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ABSTRACT

The ability to quantitatively model geothermal well
connectivity in fracture-heterogeneous reservoirs offers the
opportunity to mold field data into physically accurate de
facto models of reservoir-scale flow. Heretofore, however,
incorporating fractures in reservoir flow models has tended
to be mechanically ad hoc and computationally demanding.
A large volume of well-log and well-core data points to a
physically accurate and computationally tractable basis for
simulating fluid flow in fractured reservoirs. Well-log
fluctuation power S(k) tends almost universally to scale
inversely with spatial frequency k, S(k) ~ 1/k, ~1/km < k <
~10%km. Such power-law scaling may be understood as
long-range spatial correlation of in situ grain-scale fracturing
of the cemented bonds that characterize most crustal rock.
Sequences of porosity ¢ and permeability k from hundreds
of meters of clastic reservoir well core tend to obey the
fluctuation relation 8¢ = dlog(x) a ~85% +/- 8% cross
correlation level. If porosity fluctuations 8¢ in grain-scale
fracture density v control permeability fluctuations 6log(x)
via permeability proportional to grain-scae fracture
connectivity factor v!, the empirical spatial fluctuation
relation is equivalent to the combinatoria identity év =
dlog(v!). The well-log and well-core reservoir-empirical
fluctuation relations for in situ fracture systems can be
numerically represented in terms of 2D/3D fracture density
fields with model realizations of porosity fluctuations scaled
as Sk) ~ LUk and associated permeability given by
3¢ = dlog(x)). Fracture-borne fluid flow is efficiently
computed with finite-element solvers. Grids of dimension
32x64x64 to 64x128x128 can represent broadband in situ
fracture heterogeneity to allow rapid quantitative simulation
of interwell connectivity systematics.

1. INTRODUCTION

One of the most challenging reservoir engineering
problems in the design of a geothermal
development is the formulation of a strategy for
reinjection. Due to the complexities of the geology
in most geothermal reservoirs, which are usually
found within fractured and heterogeneous volcanic
rocks, it is common that injected fluids take
apparently surprising paths through the reservoir
and often show up rapidly and unexpectedly in
production  wells. Premature  thermal
breakthrough is a serious detriment to efficient
recovery of the geothermal resource, and
unfortunately has been a rather common
occurrence in many geothermal fields. (Horne &
Szucs 2007).

Many forms of reservoir modeling, such as
simulation, decline curve analysis, trace test

analysis, well test analysis, material balance
analysis, etc., have a central set of physical
assumptions explicitly or implicitly included into
their underlying models. The predictive
effectiveness of the model will be constrained by
the accuracy of its assumptions, even if the data
are perfectly accurate and even if the model match
is precise. One of the principal reasons
geothermal reservoir modeling is so difficult is
that the reservoir behavior is usually governed in
important ways by the location and properties of
fractures, neither of which is ever known clearly.

A different philosophical approach is to let the
data define the model. Individual wells and their
hydraulic neighbors interact throughout their
connecting fracture network, in ways that are
characteristic of those fractures. Relating the
interwell connectivity provide a useful modeling
tool for the understanding of at least regional
behavior of the reservoir. Often such connectivity
interpretations use models and are again
constrained by model assumptions. However is
also possible....to let the data define the model
(Horne 2008).

These statements clearly and succinctly summarize the
importance of, and the uncertainty introduced by, fractures
in geothermal reservoir flow structures.  The importance of
and uncertainty introduced by fractures in reservoir flow are,
in fact, common to all crustal reservoirs. They happen to be
conspicuous in geothermal reservoirs because no geothermal
reservoirs are as big as large-pay oil/gas reservoirs for which
poor understanding of reservoir flow structure is routinely
ignored because sooner than later even poorly guided
drilling produced enough hydrocarbons to be profitable.
However, as giant oil/gas fields deplete, it is clear that the
problem of poor reservoir flow models besetting geothermal
reservoir production is now visiting hydrocarbon reservoirs
(not to speak of carbon sequestration programs and attempts
to deal with the security of nuclear waste repositories).

This paper and its GWC2010 companion Leary & Madin
(2010) seek to ‘let the data define the model’ in two ways:

e Definein situ fracture phenomena based on the
near-universal spatia fluctuation properties
observed in well logs and well core;

o Definereservoir fracture-borne flow models based
on systematic well-connectivity data.

Sections 2-5 illustrate and summarize the empirical view of
in situ fractures and fracture-borne flow seen in well-log and
well-core fluctuation data. Section 6 introduces numerical
representation of grain-scale fracture-density as the basis for
computing Darcy flow in fracture-heterogeneous reservairs.
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Leary & Malin (2010) presents simulations of fracture-borne
flow empirics for application to reservoir-scale flow model
building.

2. SPATIAL CORRELATION SYSTEMATICS OF
GEOPHYSICAL PROPERTIESIN CRUSTAL ROCK

Figures 1-2 illustrate the broadband nature of in situ physical
property fluctuations measured in well log data.
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Figure 1 — Normalized 1.5km well-log fluctuation
sequencesfor, left to right, gammaray activity, sonic
velocity, neutron porosity and mass density; traces
are normalized to zer o-mean and unit variance.
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Figure 1 shows well-logs for four physical properties
(gamma ray activity, sonic velocity, neutron porosity and
mass density) from a 1.5km interval of a North Sea gas-
sands reservoir. For ease of comparison the logs are treated
as statistical fluctuation sequences normalized to zero-mean
and unit-variance. Figure 2 shows synthetic fluctuation
sequences for four types of spatia correlation. From left to
right the spatia correlation types are: a ‘geologically
smoothed’ version of the in situ logs attempting to identify
significant mean-value components of log sequence;
uncorrelated or white/Gaussian-noise random numbers with
Fourier power spectrum S(k) ~ 1/k% corrdlated random
numbers with 1/f-noise power spectrum S(k) ~ 1/k%; and
correlated random numbers with Brownian-noise power
spectrum (k) ~ /K.

Three conclusions emerge from comparing Figure 1 in situ
fluctuations with Figure 2 synthetic noise types:

e Highly correlated Brownian noise fluctuation
sequences resemble only block-like interpretations
of in situ fluctuations; Brownian noise is
dominated by step-like interfaces as might occur
between different rock types if no other significant
geophysical property fluctuations occur in situ to
obscure the significance of interfaces.

e Uncorrelated random numbers have too much
short-term fluctuation tendency to resemblein situ
fluctuations; standard ‘white-noise randomness’ is
not a good statistical model for crustal rock.

e The l/f-noise sequence most resembles in situ
fluctuations; rock properties have a significant
degree of spatial correlation and cannot be
effectively modeled by mean/average values and
their standard deviations, but neither are they well
defined by step-like changes or interfaces between
formations.
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Figure 2 -- Normalized synthetic fluctuation sequences
for, left to right, composite block-filtered well-logs,
uncorrelated random noise, 1/f-noise, and Brownian
noise.

These features of in situ geophysical property fluctuations
have direct impact on reservoir modeling. The underlying
assumption of most reservoir models is that geological
formations can be described in terms of “effective medium
properties’.  On this assumption, it is supposed that a
suitable small scale length & exists such that on scalesr > &
reservoir physical property variations tend to average out
around a mean or “effective” value. It is further supposed
that the “effective” properties of reservoir geological
formations are adequately determined by a few small-scale
samples from, say, well logs and/or well core.

Figures 1-2 show that neither feature of the “effective
medium” hypothesis works for in situ geophysical
properties. The rapid fluctuations are not rapid enough to be
averaged over so that the scale length & does not appear in
the well-log data. And the fluctuations are too rapid and
vigorous to be blocked into a sequence of ‘geologicaly
smooth’ partitions. Figure 1 thus eliminates the two spectral
noise types S(K) ~ 1/k° and S(K) ~ 1/k%. It does not, however,
eliminate the spectral noise type S(k) ~ 1/k*.



Failure of the “effective medium” procedure of producing
reservoir models by averaging and/or sampling in situ data
can be stated mathematically. The “effective medium”
approximation is valid only if the spatia fluctuations of
reservoir properties are uncorrelated above the scale
length & The necessary and sufficient condition for
spatialy uncorrelated fluctuations in rock volume physica
properties is a constant (white) fluctuation Fourier power-
spectrum in spatial frequency k, Sk) ~ VK% In situ
geophysica fluctuations are thus subject to some form of
spatial correlation, but not the degree of spatia correlation
enforced by Brownian noise spectrum S(k) ~ 1/k%. The in
situ degree of spatial correlation Sk) ~ 1/k* lies mid-way
between the two extremes of zero correlation, S(k) ~ 1K,
and block-like correlation, S(k) ~ 1/k%

3. WELL-LOG EMPIRICSIN CRUSTAL ROCK: 1/F-
NOISE SPATIAL FLUCTUATIONS

Figures 3-4 show examples of well-log power-spectra for
data recorded in both reservoir and associated sedimentary
rock drilled by the hydrocarbon industry, and in a range of
crystalline rock drilled for scientific purposes worldwide
(Leary 2002; Goff & Holliger 2002).
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Figure 3 —Well-log power -spectra power -law scaling for
three geological terrains: (left) Bierwang gasfield,
Germany; (centre) western Colorado tight gasfield;
(right) Long Valley CA tuff /crystalline basement;
log types arey = gammaray activity, o. = sonic
velocity, p = mass density and ¢ = neutron por osity;
power -spectral exponents given above each plot;
gpatial frequenciesrange from ~1/km to ~1000/km.
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Figure 4 — Power -spectra log-log scaling for well-log
suitein Lewis Formation sand/shale reservoir
analogue outcrop; log typesinclude sonic velocity,
gamma activity, mass density, neutron porosity, and
chemical abundances; power-spectral exponents
given above each spectral plot; spatial frequencies
range from ~3/km to ~500/km.

The well-log spatial fluctuations have power-spectra scaling
inversely with spatial frequency k, S(k) ~ 1k, over five
decades of scale length, /km < k < 1/em. Not only are
material property fluctuations in crustal rock systematically
spatially correlated at scale lengths from grain-size to
reservoir-size, but a single spatial correlation process
appears to apply to essentialy al crustal rock. The
following two sections discuss a unifying spatia correlation
process and how this process controls the flow properties of
crustal rock.

4. FRACTURE EMPIRICS: GRAIN-SCALE
FRACTURE DENSITY IN CRUSTAL ROCK

The existence of power-laws in general, and of a single
power-law in particular, is observed to occur in physical
systems in transition between two spatial-organization states
(Binney et a 1995). Such a transition state occurs in
percolation systems at a critical density of percolation
defects (Stauffer & Aharony 1994). At the percolation-
defect critical density, system-wide spatially-correlated
fracture pathways permit fluids to traverse the rock system.
That is, at the critical percolation defect density a transition
occurs from a non-conducting rock volume to a conducting
rock volume. Well-log power-law-scaling fluctuation
spectra arise in crustal rock at the defect critical density for
‘phase transition’ from non-through-conducting to through-
conducting states.

Well-log power-law-scaling spatial fluctuations indicate that
rock can be conceptually idealized as a binary population of
non-percolating intact cemented grain-grain bonds and
percolating grain-size defects a which the grain-grain
cement bond has fractured (Leary 2002). Grain-scale defect
populations are created in rock in the course of finite-strain
damage sustained during tectonic deformation.  With
increasing deformation, the grain-scale fracture density
(number of grain-grain cement bond fractures per unit



Leary & Malin

volume) reaches a ‘critical density’ of defects, at which
density the existence of through-going percolation pathways
become inevitable and the near-universa broadband
statistically intractable reservoir fracture complexity is born.

Well-log fluctuations thus naturally characterize fractures in
terms of observable well-connectivity. In situ fractures no
longer need to be seen as mechanicaly distinct from
otherwise quasi-uniform intact rock, and we may abandon
the assumption-rich/observation-poor struggle to assign flow
propertiesto in situ fractures and fracture sets. Rather in situ
fluctuation systematics show that fractures appear at all scale
lengths as elements of a continuum of critical-state long-
range spatialy-correlated  grain-scale-fracture  density
fluctuations. The critical-state nature of percolating grain-
scale fracture density is consistent with evidence of crustal
rock being in a state of near-failure attested by earthquakes
occurring virtually everywhere within the continenta
landmass, and by earthquakes induced by low stress dam-
impounded groundwater |oading.

5. PERCOLATION EMPIRICS. WELL-CORE
FLUCTUATIONS & GRAIN-SCALE FRACTURE
CONNECTIVITY

Well-core porosity-permeability data from oil-field clastic
reservoirs provide direct evidence that grain-scale fractures
control geofluid flow via percolation networks. Figures 4-9
illustrate the strong spatia correlation of well-core plug
laboratory measurements of porosity ¢ and permeability «.
When reduced to zero-mean unit-variance form, porosity
and log(permesbility) sequences for a given reservoir
interval obey the fluctuation relation d¢ = 8log(x) with mean
cross-correlation 85% +/- 8%.

The empirical well-core poroperm fluctuation relation
3¢ = dlog(k) is conceptually equivalent to the mathematical
identity dv = dlog(v!) if porosity is proportional to number
of grain scale fractures v in avolume and the permeability of
that volume is proportiona to the multiplicative term v!,
representing the number of ways v grain-scale fractures can
be combined to produce a percolation pathway. In
fluctuation terms, if a rock volume has v grain-scae
fractures per unit volume at location (x,y,2) and v+dv grain-
scae fractures at location  (x.y,2)+(0x,0y,62), then
percolation-related permeability in the two volumes can be
expected to vary as the combinatorial terms v! and (v+6v)!.
Stirling's formula for the factorial term,
vl = (v+ YHlog(v) — v, applied to the two fracture
connectivity expressions reduces the fluctuation expression
to dv = dlog(v!) as the grain-scae fracture density
percolation model for the empirica well-core poroperm
fluctuation relation 8¢ = 8log(x).

Figure 5 shows the spatial correlation of zero-mean unit-
variance fluctuations of well-core porosity and permesbility
(‘poroperm’) data from a shallow reservoir-analogue
sand/shale outcrop in the Lewis Formation, Wyoming, USA
(Figure 4 well-log spectra are from the same unit).
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Figure 5 — Poroperm spatial correlation data for well-
coresuitein L ewis Formation sand/shale reservoir
analogue outcrop in Wyoming USA; blue = zero-
mean unit variance porosity sequence; red = zero-
mean unit-variance log(per meability) sequence;
cross-correlations given above each plot.

Figures 6-8 illustrate the same degree of cross-correlation
for a suites of poroperm data from North Sea gas sands and
tight-gas sands in South Australia.

Figure 6 — Poroperm spatial correlation data for well-
core suitefrom gasreservoir in Germany; blue =
zer 0-mean unit variance por osity sequence; red =
zero-mean unit-variance log(per meability) sequence.
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Figure 7 — Poroperm spatial correlation data for well-
cor e suite from Otway Basin, South Australia; blue =
zero-mean unit variance por osity sequence; red =
zer o-mean unit-variance log(per meability) sequence.
For these tight gas sands, poroper m fluctuations hold
acr oss for mation boundaries.
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Figure 8 — Poroper m spatial correlation data for well-
cor e suite from Cooper Basin, South Australia; blue
= zero-mean unit variance por osity sequence; red =
zer o-mean unit-variance log(per meability) sequence.
For low per meability core samples, laborary
per meability reading are given asa minimum value;
when such samples are given enough time to register
an accur ate permeability reading, the correlation is
improved.

Figure 9 illustrates the how a dense sequence of well-core
poroperm data from a tight-gas sand formation (leftmost five
logs) can be spatialy correlated with suitably smoothed
well-log data from the same formation (rightmost two logs).
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Figure 9 — Well-log and well-cor e fluctuation data from
western Colorado tight gas sands for mation; five well
logs (I€eft) suitably filtered to remove high frequency
fluctuations compar e well with a dense sequence of
well-cor e por oper m spatial fluctuations (right).
Tracesarereduced to zero-mean unit-variance. Well
interval is 100m. Log typesarey=gammaray
activity, o = sonic velocity, ¢ = neutron porosity, Q =
resistivity, and p = mass density.

6. NUMERICAL REALIZATION OF S(K) ~ UK AND
¢ = 3L OG(k)

Well-logs give evidence for power-law scaling spatia
fluctuations based on the scale-independent interactions of
grain-scale-fracture density in crusta rock. Well-core
poroperm data give evidence for critical-density grain-scale-
fracture density percolation connectivity control of fluid
flow in crustal rock. Together these suites of evidence
indicate that the fracture phenomenology of crustal rock can
be simulated by a numerical scheme based on the spatial
distribution of a scaar grain-scale-fracture density
parameter. Figures 10-13 illustrate the numerical realization
of the 2D reservoir-section fracture-heterogeneity models
derived from well-log and well-core data.

Figure 10 displays a ‘standard model’ of reservoir structure
derived from crosswell seismic velocity tomography. Each
side of the 200m-wide by 700m-deep reservoir section is
constrained by layer-blocked well-log gamma ray activity
measurements converted to acoustic velocity. Crosswell
seismic tomography travel-time data are interpreted in terms
of the displayed velocity distribution (red ~ higher velocities
and blues ~ lower velocities).



Figure 10 — Crosswell seismic velocity tomographic
section acquired between two 700m well sections at
200m offset; inferred well-velocity data constrain the
tomogr aphic inversion; higher velocities ~red, lower
velocities ~ blue.

Figure 11 shows in blue a velocity log for the centre of the
model velocity block and in red a velocity log acquired in a
neighboring well in the surveyed reservoir formations.
Figure 12 shows in blue the spectrum of the model velocity
log and the spectrum of the in situ velocity log.
Unsurprisingly, neither the inferred well-log nor the inferred
log spectrum resembles in situ data. The well log is blocky
with its spectrum having a scaling exponent dominated by
interfaces  rather  than by  interna property
fluctuations.
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Figure 11 — Blue trace = velocity ‘well log’ for Figure 10
section; red trace = in situ acoustic velocity log
recor ded elsewherein surveyed reservoir formation.
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Figure 12 — Blue trace = power-spectrum of Figure 11
blue trace log; red trace = power-spectrum of Figure
11 red trace log. Figure 10 velocity section bears
little physical relation toin situ reality.

Figures 13-14 show a pair of 2D numerical realisations of
the Figure 10 velocity section that are consistent with in situ
property fluctuations. Logs through the Figure 13 velocity
section have spectral scaling exponents ~1.13, and logs
through the Figure 14 velocity section have spectral scaling
exponents ~1.06. Both velocity sections preserve the
geological dtratification of the rock section but clearly
indicate that, in a statistical sense, the geologica layering is
broached by geophysical property fluctuations. If the
geological property fluctuations are intepreted in terms of
grain-scale fracture density fluctuations (as well-log and
well-core systemtics suggest), then geofluid flow computed
for the Figure 13-14 sections is vastly more realistic than
flow computed for the Figure 10 ‘geologicaly layered’
section (Leary & Walter 2008).

Figure 13 — Figure 10 velocity section with superimposed
1/f—noise velocity fluctuations to meet in situ spectral
scaling conditions; well-logs through the model have
power -spectral exponent ~1.13.



Figure 14 — Figure 10 velocity section with superimposed
Vf—noise velocity fluctuations to meet in situ spectral
scaling conditions; well-logs through the model have
power -spectral exponent ~ 1.06.

Figures 15-16 illustrates in 3D the reservoir flow model
dichotomy seen for 2D in Figures 10-14. The Figure 15 data
volume represents 3D 1/f-noise spatial correlation that can
be assigned to grain-scale fracture density and/or porosity.
The data volume in Figure 16 represents Brownian noise
spatial correlation. Data cube permeability is spatialy
distributed according to the well-core relation 3¢ = 8log(x).
Flow simulations for the Figure 15-16 reservoir volumes are
presented in Leary & Malin 2010.
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Figure 15 — 3D 1/f-noise spatial porosity fluctuations
consistent with in situ well-log spectra.

7. CONCLUSIONS

The pervasive systematics of well-log spectra power-law
scaling S(k)~1/k and well-core poroperm fluctuation relation
d¢=dlog(x)) point to an underlying unity of fracture
phenomenology in crusta  rock. The fracture
phenomenology centers on long-range scale-independent
spatial interaction of percolating grain-scale fracture density
fluctuations that allows in situ fractures and fracture-borne
geofluid flow to be conceptually and numerically modeled in
terms of crustal volumes of intense spatia clusters of grain-
scale fractures occurring at &l scale lengths.  The
generalized description of in stu fractures and fracture
conductivity is easily simulated by numerical distributions
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and admit of rapid Darcy flow simulation by standard finite-
element solvers.
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Figure 16 — Brownian—noise porosity fluctuations. This
distribution shows how strong spatial correlation
leads to block-like partitioning of geophysical
properties. In the absence of geological structures of
like spatial partitioning, there is no evidence that
fracture in situ fracture phenomena are spatially
distributed in this manner.
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