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ABSTRACT 

The ability to quantitatively model geothermal well 
connectivity in fracture-heterogeneous reservoirs offers the 
opportunity to mold field data into physically accurate de 
facto models of reservoir-scale flow.  Heretofore, however, 
incorporating fractures in reservoir flow models has tended 
to be mechanically ad hoc and computationally demanding.  
A large volume of well-log and well-core data points to a 
physically accurate and computationally tractable basis for 
simulating fluid flow in fractured reservoirs.  Well-log 
fluctuation power S(k) tends almost universally to scale 
inversely with spatial frequency k, S(k) ~ 1/k, ~1/km < k < 
~105/km.  Such power-law scaling may be understood as 
long-range spatial correlation of in situ grain-scale fracturing 
of the cemented bonds that characterize most crustal rock.  
Sequences of porosity ϕ and permeability κ from hundreds 
of meters of clastic reservoir well core tend to obey the 
fluctuation relation δϕ ≈ δlog(κ) at ~85% +/- 8% cross-
correlation level.  If porosity fluctuations δϕ in grain-scale 
fracture density ν control permeability fluctuations δlog(κ) 
via permeability proportional to grain-scale fracture 
connectivity factor ν!, the empirical spatial fluctuation 
relation is equivalent to the combinatorial identity δν ≈ 
δlog(ν!).  The well-log and well-core reservoir-empirical 
fluctuation relations for in situ fracture systems can be 
numerically represented in terms of 2D/3D fracture density 
fields with model realizations of porosity fluctuations scaled 
as S(k) ~ 1/k and associated permeability given by              
δϕ ≈ δlog(κ)).  Fracture-borne fluid flow is efficiently 
computed with finite-element solvers.  Grids of dimension 
32x64x64 to 64x128x128 can represent broadband in situ 
fracture heterogeneity to allow rapid quantitative simulation 
of interwell connectivity systematics. 

1. INTRODUCTION 

One of the most challenging reservoir engineering 
problems in the design of a geothermal 
development is the formulation of a strategy for 
reinjection. Due to the complexities of the geology 
in most geothermal reservoirs, which are usually 
found within fractured and heterogeneous volcanic 
rocks, it is common that injected fluids take 
apparently surprising paths through the reservoir 
and often show up rapidly and unexpectedly in 
production wells.  Premature thermal 
breakthrough is a serious detriment to efficient 
recovery of the geothermal resource, and 
unfortunately has been a rather common 
occurrence in many geothermal fields. (Horne & 
Szucs 2007).  
 
Many forms of reservoir modeling, such as 
simulation, decline curve analysis, trace test 

analysis, well test analysis, material balance 
analysis, etc., have a central set of physical 
assumptions explicitly or implicitly included into 
their underlying models.  The predictive 
effectiveness of the model will be constrained by 
the accuracy of its assumptions, even if the data 
are perfectly accurate and even if the model match 
is precise.  One of the principal reasons 
geothermal reservoir modeling is so difficult is 
that the reservoir behavior is usually governed in 
important ways by the location and properties of 
fractures, neither of which is ever known clearly. 

A different philosophical approach is to let the 
data define the model.  Individual wells and their 
hydraulic neighbors interact throughout their 
connecting fracture network, in ways that are 
characteristic of those fractures.  Relating the 
interwell connectivity provide a useful modeling 
tool for the understanding of at least regional 
behavior of the reservoir.  Often such connectivity 
interpretations use models and are again 
constrained by model assumptions.  However is 
also possible….to let the data define the model 
(Horne 2008). 

These statements clearly and succinctly summarize the 
importance of, and the uncertainty introduced by, fractures 
in geothermal reservoir flow structures.   The importance of 
and uncertainty introduced by fractures in reservoir flow are, 
in fact, common to all crustal reservoirs.  They happen to be 
conspicuous in geothermal reservoirs because no geothermal 
reservoirs are as big as large-pay oil/gas reservoirs for which 
poor understanding of reservoir flow structure is routinely 
ignored because sooner than later even poorly guided 
drilling produced enough hydrocarbons to be profitable.  
However, as giant oil/gas fields deplete, it is clear that the 
problem of poor reservoir flow models besetting geothermal 
reservoir production is now visiting hydrocarbon reservoirs 
(not to speak of carbon sequestration programs and attempts 
to deal with the security of nuclear waste repositories). 

This paper and its GWC2010 companion Leary & Malin 
(2010) seek to ‘let the data define the model’ in two ways: 

• Define in situ fracture phenomena based on the 
near-universal spatial fluctuation properties 
observed in well logs and well core; 

• Define reservoir fracture-borne flow models based 
on systematic well-connectivity data. 

Sections 2-5 illustrate and summarize the empirical view of 
in situ fractures and fracture-borne flow seen in well-log and 
well-core fluctuation data.  Section 6 introduces numerical 
representation of grain-scale fracture-density as the basis for 
computing Darcy flow in fracture-heterogeneous reservoirs.   
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Leary & Malin (2010) presents simulations of fracture-borne 
flow empirics for application to reservoir-scale flow model 
building.   
2. SPATIAL CORRELATION SYSTEMATICS OF 
GEOPHYSICAL PROPERTIES IN CRUSTAL ROCK 

Figures 1-2 illustrate the broadband nature of in situ physical 
property fluctuations measured in well log data.   
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Figure 1 – Normalized 1.5km well-log fluctuation 

sequences for, left to right, gamma ray activity, sonic 
velocity, neutron porosity and mass density; traces 
are normalized to zero-mean and unit variance. 

 
Figure 1 shows well-logs for four physical properties 
(gamma ray activity, sonic velocity, neutron porosity and 
mass density) from a 1.5km interval of a North Sea gas-
sands reservoir.  For ease of comparison the logs are treated 
as statistical fluctuation sequences normalized to zero-mean 
and unit-variance.  Figure 2 shows synthetic fluctuation 
sequences for four types of spatial correlation.  From left to 
right the spatial correlation types are: a ‘geologically 
smoothed’ version of the in situ logs attempting to identify 
significant mean-value components of log sequence; 
uncorrelated or white/Gaussian-noise random numbers with 
Fourier power spectrum S(k) ~ 1/k0; correlated random 
numbers with 1/f-noise power spectrum S(k) ~ 1/k1; and 
correlated random numbers with Brownian-noise power 
spectrum S(k) ~ 1/k2. 
 
Three conclusions emerge from comparing Figure 1 in situ 
fluctuations with Figure 2 synthetic noise types:  
 

• Highly correlated Brownian noise fluctuation 
sequences resemble only block-like interpretations 
of in situ fluctuations; Brownian noise is 
dominated by step-like interfaces as might occur 
between different rock types if no other significant 
geophysical property fluctuations occur in situ to 
obscure the significance of interfaces. 

• Uncorrelated random numbers have too much 
short-term fluctuation tendency to resemble in situ 
fluctuations; standard ‘white-noise randomness’ is 
not a good statistical model for crustal rock. 

• The 1/f-noise sequence most resembles in situ 
fluctuations; rock properties have a significant 
degree of spatial correlation and cannot be 
effectively modeled by mean/average values and 
their standard deviations, but neither are they well 
defined by step-like changes or interfaces between 
formations. 
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Figure 2 -- Normalized synthetic fluctuation sequences 

for, left to right, composite block-filtered well-logs, 
uncorrelated random noise, 1/f-noise, and Brownian 
noise. 

 
These features of in situ geophysical property fluctuations 
have direct impact on reservoir modeling.  The underlying 
assumption of most reservoir models is that geological 
formations can be described in terms of “effective medium 
properties”.  On this assumption, it is supposed that a 
suitable small scale length ξ exists such that on scales r > ξ 
reservoir physical property variations tend to average out 
around a mean or “effective” value.  It is further supposed 
that the “effective” properties of reservoir geological 
formations are adequately determined by a few small-scale 
samples from, say, well logs and/or well core. 
 
Figures 1-2 show that neither feature of the “effective 
medium” hypothesis works for in situ geophysical 
properties.  The rapid fluctuations are not rapid enough to be 
averaged over so that the scale length ξ does not appear in 
the well-log data.  And the fluctuations are too rapid and 
vigorous to be blocked into a sequence of ‘geologically 
smooth’ partitions.  Figure 1 thus eliminates the two spectral 
noise types S(k) ~ 1/k0 and S(k) ~ 1/k2.  It does not, however, 
eliminate the spectral noise type S(k) ~ 1/k1. 
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Failure of the “effective medium” procedure of producing 
reservoir models by averaging and/or sampling in situ data 
can be stated mathematically.  The “effective medium” 
approximation is valid only if the spatial fluctuations of 
reservoir properties are uncorrelated above the scale     
length ξ.  The necessary and sufficient condition for 
spatially uncorrelated fluctuations in rock volume physical 
properties is a constant (white) fluctuation Fourier power-
spectrum in spatial frequency k, S(k) ~ 1/k0.  In situ 
geophysical fluctuations are thus subject to some form of 
spatial correlation, but not the degree of spatial correlation 
enforced by Brownian noise spectrum S(k) ~ 1/k2.  The in 
situ degree of spatial correlation S(k) ~ 1/k1 lies mid-way 
between the two extremes of zero correlation, S(k) ~ 1/k0, 
and block-like correlation, S(k) ~ 1/k2. 

 

3.  WELL-LOG EMPIRICS IN CRUSTAL ROCK: 1/F-
NOISE SPATIAL FLUCTUATIONS 

Figures 3-4 show examples of well-log power-spectra for 
data recorded in both reservoir and associated sedimentary 
rock drilled by the hydrocarbon industry, and in a range of 
crystalline rock drilled for scientific purposes worldwide 
(Leary 2002; Goff & Holliger 2002). 
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Figure 3 – Well-log power-spectra power-law scaling for 

three geological terrains: (left) Bierwang gas field, 
Germany; (centre) western Colorado tight gas field; 
(right)  Long Valley CA tuff /crystalline basement; 
log types are γ = gamma ray activity, α = sonic 
velocity, ρ = mass density and φ = neutron porosity; 
power-spectral exponents given above each plot; 
spatial frequencies range from ~1/km to ~1000/km. 
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Figure 4 – Power-spectra log-log scaling for well-log 

suite in Lewis Formation sand/shale reservoir 
analogue outcrop; log types include sonic velocity, 
gamma activity, mass density, neutron porosity, and 
chemical abundances; power-spectral exponents 
given above each spectral plot; spatial frequencies 
range from ~3/km to ~500/km. 

 
The well-log spatial fluctuations have power-spectra scaling 
inversely with spatial frequency k, S(k) ~ 1/k1, over five 
decades of scale length, 1/km < k < 1/cm.  Not only are 
material property fluctuations in crustal rock systematically 
spatially correlated at scale lengths from grain-size to 
reservoir-size, but a single spatial correlation process 
appears to apply to essentially all crustal rock.  The 
following two sections discuss a unifying spatial correlation 
process and how this process controls the flow properties of 
crustal rock. 
 

4. FRACTURE EMPIRICS: GRAIN-SCALE 
FRACTURE DENSITY IN CRUSTAL ROCK 

The existence of power-laws in general, and of a single 
power-law in particular, is observed to occur in physical 
systems in transition between two spatial-organization states 
(Binney et al 1995).  Such a transition state occurs in 
percolation systems at a critical density of percolation 
defects (Stauffer & Aharony 1994).  At the percolation-
defect critical density, system-wide spatially-correlated 
fracture pathways permit fluids to traverse the rock system.  
That is, at the critical percolation defect density a transition 
occurs from a non-conducting rock volume to a conducting 
rock volume.  Well-log power-law-scaling fluctuation 
spectra arise in crustal rock at the defect critical density for 
‘phase transition’ from non-through-conducting to through-
conducting states. 
 
Well-log power-law-scaling spatial fluctuations indicate that 
rock can be conceptually idealized as a binary population of 
non-percolating intact cemented grain-grain bonds and 
percolating grain-size defects at which the grain-grain 
cement bond has fractured (Leary 2002).  Grain-scale defect 
populations are created in rock in the course of finite-strain 
damage sustained during tectonic deformation.  With 
increasing deformation, the grain-scale fracture density 
(number of grain-grain cement bond fractures per unit 
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volume) reaches a ‘critical density’ of defects, at which 
density the existence of through-going percolation pathways 
become inevitable and the near-universal broadband 
statistically intractable reservoir fracture complexity is born. 
 
Well-log fluctuations thus naturally characterize fractures in 
terms of observable well-connectivity.  In situ fractures no 
longer need to be seen as mechanically distinct from 
otherwise quasi-uniform intact rock, and we may abandon 
the assumption-rich/observation-poor struggle to assign flow 
properties to in situ fractures and fracture sets. Rather in situ 
fluctuation systematics show that fractures appear at all scale 
lengths as elements of a continuum of critical-state long-
range spatially-correlated grain-scale-fracture density 
fluctuations.  The critical-state nature of percolating grain-
scale fracture density is consistent with evidence of crustal 
rock being in a state of near-failure attested by earthquakes 
occurring virtually everywhere within the continental 
landmass, and by earthquakes induced by low stress dam-
impounded groundwater loading. 
 

5. PERCOLATION EMPIRICS: WELL-CORE 
FLUCTUATIONS & GRAIN-SCALE FRACTURE 
CONNECTIVITY 

Well-core porosity-permeability data from oil-field clastic 
reservoirs provide direct evidence that grain-scale fractures 
control geofluid flow via percolation networks.  Figures 4-9 
illustrate the strong spatial correlation of well-core plug 
laboratory measurements of porosity ϕ and permeability κ.  
When reduced to zero-mean unit-variance form, porosity 
and log(permeability) sequences for a given reservoir 
interval obey the fluctuation relation δϕ ≈ δlog(κ) with mean 
cross-correlation 85% +/- 8%.   
 
The empirical well-core poroperm fluctuation relation       
δϕ ≈ δlog(κ) is conceptually equivalent to the mathematical 
identity δν ≈ δlog(ν!) if porosity is proportional to number 
of grain scale fractures ν in a volume and the permeability of 
that volume is proportional to the multiplicative term ν!, 
representing the number of ways ν grain-scale fractures can 
be combined to produce a percolation pathway.  In 
fluctuation terms, if a rock volume has ν grain-scale 
fractures per unit volume at location (x,y,z) and ν+δν grain-
scale fractures at location (x,y,z)+(δx,δy,δz), then 
percolation-related permeability in the two volumes can be 
expected to vary as the combinatorial terms ν! and (ν+δν)!.  
Stirling’s formula for the factorial term,                               
ν! ≈ (ν+ ½)log(ν) – ν, applied to the two fracture 
connectivity expressions reduces the fluctuation expression 
to δν ≈ δlog(ν!) as the grain-scale fracture density 
percolation model for the empirical well-core poroperm 
fluctuation relation δϕ ≈ δlog(κ).  

Figure 5 shows the spatial correlation of zero-mean unit-
variance fluctuations of well-core porosity and permeability 
(‘poroperm’) data from a shallow reservoir-analogue 
sand/shale outcrop in the Lewis Formation, Wyoming, USA 
(Figure 4 well-log spectra are from the same unit).  
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Figure 5 – Poroperm spatial correlation data for well-
core suite in Lewis Formation sand/shale reservoir 
analogue outcrop in Wyoming USA; blue = zero-
mean unit variance porosity sequence; red = zero-
mean unit-variance log(permeability) sequence; 
cross-correlations given above each plot. 

 

Figures 6-8 illustrate the same degree of cross-correlation 
for a suites of poroperm data from North Sea gas sands and 
tight-gas sands in South Australia. 

 

 
Figure 6 – Poroperm spatial correlation data for well-

core suite from gas reservoir in Germany; blue = 
zero-mean unit variance porosity sequence; red = 
zero-mean unit-variance log(permeability) sequence. 
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Figure 7 – Poroperm spatial correlation data for well-
core suite from Otway Basin, South Australia; blue = 
zero-mean unit variance porosity sequence; red = 
zero-mean unit-variance log(permeability) sequence.  
For these tight gas sands, poroperm fluctuations hold 
across formation boundaries.  

 

Figure 8 – Poroperm spatial correlation data for well-
core suite from Cooper Basin, South Australia; blue 
= zero-mean unit variance porosity sequence; red = 
zero-mean unit-variance log(permeability) sequence.  
For low permeability core samples, laborary 
permeability reading are given as a minimum value; 
when such samples are given enough time to register 
an accurate permeability reading, the correlation is 
improved. 

Figure 9 illustrates the how a dense sequence of well-core 
poroperm data from a tight-gas sand formation (leftmost five 
logs) can be spatially correlated with suitably smoothed 
well-log data from the same formation (rightmost two logs). 

 log( )

 

Figure 9 – Well-log and well-core fluctuation data from 
western Colorado tight gas sands formation; five well 
logs (left) suitably filtered to remove high frequency 
fluctuations compare well with a dense sequence of 
well-core poroperm spatial fluctuations (right).  
Traces are reduced to zero-mean unit-variance.  Well 
interval is 100m.  Log types are γ = gamma ray 
activity, α = sonic velocity, φ = neutron porosity, Ω = 
resistivity, and ρ = mass density. 

6. NUMERICAL REALIZATION OF S(K) ~ 1/K1 AND 
δϕ ≈ δLOG(κ) 

Well-logs give evidence for power-law scaling spatial 
fluctuations based on the scale-independent interactions of 
grain-scale-fracture density in crustal rock.  Well-core 
poroperm data give evidence for critical-density grain-scale-
fracture density percolation connectivity control of fluid 
flow in crustal rock.  Together these suites of evidence 
indicate that the fracture phenomenology of crustal rock can 
be simulated by a numerical scheme based on the spatial 
distribution of a scalar grain-scale-fracture density 
parameter.  Figures 10-13 illustrate the numerical realization 
of the 2D reservoir-section fracture-heterogeneity models 
derived from well-log and well-core data.  

Figure 10 displays a ‘standard model’ of reservoir structure 
derived from crosswell seismic velocity tomography.  Each 
side of the 200m-wide by 700m-deep reservoir section is 
constrained by layer-blocked well-log gamma ray activity 
measurements converted to acoustic velocity.  Crosswell 
seismic tomography travel-time data are interpreted in terms 
of the displayed velocity distribution (red ~ higher velocities 
and blues ~ lower velocities). 
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Figure 10 – Crosswell seismic velocity tomographic 
section acquired between two 700m well sections at 
200m offset; inferred well-velocity data constrain the 
tomographic inversion; higher velocities ~ red, lower 
velocities ~ blue.     

Figure 11 shows in blue a velocity log for the centre of the 
model velocity block and in red a velocity log acquired in a 
neighboring well in the surveyed reservoir formations.  
Figure 12 shows in blue the spectrum of the model velocity 
log and the spectrum of the in situ velocity log.  
Unsurprisingly, neither the inferred well-log nor the inferred 
log spectrum resembles in situ data.  The well log is blocky 
with its spectrum having a scaling exponent dominated by 
interfaces rather than by internal property 
fluctuations.
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Figure 11 – Blue trace = velocity ‘well log’ for Figure 10 
section; red trace = in situ acoustic velocity log 
recorded elsewhere in surveyed reservoir formation.  
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Figure 12 – Blue trace = power-spectrum of Figure 11 
blue trace log; red trace = power-spectrum of Figure 
11 red trace log.  Figure 10 velocity section bears 
little physical relation to in situ reality. 

Figures 13-14 show a pair of 2D numerical realisations of 
the Figure 10 velocity section that are consistent with in situ 
property fluctuations.  Logs through the Figure 13 velocity 
section have spectral scaling exponents ~1.13, and logs 
through the Figure 14 velocity section have spectral scaling 
exponents ~1.06.  Both velocity sections preserve the 
geological stratification of the rock section but clearly 
indicate that, in a statistical sense, the geological layering is 
broached by geophysical property fluctuations.  If the 
geological property fluctuations are intepreted in terms of 
grain-scale fracture density fluctuations (as well-log and 
well-core systemtics suggest), then geofluid flow computed 
for the Figure 13-14 sections is vastly more realistic than 
flow computed for the Figure 10 ‘geologically layered’ 
section (Leary & Walter 2008). 

 

Figure 13 – Figure 10 velocity section with superimposed 
1/f–noise velocity fluctuations to meet in situ spectral 
scaling conditions; well-logs through the model have 
power-spectral exponent ~ 1.13.  
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Figure 14 – Figure 10 velocity section with superimposed 
1/f–noise velocity fluctuations to meet in situ spectral 
scaling conditions; well-logs through the model have 
power-spectral exponent ~ 1.06.  

Figures 15-16 illustrates in 3D the reservoir flow model 
dichotomy seen for 2D in Figures 10-14.  The Figure 15 data 
volume represents 3D 1/f-noise spatial correlation that can 
be assigned to grain-scale fracture density and/or porosity.  
The data volume in Figure 16 represents Brownian noise 
spatial correlation.  Data cube permeability is spatially 
distributed according to the well-core relation δϕ ≈ δlog(κ).  
Flow simulations for the Figure 15-16 reservoir volumes are 
presented in Leary & Malin 2010. 

 

Figure 15 – 3D 1/f–noise spatial porosity fluctuations 
consistent with in situ well-log spectra. 

7. CONCLUSIONS 

The pervasive systematics of well-log spectra power-law 
scaling S(k)~1/k and well-core poroperm fluctuation relation 
δϕ≈δlog(κ)) point to an underlying unity of fracture 
phenomenology in crustal rock.  The fracture 
phenomenology centers on long-range scale-independent 
spatial interaction of percolating grain-scale fracture density 
fluctuations that allows in situ fractures and fracture-borne 
geofluid flow to be conceptually and numerically modeled in 
terms of crustal volumes of intense spatial clusters of grain-
scale fractures occurring at all scale lengths.  The 
generalized description of in situ fractures and fracture 
conductivity is easily simulated by numerical distributions 

and admit of rapid Darcy flow simulation by standard finite-
element solvers. 

 

Figure 16 – Brownian–noise porosity fluctuations.  This 
distribution shows how strong spatial correlation 
leads to block-like partitioning of geophysical 
properties.  In the absence of geological structures of 
like spatial partitioning, there is no evidence that 
fracture in situ fracture phenomena are spatially 
distributed in this manner.   
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