiased predictions, but overestimates the 
uncertainty in future predictions. 

v. The RML method has successfully been 
implemented to real field data. 

vi. Based on the RML results, the authors believe 
that the Balcova-Narlidere geothermal system can 
best be represented by a 1-tank open model. 

vii. The uncertainty analysis show that the uncertainty 
band in the predictions is also lowest with the 1-
tank open model. 
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