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ABSTRACT

This paper investigates the propagation of uncertainties in
the input variables (used in the volumetric method) on to
stored and recoverable thermal energy resources calculated
from volumetric methods. Both Monte Carlo (MC) and the
analytic uncertainty propagation (AUP) methods are
considered and compared for uncertainty characterization.
Analytic uncertainty propagation equations (AUPEs) are
derived based on a Taylor-series expansion around the
mean values of the input variables. The AUPEs are general
in that correlation among the input variables, if it exists, can
also be accounted for on the resulting uncertainty. Monte
Carlo methods (MCMs) were used to verify the results
obtained from the AUPEs.

A comparative study that we have conducted shows that the
AUPM is as accurate as the MCM for the problem of
interest. Hence, it can be used as a fast tool eliminating the
need for MCM because the resulting distributions of
thermal resources always tend to be log-normal. We also
discuss the problem of aggregating thermal resources for
projects involving more than one field. Should one use an
arithmetic or probabilistic addition to determine “proved,”
“probable,” and “possible” (which corresponds to P10, P50,
and P90 percentiles of the cumulative distribution function,
respectively) corresponding a geothermal project or a
country which may involve many diverse fields, each with
its estimated values of P10, P50, and P90? We show that
the arithmetic sum underestimates the P10 value, compared
to probabilistic sum which is the statistically proper method
for adding resources or reserves. Applications on synthetic
and field data cases are presented to demonstrate the
methodology considered in this work.

1. INTRODUCTION

Uncertainty is inherent in estimation of any type of
resources (oil, gas or heat) from underground energy
systems. The thermal energy or power resource (or
“reserve”") of a given geothermal reservoir is no exception.
Unfortunately, this is also true regardless of any method
used for estimation, e.g., volumetric, decline curve, or
reservoir simulation methods because the input variables
required for the resource estimation problem always contain
uncertainties to some degree that propagate into resource
estimates. Therefore, to make good decisions, one must be
able to accurately assess and manage the uncertainties and
risks.

T We use the word “resources” rather than “reserves” when
commerciality is not proven (SPE, 2006).

In this work, we limit our study to the assessment of
uncertainty in estimated thermal energy resource (in the
form of stored or recoverable) by the volumetric methods
(for example, see Muffler and Cataldi, 1978).

Volumetric methods are usually used to estimate stored heat
and recoverable power resources in the early life of
geothermal reservoirs. Estimation of the thermal energy
requires geological, geophysical, and petro-physical data
including reservoir temperature, reservoir area, thickness,
porosity, rock and fluid specific heats, etc. The values of
these input variables have usually large uncertainties
associated with them, and hence it is very important to
propagate these uncertainties on to the estimation of the
thermal energy reserves. From the view point of a field
investment, an accurate assessment of uncertainty in stored
and recoverable heat is a crucial task from which to make
decisions that will create value and/or mitigate loss in value
(risk).

In the past, various authors have considered assessing
uncertainty in estimated stored and recoverable power from
the volumetric method by using the Monte Carlo (MC)
method (Brook et al., 1979; Serpen, 2001; Lovekin, 2004;
Sanyal and Sarmiento, 2005, Arkan and Parlaktuna, 2005;
Serpen et al., 2008). However, none of these works provide
a deep investigation of and insight into the uncertainty
assessment from the volumetric method. These works
simply apply the MCM to characterize uncertainty in
estimated stored heat or recoverable power for the
geothermal reservoirs interest.

It is no doubt that the MCM used in the previous references
cited is a general approach for assessing the uncertainty. In
this work, however, we show that there is a simple and fast
alternative method — which we refer to it as the analytic
uncertainty propagation method (AUPM) - to the MCM
method for characterizing uncertainty. The validity of the
AUPM for accurately characterizing uncertainty results
from the fact the distributions of stored heat and power for
a zone, well, or field to be computed from the volumetric
method always tend to be log-normal. This result simply
follows from the fundamental theorem of statistics and
probability — the Central Limit Theorem (CLT) (e.g., see
Parzen, 1962). The CLT states that the sum of a sufficiently
large number of independent random variables each with
finite mean and variance will be approximately normally
distributed. As a consequence of this theorem and the
functional relationship of the volumetric method which
involves a product/quotient of several independent random
variables for computing thermal energy reserves, one
should expect that the resulting distribution of the thermal
energy is to be nearly log-normal as the number of input
random variables increases. This result is in fact valid no
matter what form of uncertainty the input variables assume.
The same findings have been reported previously for the
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assessment of uncertainty in oil or gas reserves computed
from the volumetric methods by Capen (1996, 2001).

Other objectives of this work are as follows: We would like
to show how the different types of input distributions and
correlation among input variables propagate into the
uncertainty of the estimated thermal energy or power.
Furthermore, we discuss the problem of aggregating
individual fields’ resources for the geothermal projects
involving many diverse fields or a country’s total resources.
It is shown that the arithmetic addition underestimates the
P10 that would be obtained by the probabilistic addition,
which is the statistically proper method for adding
resources or reserves) unless all fields considered in
aggregation are fully (or perfectly) correlated with each
other.

2.VOLUMETRIC METHOD

Here, we introduce the volumetric method used to compute
the stored heat and recoverable thermal energy (in terms of
power) for a given geothermal field. Throughout, we will
assume a geothermal reservoir containing hot solid rock and
single-phase liquid water. For two-phase systems,
appropriate equations are given by Sanyal and Sarmiento
(2005).

Based on the volumetric method, we can estimate
recoverable power (in MW) by the following equation
(Serpen, 2001; Sanyal and Sarmiento, 2005; Arkan and
Parlaktuna, 2005, Sarak et al., 2009):

_HRY

= , 1
10°Lt, @

where H, is the total stored heat and is usually referred to as
the accessible resource base and is estimated from Eq. 2:

Ht :[(1_¢)Csps+¢cwpw:|Ah(T _Tr)' (2)

In Eq. 2, the subscript r, s, t, and w denote reference, solid
rock, total, and water, respectively. The variables used in
Egs. 1 and 3 and their units are given below:

H, total stored heat in kJ (see Eq. 2)

Le  load factor (fraction)

PW recoverable power in MW

Re  recovery factor (fraction)

Y  transformation yield (fraction)

t,  project life in seconds (s.)

A areainm?

¢ specific heat in ki/(kg °C)

h net thickness in m

H  stored heat in kJ
T  temperature in °C
¢  porosity (fraction)
p  density in kg/m®

In Eq. 1, L, the load factor, represents the fraction of the
total time in which the direct heating or power generation is
in operation, and Y, the transformation yield, represents the
efficiency of transferring thermal energy from the
geothermal fluid to a secondary fluid.

It is also worth noting that Eqs. 1 and 2 are valid for
predicting the recoverable power for both direct- heating
and power (electricity) generation applications from liquid-
dominated systems from which only liquid is produced,
provided that the variables such as T, T, Re, Y, Lg, and t,
are “adequately” chosen for the specific application of
interest. For example, for most of the direct-heating
applications, T, usually ranges from 15 to 60 °C, whereas
for electricity generation, T, usually ranges between 70 to
100 °C. Although it is important how to choose the
variables and their ranges for accurately assessing
uncertainty in PW (Eq. 1) and H; (Eq. 2), our purpose here
is not to get into a detailed discussion of appropriate
sources of data and how one could determine the
appropriate values of the variables and the associated
uncertainties. Assessment of uncertainties in the input
variables itself is a notoriously difficult problem, because,
to our knowledge, there is no standard rule for
characterizing uncertainty in the input variables. On this
aspect, we refer the readers to the works of Capen (1976)
and Welsh et al. (2007).

Uncertainty in the recoverable power results from our lack
of knowledge in most of the input variables in Egs. 1 and 2.
Quantification of uncertainty is inevitably subjective
because knowledge about the input variables is dependent
on available data and personal experience of the interpreter.
As well stated by Welsh et al. (2007), it is quite possible for
two people to have different probability estimates for the
same input variable, based on their differing knowledge.
Thus, there is no single “correct” probability distribution,
unless all people have identical experience and information,
and process it in the same way (Welsh et al., 2007).

Based on the discussion given in the previous paragraph,
there is no reason to claim that any particular type of
probability distribution (e.g., uniform, normal, log-normal,
triangular, etc.) for our input variables be preferable. As we
will show later based on the CLT, the resulting distributions
of PW (or H,) are almost log-normal regardless of the types
of probability distributions chosen for the input variables.

When computing PW from Eq. 1, we can treat PW in
general as a function of eleven random input variables; A, h,
&, Cs, Cwy P Pwr (T-T)), Re, Lg, and Y. In our applications,
we fix T, at a constant value, but the variable (T-T,) in Eq. 2
will be treated as a random variable because T in Eq. 2 is
treated as a random variable. If the mean and variance of T

are 4 and o2, then the mean and variance of the (T-T,) are

Mgy = My —T, and o7, respectively. Furthermore, we

assume that there is no uncertainty associated with the
variable t, in Eq. 1.

It is worth noting that some input variables involved in Egs.
1 and 2 can be statistically correlated. For example, p,, the
density of water, is expected to be dependent on the value
of T, reservoir temperature in Eq. 2. We would expect that
increasing T decreases p,, which indicates that these two
variables are negatively correlated. Hence, this indicates
that p, and T may not be treated as two independent
variables in Eq. 2. We may also expect that c,, the solid
rock specific heat be negatively correlated with p;, the solid
rock density, and c; be positively correlated with



temperature. In addition, reservoir area may be positively
correlated with the net thickness (Murtha, 1994). Our point
is that ignoring existing correlations between input variable
pairs may lead to an incorrect characterization of
uncertainty in PW or H,. If data and available information
permit, one should make scatter plots of input variable pairs
to identify the correlation between them, if any, and then
include these correlations into the uncertainty assessment
procedure.

3.LOG-NORMALITY OF THERMAL RESOURCES

If we take the natural logarithm of PW given by Eq. 1, we
obtain:

InPW=InHt+InRF+InY+Ini+In % . (3)
L 10%t,

where InH,, which follows from Eq. 2 by taking the natural
logarithm of it, is given by:

InH, =In[(1-¢)c.p, +dc,p, |+INA

0]
+Inh+In(T-T,)

Eqg. 3 clearly indicates that INPW can be written as a sum of
the natural logarithms of H;, Rg, Y and Lg. If all these
random variables are treated as independent, then it follows
from the CLT, discussed previously, that the resulting
distribution of INPW will tend to be normal. Hence, PW will
tend to be log-normal. It is important to note that this is true
no matter what type of distribution the input random
variables assume.

Note that the CLT promises that INnPW be normal if all the
random variables are independent. However, as we will
show later [also see, Sarak et al. (2009)] the resulting
distributions of InPW still tend to be normal even if some of
the input variables are treated as dependent.

Sarak et al. (2009) have also studied the resource estimation
for stored heat, H;, based on Eq. 2 and 4. They found that
the distribution of H; is also log-normal, even though it may
not be apparent from Eq. 4 as the first logarithmic term in
the right-hand-side of Eq. 4 cannot be written as the sum of
the natural logarithms of the individual input parameters,
ie.,

In[ (1-¢)c,p, +dc,p, | #In(1-¢)+Inc, +Inp, +
Ing+Inc, +Inp, '
(®)
Sarak et al. (2009) shows that for most of the cases of
practical interest, the most of the heat is stored in the solid
part (typically 80 to 90 percent of the total heat in rock and

fluid) and hence the first term in the right-hand side of Eq.
4 is well approximated by

In[(1-¢)c.p, +¢c,p, | =In(1-¢)+Inc, +Inp, .
(6)

Eg. 6 may justify why H; (and also PW which depends on
it) follows closely a log-normal distribution.

4. QUANTIFICATION OF UNCERTAINTY

We first state our definitions to be used for characterizing
uncertainty in PW. For this characterization, we adopt the
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convention proposed by Capen (2001). We will refer to P10
as “proved”, P50 as “probable”, and P90 as “possible”,
where P10, P50, and P90 correspond to 10th, 50th and 90th
percentiles of the cumulative distribution function,
respectively, for PW.

It is worth noting that in SPE literature and also in some
papers in geothermal literature (e.g., Sanyal and Sarmiento,
2005), P10 used throughout in this paper is referred as
“P90” (or proved resources) indicating that there is at least
a 90% probability that the quantities actually recovered will
be equal or exceed the estimate, and P90 used in this paper
is referred to as “P10” indicating that there is a 10%
probability that the quantities actually recovered will be
equal or exceed the estimate. In our definition, P10 (or 50
or 90) refers to 10" (or 50" or 90" percentile indicating
that there is a 10% (or 50% or 90%) probability that the
quantities actually recovered will be equal or less than the
estimate.

As discussed in the previous section, based on the CLT
theorem, the uncertainty on the resource PW of a single
field will tend to be a log-normal distribution. So, InPW
follows a normal distribution characterized by its mean

(U ) @nd variance (07, ), While PW is a log-normal

by its mean ( 4, ) and variance (0',§W ). The two sets of
parameters are related by the equations:

o2
Hpy =EXP (,Um pw T InZPW j ’ ™
and
O-sw = ﬂf»w |:eXp (O-Ii PW ) _]1 : @)

We can also derive the following equations from Eqgs. 7 and
8:

1 o’
Moy =N 1Ly, _Eln(l"' n \J' )
PW
and
2
02 oy = |n[1+2%]. (10)
PW

The 10", 50" and 90™ percentiles of PW are computed from
the following equations:

P10= eXp(,um ow —1.28/07 0y ) , (11)

P50 = exp( Lpw ) - (12)
and

P90 =exp (:Um pw +1.28 O-li PW ) . (13)

In following subsections, we review some basic equations
and methods used for quantification of uncertainty (i.e.,
computing mean, variance, P10, P50, and P90 given by
Egs. 7-13) in PW (or InPW) by the volumetric method (Eq.
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1 or 3). We first consider the Monte Carlo method (MCM)
and then the analytic uncertainty propagation method
(AUPM).

4.1 Monte Carlo Method (MCM)

The MCM relies on a specified probability distribution of
each of the input variables and generates an estimate of the
overall uncertainty in the prediction due to all uncertainties
in the variables (Kalos and Withlock, 2008). As it does not
require a linearization of the function and a continuity of
the random variables, it is a more general approach for
characterizing the uncertainty for any given nonlinear
random function f. In our case, f represents PW given by
Eqg. 1 or InPW given by Eq. 3. In the applications to be
given, we perform Monte Carlo simulations by using
@RISK,™ spreadsheet-based software (2004).

4.2 Analytical Uncertainty Propagation Method
(AUPM)

Here, we derive an uncertainty propagation equation for a
function f (PW in Eq. 1 or its natural logarithm given by Eq.
3) where it is treated as a continuous random function due
to uncertainties in the input variables. We assume that all
uncertainties are due to the random uncertainties in the
input variables and ignore the systematic errors in the input
variables. The error propagation equation we present is
based on a Taylor series approximation of the function
around the mean values of the variables up to its first
derivatives with respect to each of the input variables. As a
consequence of this approximation, the uncertainty
propagation equation provides a linearization of the
function in terms of its input random variables (Barlow,
1989; Coleman and Steele, 1999; Zeybek et al., 2009).

The AUPM provides a simple approach for estimating the
variance of a function defined by several random variables
— particularly so, of a function defined by products and
quotients of random variables, whether they are
independent or correlated. The method does not assume a
specific type of distribution for the input variables and all
needed to use the AUPM are the statistical properties of the
distribution of each random variable; specifically the mean,
variance (or std. dev.), and the covariance (or correlation
coefficient) among variable pairs if the random variables
are correlated (Sarak et al., 2009).

Before we present the derivation of the AUPM, it is worth
noting that the AUPM provides an exact result for the mean
and variance of a random function f if f is linear with
respect to the input random variables. Otherwise, i.e., if fis
nonlinear, then the AUPM provides only approximate
estimates of the mean and variance of f. The approximation
gets better if nonlinear f can be well approximated by a
linear function near the means of the input random
variables.

For the problem of interest in this work, we wish to
estimate the mean and variances of PW given by Eq. 1. PW
given by Eq. 1 is, in general, a nonlinear function of the
input variables. As noted before, if we work, however, with
the natural logarithm of PW, we obtain a partially linearized
equation for InPW (Eq. 3). We say “partially linearized”
because InPW is still nonlinear with respect to the input
variables involved in InH; (Eqg. 4), but linear with respect to
the variables InRg, InY and In(1/Lg).

As shown by Sarak et al. (2009), three different approaches
could be considered when the AUPM is used to derive
approximations for the mean and variance of PW. For

example, we can directly apply the AUPM to the PW given
by Eg. 1 as a function of the input variables (Approach 1)
or can directly apply the AUPM to the InPW function given
by Eq. 3 by treating it as a function of input variables
(Approach 2) or as a function of the natural logarithms of
the input variables (Approach 3). Sarak et al. (2009) shows
that the Approach 3 provides the best accurate estimates of
the mean, variance, P10, P50, and P90 of the InPW; i.e., we
apply the AUPM directly INPW (Eqg. 3) as a function of the
natural logarithms of the input variables. In this paper, we
present the equations for the AUPM based on Approach 1
and Approach 3. The equations of the AUPM based on
Approach 2 can be found in Sarak et al. (2009). In this
paper, from this point on, the Approach 3 is to be referred
to as Approach 2.

4.2.1 AUPM for PW (Approach 1)

Let’s consider a random function f of M variables, X;, i
=1,2,..M, ie, f = f (X, X,,...,X,, ). Then, expanding
f around the mean (or true) values of X;s (denoted by
My, i=12,...,M) by using a Taylor series up to first

derivatives, we obtain:

f (X, X, Xy )= f(ﬂxl,ﬂxz,...,ﬂxm)

#3(x —ﬂx.)(%]

i=1 i

(14)

Xi=fiy i=1..M

It can be shown that the mean ( £, ) and variance of f ( O'fz)

are approximated by:

ﬂf:f(ﬂx1"[lxz"“'ﬂxm)’ (15)
and
M M-1 M
0l =607, +2Y Y. 66X, X)), (19
i=1 i=l j=i+l

where cov(X;X;) represents the covariance between the
variable pairs X; and X;, and if we use the relation between

covariance and correlation coefficient, p, , , then we can
i
express Eq. 16 in terms of the correlation coefficient as:

M M-1 M
O-f2 =iZ=1:9iZO->2(' +22 Z ﬂejpx,,wai,aij . 7)

i=1 j=i+l

In Egs. 16 and 17, &, is the derivative of f with respect to
the variable X;, i.e.,

36

Note that & represents the sensitivity of f to the variable X;
evaluated at the mean values of all the variables. It can be
noticed (from Egs. 16 and 17) that the uncertainty
propagation on to f is determined not only by the variances
of the variables and correlation among them, but also the
sensitivity of f to each variable in the volumetric method for
PW (see Egs. 1).

(18)

Xi=tt; i=L..M

As mentioned previously, for the problem of interest, f in
Eqgs. 14-17 represents PW given by Eq. 1. The sensitivities



of PW (i.e., 8s) required in Egs. 16 and 17 can be obtained
by analytical differentiation of Eq. 1 with respect to the
input variables in Eq. 1. These sensitivities are presented in
Table 1.

Table 1: Sensitivity of PW (Eq. 1) with respect to a
given input variable X; in Eq. 1.
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Uypy =1 PW(ﬂ|nx1:/l|nx2'-~:/l|an)1 (19)
and
M ML M
Oloy = gé’izaﬁxl + 2; ;1 6,0, x, inx, Tinx, Finx,
_ J (20)

where the sensitivities gs in Eq. 19 are given by:

g - oInPW
aln X,

and are tabulated in Table 2.

: 1)

Xi=tty; =1, M

Table 2: Sensitivity of InPW (Eq. 3) with respect to a
natural logarithm of a given variable X; in

Variable X; 6 = PW/OX;"
¢ (=t Mo ) M M,
10°u, t,
G (1_ M, )ﬂpsluAluhlu(T—T,):uRF Hy
10°u, t,
Ps (L= 12, ) e Mpttol M, 11
10°u, t,
Cw Moty a1 )M Hy
10°4, t,
P Moo HaHn M 1) Hr Hy
10°uL t,
A
(1= tt) o, + pagbe ph,, |1t i
10°u, t,
h
(L)t + ol p, Lttt s b
10°u, t,
T-T
' (1= )ttty + ot | itpbttt, 1
10°u, t,
R
g (L)t 4 ot p, bttt
10°u t,
Y
(1= )ttt + ot ittt - i,
10°x, t,
L
i R R N L
—10°t, .

Eq. 3.
Variable X; 6 =alnPW/aInX;”
¢ Hy (—te 1, + 1 1, )
(1=, o, + ot |
“ H (-1, ) 1,
(1=t o 1, + ot |
P My, (L= 4, ) e,
(2= a1y ) e p, + bt 1, |
Cw My Hohe,
(2=t pto t, + ot |
Pw Hokle, M,
(1=t ot + ot |
A 1
h 1
T-T, 1
Re 1
Y 1
Le -1

*evaluated at the mean values of the variables X;s

*evaluated at the mean values of the variables X;s

Once the mean (4, ) and variance (02, ) of PW are
computed by the use of Egs. 15 and 16 (or 17), we then use
these values in Egs. 9 and 10 to compute the mean ( £4,py, )
and variance (Oy.p, ) of INPW, which is normal based on

the CLT theorem. The other uncertainty markers such as
P10, P50, and P90 can be computed from Egs. 11-13.

4.2.2 AUPM for InPW (Approach 2)

The second approach is based on the Taylor series
expansion of INPW around the mean values of natural log of

the input variables; i.e., Hinx,S - For this case, the AUP

equations are given by Eqgs. 14-18 with f replaced by Inf, X;s
by InXis, and u, Sby t4,,S. So, in this approach, the

mean and variance of InPW are computed from:

Once the mean ( 44, ) and variance (0. p,, ) of INPW are
computed by the use of Egs. 19 and 20, we then use these
values in Egs. 7 and 8 to compute the mean ( 4, ) and

variance (0§W ) of PW. The other uncertainty markers such
as Pyg, Pso, and Pgy can be computed from Egs. 11-13 by
using the values of f4,p, and o7y, -

Finally, a few remarks are order for the AUP equations
based on the Approach 1 or 2. Our numerical results
indicate that Approach 2 provides a slightly better estimate
of the variance than does Approach 1. However, unlike the
Approach 1, the Approach 2 requires us to work with the
means and variances of the natural-log of the input model

variables, i.e., 1, and o}, . In the correlated case, we
1 1
will also need to convert to correlation coefficient between
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two pairs, say Px,x; 0 Pixnx, but our results show that

Pinxiinx; = Px,.x, If the
distribution of X; is chosen as a log-normal with mean z,

for all practical purposes.

and variance o , then InX; is normal with the mean 4, ,
1 1

and variance o, x, Which can be simply computed from:

1 oy
My, =INpty ——In| 1+ 41, (22)
2 X
and
2
o
Ouy =In| 1+—- | (23)
X|

If the chosen distribution for the input variable X; is not log-
normal, then we can use descriptive statistics on the

available data to compute g andO'li>< . If such

exhaustive data are not available, then we may generate
samples from a known distribution and use descriptive

statistics on these samples to compute £, and O',i X. -

4.3 Example Applications

In this section, we consider some example applications
comparing the results obtained from MC and AUP
approaches for predicting the uncertainty in thermal
resource PW for a single field.

4.3.1 Example Application 1

The first example application pertains to a case where all
input variables are independent in PW given by Eq. 1. For
the purpose of this example, we consider two cases: Case 1
assumes that the distribution of each input variable in Eq. 1
can be characterized by a triangular distribution, whereas
Case 2 assumes that the distribution of each input variable
in Eq. 1 can be characterized by a log-normal distribution.
For Case 1, the minimum, most likely (mode), and
maximum values of the input variables are given in Table 3.
The values of mean and variance given in Table 3 were
computed from the well-known formulas for a triangular
distribution:

_ Min+Max+ Mode

Hy, . , (24)

and

o = (Min)” +(Max)” +(Mode)’
e 18
(Minx Max + Minx Mode + Maxx Mode)
18

.(25)

The data given in Table 3 pertain to lzmir Balgova-
Narlidere geothermal field in Turkey and were taken from
Satman et al. (2001). For this application, T, = 60 °C.

For Case 2, we assume that the distribution of each input
variable X; is a log-normal with the mean and variances
computed from Egs. 24 and 25 (see 5" and 6™ columns of
Table 3). Table 4 presents the values of the mean and

variances for InX; computed (see 4™ and 5" columns) by

using the values of mean (,u><I ) and variance (O->2<. ) for X;

given in the 2™and 3" columns in Eqs. 22 and 23.

Table 3: Distributions of the input variables;
triangular distribution; Case 1
Variable Min | Mode | Max | Mean® | Variance'
X Hy, O_>2<I

¢ 002 |005 |01 0.057 | 2.722x10™
Co kikg’c) | 0.75 | 0.9 1.0 0.883 | 2.639x10°
p kg/m® | 2550 | 2650 | 2750 | 2650 | 1.667x10°
Cyy» kli(kg °C) 4.00 4.18 421 4.130 2.150x10°
Ppw kg/m® [ 922 | 931 | 987 | 946.7 | 2.067x10?
A, m 5x10° | 9x10° | 2x10° | 1.1x10° | 1.006x10
h, m 250 350 1000 | 533.3 | 2.764x10*
T-T,,°C 40 75 85 66.67 | 9.306x10*
Re 007 |018 |024 |0.163 | 1.239x10%
Y 0.7 085 |09 0.817 | 1.806x10°
Le 035 |041 |05 0.42 9.500x10*
to, s. 8x10° | 8x10° | 8x10° | 8x10° | 0.0

“mean and variance were computed from the known formulas
given for a triangular distribution, see Egs. 21 and 22.

Table 4: Distributions of the input variables; log-
normal distribution; Case 2.

Variable | Mean Variance Mean Variance
xi /uxl O->2<i Hy, X Oﬁ X;

¢ 0.057 | 2.722x10™ | -2.905 | 8.045x10"

Cs, kikg | 0.883 | 2.639x10° | -0.1261 | 3.379x10°

e

Do 2650 | 1.667x10° | 7.882 2.374x10™

kg/m®

Cuy kikg | 4.130 | 2.150x10° | 1.418 1.260x10*

o

Lo 946.7 | 2.067x10° | 6.853 2.306x10™

kg/m®

A m 1.1x10° | 1.006x10* | 13.871 | 7.986x10?

h, m 533.3 | 2.764x10* | 6.233 9.275x10°2

T-T,,°C | 66.67 | 9.306x10" | 4.189 2.072x1072

Re 0.163 | 1.239x10° | -1.837 4,558x102

Y 0.817 | 1.806x10% | -0.2035 | 2.702x10°°

Le 0.42 9.500x10* | -0.8702 | 5.371x10°®

tp, . 8x10® | 0.0 2.05x10" | 0.0

Figures 1 and 2 show histograms of PW generated from the
MCM by using the distributions given in Table 3 and 4,
respectively, in @RISK. The statistical variables (e.g.,
mean, variance, P10, P50, and P90) for each histogram are
given in the insets of Figures 1 and 2.

As is expected from the CLT, both histograms shown in
Figures 1 and 2 are log-normal and also the statistical
parameters obtained for both cases are very similar. So, as
discussed previously, in fact, there is no reason to insist
upon any particular probability distribution for our input
variables provided that means and variances are the same




for the chosen distributions for the input variables unless
the data we have suggests otherwise.

1400
) Mean : 38.884
1200 — Variance :428.359
i P :17.386
1000 | P :34.163
| Poo - 66.308
3
g 800 |
(3]
] |
g
I 600 —
400 —
200 —
0 B S B e B

0 20 40 60 80 100 120 140 160 180 200 220 240 260
PW, MW

Figure 1: Histogram of recoverable power, PW,
generated from the MCM, for the case
where each input variable is based on a
triangular distribution (see Table 3); Case

1.
1400
7 Mean : 37.958
1200 — Variance : 409.339
] Py 117.567
P : 33.647
Py 162.942

Frequency

0 20 40 60 80 100 120 140 160 180 200 220 240 260
PW, MW

Figure 2: Histogram of recoverable power, PW,
generated from the MCM, for the case
where each input variable is based on a
log-normal distribution (see Table 4; Case
2.

Now, we compare the estimates of means, variances, P,
Pso, and Pgy computed for PW from the MCM and AUPM
based on Approaches 1 and 2 as described earlier. Table 5
compares the values of means and variances computed from
MCM and AUPM for PW and InPW for Case 2.As can be
seen from Table 5, the computed values of means and
variances from the MCM and AUPM for PW and InPW
functions agree well. We also notice that the values of
means and variances for PW and InPW computed from the
AUPM based on Approach 2 better agrees with
corresponding ones from the MCM. This is not surprising
though, and is an expected result because as mentioned
previously, the AUPM provides a linear approximation to a
nonlinear random function around the mean values of the
input variables and can provide exact results for the mean
and variance for a function f if that function is linear with
the input random variables. In our case, PW (Eq. 1) are in
fact nonlinear functions of their input variables. On the
other hand, InPW (Eq. 3) are almost linear (or weakly
nonlinear) functions of the input variables. Consequently,
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the AUPM (based on either Approach 2) provides estimates
of means and variances for PW and InPW functions that
agree very well with those computed from the MCM.

Table 5: A comparison of means and variances from
the MCM and AUPM for PW (Eg. 1) and
InPW (Eq. 3) function; Case 2.

M ean Variance
MCM AUPM MCM AUPM
PW, 37.96 37.66" 409.3 367.47
MW 37.91" 408.3"
InPW 3511 3.513" 0.2509 0.2303"
3.510° 0.2501"

TAUPM based on Approach 1
*AUPM based on Approach 2

Next, we compare the 10" 50" and 90" percentiles
computed from the MCM and AUPM for PW, and InPW
functions for Case 2. Table 6 presents the results. As can be
seen from Table 6, the values of Py, Psg, and Pgg
percentiles computed from the MCM and AUPM (based on
Approaches 1 and 2) agree quite well. They are essentially
identical.

Table 6: A comparison of the values of 10th, 50th and
90th percentiles computed from the MCM
and AUPM for PW and InPW functions;

Case 2.
P10 P50 P90
MCM | AUPM | MCM | AUPM | MCM | AUPM
PW, 17.6 18.17 | 336 335 | 629 62.07
MW * * *
17.6 334 63.4
InPW 2.87 290" [352 [351" |414 |412]
287" 351" 415

TAUPM based on Approach 1
“AUPM based on Approach 2

4.3.1 Example Application 1

Our next example application pertains to a case where some
of the input variables in Eq. 1 are correlated. As mentioned
previously, it is possible that various input variables in
stored heat and recoverable power can be correlated with
each other. For example, the solid rock specific heat may be
negatively correlated with the density of the solid rock, the
density of water may be negatively correlated with
temperature, and the solid rock specific heat can be
positively correlated with temperature. In addition, we may
expect that area (A) and thickness (h) are positively
correlated (Murtha, 1994). For this investigation, we use the
same input distributions given in Table 3, but assume
correlation between the five correlated pairs and the
correlation coefficients given in Table 7.

Figure 3 shows the histogram PW (Eq. 1) generated from
the MCM by using the distributions given in Table 3 and
the correlation coefficients given in Table 7 in @RISK. As
can be seen, correlation did not change the shape of the PW
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distribution. It is still nearly log-normal. When the result of
Fig. 3 for the correlated case is compared with the results of
Figure 1 for the uncorrelated case, we see that correlation
increased the variance significantly (about 30%).
Correlation increased the 10" 50" and 90" percentiles of
H, and PW slightly (about 6%) compared to the
corresponding results for the uncorrelated case.

Table 7: Correlated variable pairs and correlation

Table 8: A comparison of means and variances from
the MCM and AUPM for PW and InPW
functions, correlated case.

M ean Variance
MCM AUPM MCM AUPM
PW, 39.9 37.7 530.7 438.5
MW
InPW 3.534 3.536 0.3148 0.3177

Table 9: A comparison of the values of 10th, 50th and
90th percentiles computed from the MC
and AUP methods for PW and InPW
functions, correlated case.

P10 P50 P90
MCM | AUPM | MCM | AUPM | MCM | AUPM
PW, 16.4 16.7 34.4 34.3 707 | 70.6
MW
InPW | 282 2.81 353 3.54 425 | 4.26

coefficients.
Correlated Corrélation
Variable Coefficient
Pairs
Pxi x,
(X5 %)
(c,, T-T,) +0.63
(CS, ps) -0.44
(P T-T,) -0.62
(Cys Py) -0.42
(A, h) +0.24
1400
] Mean 1 39.967
1200 Variance :530.671
] P 1 16.406
1000 | P :134.416
1 Py 1 70.732

800 —

Frequency

600 —
400

200 —

0 E— |

0O 20 40 60 80 100 120 140 160 180 200 220
PW, MW

Figure 3: Histogram of recoverable power, PW,
generated from the MCM, correlated case.

Table 8 compares the values of means and variances
computed from MCM and AUPM for PW and InPW. We
used the AUPM based on Approach 2 to compute means
and variances of PW and InPW functions. This approach
requires that we work with the correlation coefficient
between the pairs in terms of the natural-log of input

random  variables; i.e., Pinxnx, - OUr results
mdlcatemelJnXJ=pX|'XJ. That is; one can use the

correlation coefficients based Px, x, when using the AUPM

method based on Approach 2. Note that the means and
variances obtained from MCM and AUPM based on
Approach 2 for InPW are essentially identical.

Table 9 compares the values of P10, P50, and P90
computed from the MCM and AUPM (based on Approach
2). Again, there is a very good agreement in the 10", 50"
and 90" percentiles computed from both methods.

In summary, our results show that correlation among
variables, particularly between A and h, if they exist and
that data available permits one to identify correlation
among variables, should be accounted for accurate
characterization of uncertainty in PW. The results also
indicate that the AUPM works as good as the MCM to
estimate uncertainty (variance, 10", 50", and 90"
percentiles) in PW even for the case where the input
variables are correlated.

5. AGGREGATION OF THERMAL RESOURCES

Here, we consider the problem of aggregating (or adding)
thermal resources of diverse fields. Should one use an
arithmetic or probabilistic addition to determine “proved”
and “probable” (which corresponds to P10 and P90
percentiles of the cumulative distribution function,
respectively) corresponding a geothermal project or a
country which may involve many diverse fields, each with
its estimated values of mean, variance, P10, P50, and P90?

The aggregation problem has been studied in the petroleum
engineering literature by a number of authors; see for
example, Capen (1996, 2001), Carter and Morales (1998),
van Elk et al. (2000), Demirmen (2007), and Delfiner and
Barrier (2008). However, this problem has not yet received
much attention in the geothermal literature. In our previous
work (Sarak et al., 2009), it was shown that the simple
arithmetic sum may significantly underestimate the P,y and
significantly overestimates the P90, relative to the
corresponding ones estimated by probabilistic sum and that
the statistically proper method of aggregating divers fields’
resources is by probabilistic sum. However, it should be
note that our previous work assumed that the all fields
considered in aggregation process are independent or
uncorrelated. Here, we further discuss the aggregation of
diverse field reserves by considering the fact that some of
the fields may be correlated.

As is well known [for example see, Capen (1996, 2001),
Carter and Morales (1998), and Delfiner and Barrier
(2008)], the correct procedure when aggregating the
resources of many diverse fields is a probabilistic addition




whether the fields to be aggregated are independent or not.
As to be shown mathematically, the arithmetic sum
assumes that all fields considered in aggregation are fully
correlated (i.e., pairwise correlation coefficients for all
fields is equal to unity). In other words, probabilistic sum
will be equal to the arithmetic sum if all fields are fully
correlated. On the other hand, if we assume that all fields
are independent and apply the probabilistic addition, then
the probabilistic sum overestimates the Pyq and Pgy of the
all fields used in aggregation.

As well stated by Delfiner and Barrier (2008), in reality
fields are neither perfectly dependent nor perfectly
independent, but instead are correlated. So, although the
probabilistic sum is the most general approach that one
should use whether the fields are independent or not,
however it requires the knowledge of pairwise correlation
coefficients for the fields. Suppose that we aggregate
thermal resources of n geothermal fields, then one has to
consider a total of n(n-1)/2 pairwise correlations. For
example, if n = 10, then we would need 45 correlation
coefficients, if n = 20, then we would need 190 correlation
coefficients. In practice, the estimation of all such
correlations between field-resource estimates may not be
possible and feasible. Therefore, some authors have
proposed simplified and pragmatic approaches for
aggregating field resources [Carter and Morales (1998), van
Elk et al. (2000), and Delfiner and Barrier (2008)]. For
example, Delfiner and Barrier (2008) propose a partial
probabilistic addition in which group of fields presumed to
be relatively dependent or relatively are defined, and the
summation is performed using arithmetic or probabilistic
addition depending on the assumed values of correlation
coefficients between pairwise fields. We refer the readers to
the work of Carter and Morales (2007) and Delfiner and
Barrier (2008) for further details regarding such simplified
aggregation procedures.

5.1 Aggregation of Means, Variances, P10, P50, and P90

In the following, we provide a general formulation for
estimating the values of mean, variance, Py, Pso and Pg for
a total of n geothermal PW resources, each following a log-
normal  distribution  characterized by its mean

I = DY i 2 i = LY

(,upwj, J=12,---,n) and variance (O'PWj, j=12,---,n).
Note that if each PW; j = 1,2,..,n, is a log-normal
distribution, then InPW; j = 1.2,...,n, is a normal
distribution with a mean equal to £, PW, » j=12,---,nand
a variance equal to O',ﬁpwj, j=12,---,n. The two sets of
parameters are related by Eqgs. 7-10 for each field’s
resource.

Now suppose that we are interested in the uncertainty of the
total resources (denoted by PWs ) which is equal to the sum
of the resources of all PWj, j = 1,2,...,n, given by:

PW, => PW, (26)
j=1

It is not difficult to show that the mean (or expected value
denoted by ,uPWS) and the variance of PWs (denoted by

O'SWS ) are given by the following equations, respectively:

Hpy, :zlupvvJ ' @7)
=
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and
2 - 2 ShS [2
Oy, :ZO-PWJ- +22 Z Prw, pw; A/ Opw,Opw; - (28)
j=1 i=1 j=i+l
where Prw, pw, TePresents the pairwise correlation

coefficient between field resources i and j.

A few remarks are in order for Eqgs. 27 and 28: Eq. 27
indicates that the mean of the sum of the resources is equal
to the arithmetic sum of the mean of each resource PW;,
whether field resources used in aggregation are correlated
or not. So, this result indicates that we can add the mean of
each field resources to find the mean of the sum of all
fields’ resources. Eq. 28 indicates that the variance of the
sum of the resources will not be equal to the sum of the
variances of individual resources unless all field resources

i , e, = i u
are independent, i.e., Ppy py =0 for all field resource
i j

pairsiand j. So if all fields are independent Eq. 28 reduces
to:

n
2 2
Opw, = ZO-PWJ : (29)
=1

On the other hand, if we assume that all pairwise
correlations in Eq. 28 are equal to unity, i.e., ppy py, =1,

for all i and j such that i # j, then it is not difficult to show
that Eq. 28 reduces to:

n 2
O, = {Z Cou, j : (30)
i=1

In theory, the sum of log-normal distributions (i.e., the sum
given by Eq. 26) is not log-normal. Rather, by the CLT, it is
expected to be normal. As discussed by Capen (2006) and
shown numerically on an example application by Sarak et
al. (2009), Monte Carlo simulations show that the
convergence to normal distribution is slow because of the
skewed shape of the log-normal distribution and that log-
normal model is a better approximation for the aggregation
of field resources than is a normal distribution. As it is
much easier to derive some of the limiting forms we would
like to show here, for now we will assume the sum of log-
normal distribution of thermal field PW resources is normal
so that the P10, P50, and P90 of the PWjs are given by

P10, = ttp,, —1.28 af,ws , (31)

P50, = Hpw, » (32)
and

P90, = Upy, +1.28 oﬁws ) (33)

Now, we would like to show that the sum of P10, P50, and
P90 based on probabilistic addition given by Egs. 31-33,
respectively, will be equal to P10, P50, and P90 that would
be obtained by using an arithmetic sum if all fields involved
in aggregation are perfectly correlated, i.e., the variance of
the sum of n log-normal field resources are given by Eq. 30.
Using Egs. 27 and 30 in Eqgs. 31-33 gives:
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P10 =Dty —1.28(2 o, J
i=1

i

n n ! (34)
=" (tow, ~1.2803,, )= > P10,

= j=1

P50 =D flpy, = D P50} , (35)
j=1 j=1

and

P90, = Z Ho, +1.28(Zn:apwj j

j=1 i=1 (36)

= >"(How, +1.280,, ) = P90,
j=L

=t

So, Eqgs. 34-36 clearly show that the probabilistic sum is
identical to the arithmetic sum if all fields are perfectly
correlated so that Eq. 30 is valid.

In the case where we assume that the sum of n field log-
normal resources is still log-normal, i.e., PWs given by Eq.
26 will have a log-normal distribution. As discussed before,
in practice with a finite number of fields, this assumption
provides better results for P10, , P50 , and P90y . For this

case, PWs given by Eq. 26 follows a log-normal distribution

With mean equal to Moy, (Eq. 27) and variance equal to
O-Sws (Eq. 28). These parameters are related to the mean

My py, and variance (O',i pw, ) Of INPWs by:

1 op

Moy, = 1N 2y, _Eln[l‘*‘%], (37)

PW,
and
2
o,

Opw, = [1+ %J : (38)

PW,

The P10, P50, and P90 of the PWs, based on the assumption
that PWs is log-normal, are given by

P10, = exp( Hnon, —1.28./02 o, ) , (39)

P50, = exp (/uln PW, ) : (40)
and

P90, =eXp(,u|nPWS +1.28,[0% 0, ) . (41)

5.2 Example Applications

In this section, we consider a few example applications to
verify our theoretical findings given in the previous section
for aggregation of field resources of PW.

We consider a geothermal project consisting of 5 fields,
each having its log-normal distribution of PW with its

values of mean, variance, P10, P50, and P90 as given in
Table 10.

Table 10: The values of mean, variance, 10th, 50th
and 90th percentiles for each pseudo

field’s PW.
Hew O P1o Pso Pao
2 MW MW MW

Mw MW

Field 1 853 80656 | 538.2 | 808.7 1229

Field 2 404 25600 | 230.9 | 375.9 606.9

Field 3 97 1089 60.11 | 91.93 141.0
Field 4 51 729 21.67 | 42.92 82.85
Field 5 41 529 18.42 | 35.83 70.67

In Tables 11 and 13, we compare the values of mean,
variance, P10, P50, P90 for the sum of field thermal
resources of the 5 fields, obtained from arithmetic and
probabilistic sum (based on MC sampling using @RISK,
Egs. 27, 28, 31-33, and Eqgs. 37-41). The results given in
Table 11 are for the case assuming that all 5 fields are
independent. Table 12 presents the results for the case
assuming that all 5 fields are perfectly correlated. Table 13
presents the results for the case assuming that all 5 fields
are correlated with all pairwise correlation coefficients that
are identical and equal to 0.05.

As expected, the results given in Tables 11-13 indicate that
(i) arithmetic provides almost identical values of P10, P50,
and P90 for the sum of 5 fields’ resources if all fields are
fully or perfectly correlated with each other, (ii) if all fields
are independent or correlated with pairwise positive
correlation coefficients different from unity, then the
arithmetic sum will underestimate the value of P10 and
P50, but overestimate the value of P90, and (iii) the
probabilistic addition assuming normality for the sum of all
fields’ resources (Egs. 28-30) does not provide as accurate
estimates of P10, P50, and P90 as the probabilistic addition
based on the assumption of log-normality for PWs (Egs. 36-
38).

In summary, we can state that the arithmetic addition
assumes that all fields resources considered in aggregation
are perfectly correlated and provides a “pessimistic”
estimate of P10. On the other hand, the probabilistic
addition based on the assumption that all fields considered
in aggregation are independent provides a ‘“optimistic”
estimate of P10. In reality, the correct P10 value should be
between the P10 values estimated from the arithmetic sum
which always assumes that all fields are perfectly correlated
and the probabilistic addition based on the assumption that
all fields are independent because fields are neither
perfectly dependent nor perfectly independent, but instead
are correlated. Of course, then, the issue is how to
estimation the pairwise correlation coefficients of the fields
involved in aggregation, though some authors have
proposed simplified and pragmatic approaches for
aggregating field resources [Carter and Morales (1998), van
Elk et al. (2000), and Delfiner and Barrier (2008)], as
discussed previously.




Table 11: The values of mean, variance, 10th, 50th
and 90th percentiles for the sum of all 5
fields for the case all 5 fields are treated
as independent.

Moy, O_sw P1o Pso Pgo
S
2 MW MW MW
MW MW
Arithmetic 1446 | 108603 | 869 1355 2130
sum
Probabilistic 1445 | 108931 | 1062 1404 1887
sum (MC)
Probabilistic 1446 | 108603 | 1024 1446 1868
sum (Egs. 27,
28, 31-33)
Probabilistic 1446 | 108603 | 1057 1410 1880
sum (Egs. 37-
41)

Table 12: The values of mean, variance, 10th, 50th
and 90th percentiles for the sum of all 5
fields for the case all 5 fields are treated
as perfectly correlated.

Hpy, Ol P1o Pso Pgo
2 MW MwW MW
Mw MW
Arithmetic 1446 | 108603 | 869 1355 2130
sum
Probabilistic 1446 | 278959 | 868 1352 2139
sum (MC)
Probabilistic 1446 | 280676 | 768 1446 2124
sum (Egs. 27,
28, 31-33)
Probabilistic 1446 | 280676 | 862 1358 2138
sum (Egs. 37-
41)

Table 13: The values of mean, variance, 10th, 50th
and 90th percentiles for the sum of all 5
fields for the case all 5 fields are treated

as correlated with
correlation coefficients equal to 0.05.

identical

pairwise

Hpy, Ol P1o Pso Pgo
2 MW MwW MW
Mw MW
Arithmetic 1446 | 108603 | 869 1355 2130
sum
Probabilistic 1446 | 117696 | 1056 1406 1909
sum (MC)
Probabilistic 1446 | 117059 | 1008 1446 1884
sum (Egs. 27,
28, 31-33)
Probabilistic 1446 | 117059 | 1044 1407 1897
sum (Egs. 37-
41)
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5. CONCLUSIONS
On the basis of this work, we conclude that:

1. The distribution of thermal resource power for a
single geothermal field, based on a volumetric
method, is log-normal, regardless of the types of
probability distributions chosen for the input variables
in the volumetric equation. This result follows
directly from the fundamental theorem of statistics
and probability — Central Limit Theorem (CLT).

2. Analytic uncertainty propagation equations (AUPES)
— based on a Taylor-series expansion around the
mean values of the input variables — were presented
for computing the mean and variance of the
recoverable power resource for a field. The AUPM
method, when combined with the assumption of log-
normality for the recoverable power resource,
provides a fast alternative to the Monte Carlo
simulation for accurately characterizing uncertainty
markers such as variance, P1q, Psy and Pg.

3. The derived AUPEs are quite general in that it can
account for correlation among the input variables
used in the volumetric equation. It was shown that
ignoring correlation, if it exists, may underestimate or
overestimate the uncertainty in recoverable power.

4. Finally, we showed that a simple arithmetic sum of
the “proved” and “probable” (P, and Py, percentiles,
respectively) thermal power resources from individual
fields assumes that all fields considered in
aggregation are perfectly correlated and may
significantly underestimate the true Py, and
significantly overestimate the true Py, obtained from
the probabilistic sum accounting for pairwise
correlations existing between the fields” power
resources. On the other hand, it was show that using a
probabilistic sum based on the assumption that all
fields involved in aggregation process are
independent may overestimate the true P10 and
underestimate the true P90 if some or all of the fields’
power resources are correlated.
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