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ABSTRACT  

This paper investigates the propagation of uncertainties in 
the input variables (used in the volumetric method) on to 
stored and recoverable thermal energy resources calculated 
from volumetric methods. Both Monte Carlo (MC) and the 
analytic uncertainty propagation (AUP) methods are 
considered and compared for uncertainty characterization. 
Analytic uncertainty propagation equations (AUPEs) are 
derived based on a Taylor-series expansion around the 
mean values of the input variables. The AUPEs are general 
in that correlation among the input variables, if it exists, can 
also be accounted for on the resulting uncertainty. Monte 
Carlo methods (MCMs) were used to verify the results 
obtained from the AUPEs.  

A comparative study that we have conducted shows that the 
AUPM is as accurate as the MCM for the problem of 
interest. Hence, it can be used as a fast tool eliminating the 
need for MCM because the resulting distributions of 
thermal resources always tend to be log-normal. We also 
discuss the problem of aggregating thermal resources for 
projects involving more than one field. Should one use an 
arithmetic or probabilistic addition to determine “proved,” 
“probable,” and “possible” (which corresponds to P10, P50, 
and P90 percentiles of the cumulative distribution function, 
respectively) corresponding a geothermal project or a 
country which may involve many diverse fields, each with  
its estimated values of P10, P50, and P90?  We show that 
the arithmetic sum underestimates the P10 value, compared 
to probabilistic sum which is the statistically proper method 
for adding resources or reserves. Applications on synthetic 
and field data cases are presented to demonstrate the 
methodology considered in this work.   

1. INTRODUCTION 

Uncertainty is inherent in estimation of any type of 
resources (oil, gas or heat) from underground energy 
systems. The thermal energy or power resource (or 
“reserve”†) of a given geothermal reservoir is no exception. 
Unfortunately, this is also true regardless of any method 
used for estimation, e.g., volumetric, decline curve, or 
reservoir simulation methods because the input variables 
required for the resource estimation problem always contain 
uncertainties to some degree that propagate into resource 
estimates. Therefore, to make good decisions, one must be 
able to accurately assess and manage the uncertainties and 
risks.   

                                                                 

† We use the word “resources” rather than “reserves” when 
commerciality is not proven (SPE, 2006).  

In this work, we limit our study to the assessment of 
uncertainty in estimated thermal energy resource (in the 
form of stored or recoverable) by the volumetric methods 
(for example, see Muffler and Cataldi, 1978).  

Volumetric methods are usually used to estimate stored heat 
and recoverable power resources in the early life of 
geothermal reservoirs. Estimation of the thermal energy 
requires geological, geophysical, and petro-physical data 
including reservoir temperature, reservoir area, thickness, 
porosity, rock and fluid specific heats, etc. The values of 
these input variables have usually large uncertainties 
associated with them, and hence it is very important to 
propagate these uncertainties on to the estimation of the 
thermal energy reserves. From the view point of a field 
investment, an accurate assessment of uncertainty in stored 
and recoverable heat is a crucial task from which to make 
decisions that will create value and/or mitigate loss in value 
(risk).  

In the past, various authors have considered assessing 
uncertainty in estimated stored and recoverable power from 
the volumetric method by using the Monte Carlo (MC) 
method (Brook et al., 1979; Serpen, 2001; Lovekin, 2004; 
Sanyal and Sarmiento, 2005, Arkan and Parlaktuna, 2005; 
Serpen et al., 2008). However, none of these works provide 
a deep investigation of and insight into the uncertainty 
assessment from the volumetric method. These works 
simply apply the MCM to characterize uncertainty in 
estimated stored heat or recoverable power for the 
geothermal reservoirs interest. 

It is no doubt that the MCM used in the previous references 
cited is a general approach for assessing the uncertainty. In 
this work, however, we show that there is a simple and fast 
alternative method – which we refer to it as the analytic 
uncertainty propagation method (AUPM) – to the MCM 
method for characterizing uncertainty.  The validity of the 
AUPM for accurately characterizing uncertainty results 
from the fact the distributions of stored heat and power for 
a zone, well, or field to be computed from the volumetric 
method always tend to be log-normal. This result simply 
follows from the fundamental theorem of statistics and 
probability − the Central Limit Theorem (CLT) (e.g., see 
Parzen, 1962). The CLT states that the sum of a sufficiently 
large number of independent random variables each with 
finite mean and variance will be approximately normally 
distributed. As a consequence of this theorem and the 
functional relationship of the volumetric method which 
involves a product/quotient of several independent random 
variables for computing thermal energy reserves, one 
should expect that the resulting distribution of the thermal 
energy is to be nearly log-normal as the number of input 
random variables increases. This result is in fact valid no 
matter what form of uncertainty the input variables assume. 
The same findings have been reported previously for the 
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assessment of uncertainty in oil or gas reserves computed 
from the volumetric methods by Capen (1996, 2001). 

Other objectives of this work are as follows: We would like 
to show how the different types of input distributions and 
correlation among input variables propagate into the 
uncertainty of the estimated thermal energy or power. 
Furthermore, we discuss the problem of aggregating 
individual fields’ resources for the geothermal projects 
involving many diverse fields or a country’s total resources. 
It is shown that the arithmetic addition underestimates the 
P10 that would be obtained by the probabilistic addition, 
which is the statistically proper method for adding 
resources or reserves) unless all fields considered in 
aggregation are fully (or perfectly) correlated with each 
other.  

2. VOLUMETRIC METHOD 

Here, we introduce the volumetric method used to compute 
the stored heat and recoverable thermal energy (in terms of 
power) for a given geothermal field. Throughout, we will 
assume a geothermal reservoir containing hot solid rock and 
single-phase liquid water. For two-phase systems, 
appropriate equations are given by Sanyal and Sarmiento 
(2005). 

Based on the volumetric method, we can estimate 
recoverable power (in MW) by the following equation 
(Serpen, 2001; Sanyal and Sarmiento, 2005; Arkan and 
Parlaktuna, 2005, Sarak et al., 2009): 

310
t F

F p

H R Y
PW

L t
= . (1) 

where Ht is the total stored heat and is usually referred to as 
the accessible resource base and is estimated from Eq. 2: 

( ) ( )1t s s w w rH c c Ah T Tφ ρ φ ρ= − + −⎡ ⎤⎣ ⎦ . (2) 

In Eq. 2, the subscript r, s, t, and w denote reference, solid 
rock, total, and water, respectively. The variables used in 
Eqs. 1 and 3 and their units are given below: 

Ht total stored heat in kJ (see Eq. 2) 

LF load factor (fraction) 

PW recoverable power in MW 

RF recovery factor (fraction) 

Y transformation yield (fraction) 

tp project life in seconds (s.) 

A area in m2 

c specific heat in kJ/(kg oC) 

h net thickness in m 

H  stored heat in kJ 

T temperature in oC  

φ porosity (fraction) 

ρ density in kg/m3  

In Eq. 1, LF, the load factor, represents the fraction of the 
total time in which the direct heating or power generation is 
in operation, and Y, the transformation yield, represents the 
efficiency of transferring thermal energy from the 
geothermal fluid to a secondary fluid.  

It is also worth noting that Eqs. 1 and 2 are valid for 
predicting the recoverable power for both direct- heating 
and power (electricity) generation applications from liquid-
dominated systems from which only liquid is produced, 
provided that the variables such as T, Tr, RF, Y, LF, and tp 
are “adequately” chosen for the specific application of 
interest. For example, for most of the direct-heating 
applications, Tr usually ranges from 15 to 60 oC, whereas 
for electricity generation, Tr usually ranges between 70 to 
100 oC.  Although it is important how to choose the 
variables and their ranges for accurately assessing 
uncertainty in PW (Eq. 1) and Ht (Eq. 2), our purpose here 
is not to get into a detailed discussion of appropriate 
sources of data and how one could determine the 
appropriate values of the variables and the associated 
uncertainties. Assessment of uncertainties in the input 
variables itself is a notoriously difficult problem, because, 
to our knowledge, there is no standard rule for 
characterizing uncertainty in the input variables. On this 
aspect, we refer the readers to the works of Capen (1976) 
and Welsh et al. (2007).  

Uncertainty in the recoverable power results from our lack 
of knowledge in most of the input variables in Eqs. 1 and 2. 
Quantification of uncertainty is inevitably subjective 
because knowledge about the input variables is dependent 
on available data and personal experience of the interpreter. 
As well stated by Welsh et al. (2007), it is quite possible for 
two people to have different probability estimates for the 
same input variable, based on their differing knowledge. 
Thus, there is no single “correct” probability distribution, 
unless all people have identical experience and information, 
and process it in the same way (Welsh et al., 2007). 

Based on the discussion given in the previous paragraph, 
there is no reason to claim that any particular type of 
probability distribution (e.g., uniform, normal, log-normal, 
triangular, etc.) for our input variables be preferable. As we 
will show later based on the CLT, the resulting distributions 
of PW (or Ht) are almost log-normal regardless of the types 
of probability distributions chosen for the input variables.  

When computing PW from Eq. 1, we can treat PW in 
general as a function of eleven random input variables; A, h, 
φ, cs, cw, ρs, ρw, (T-Tr), RF, LF, and Y. In our applications, 
we fix Tr at a constant value, but the variable (T-Tr) in Eq. 2 
will be treated as a random variable because T in Eq. 2 is 
treated as a random variable.  If the mean and variance of T 

are µT and 2
Tσ , then the mean and variance of the (T-Tr) are 

( )r T rT T
Tµ µ− = −  and 2

Tσ , respectively. Furthermore, we 

assume that there is no uncertainty associated with the 
variable tp in Eq. 1. 

It is worth noting that some input variables involved in Eqs. 
1 and 2 can be statistically correlated. For example, ρw, the 
density of water, is expected to be dependent on the value 
of T, reservoir temperature in Eq. 2. We would expect that 
increasing T decreases ρw, which indicates that these two 
variables are negatively correlated. Hence, this indicates 
that ρw and T may not be treated as two independent 
variables in Eq. 2.  We may also expect that cs, the solid 
rock specific heat be negatively correlated with ρs, the solid 
rock density, and cs be positively correlated with 
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temperature. In addition, reservoir area may be positively 
correlated with the net thickness (Murtha, 1994). Our point 
is that ignoring existing correlations between input variable 
pairs may lead to an incorrect characterization of 
uncertainty in PW or Ht. If data and available information 
permit, one should make scatter plots of input variable pairs 
to identify the correlation between them, if any, and then 
include these correlations into the uncertainty assessment 
procedure.    

3. LOG-NORMALITY OF THERMAL RESOURCES 

If we take the natural logarithm of PW given by Eq. 1, we 
obtain: 

3

1 1
ln ln ln ln ln ln

10t F
F p

PW H R Y
L t

⎛ ⎞
= + + + + ⎜ ⎟⎜ ⎟

⎝ ⎠
, (3) 

where lnHt, which follows from Eq. 2 by taking the natural 
logarithm of it, is given by: 

( )
( )

ln ln 1 ln

ln ln

t s s w w

r

H c c A

h T T

φ ρ φ ρ= − + +⎡ ⎤⎣ ⎦
+ + −

. (4) 

Eq. 3 clearly indicates that lnPW can be written as a sum of 
the natural logarithms of Ht, RF, Y and LF. If all these 
random variables are treated as independent, then it follows 
from the CLT, discussed previously, that the resulting 
distribution of lnPW will tend to be normal. Hence, PW will 
tend to be log-normal. It is important to note that this is true 
no matter what type of distribution the input random 
variables assume.  

Note that the CLT promises that lnPW be normal if all the 
random variables are independent. However, as we will 
show later [also see, Sarak et al. (2009)] the resulting 
distributions of lnPW still tend to be normal even if some of 
the input variables are treated as dependent.  

Sarak et al. (2009) have also studied the resource estimation 
for stored heat, Ht, based on Eq. 2 and 4.  They found that 
the distribution of Ht is also log-normal, even though it may 
not be apparent from Eq. 4 as the first logarithmic term in 
the right-hand-side of Eq. 4 cannot be written as the sum of 
the natural logarithms of the individual input parameters, 
i.e., 

( ) ( )ln 1 ln 1 ln ln

ln ln ln

s s w w s s

w w

c c c

c

φ ρ φ ρ φ ρ
φ ρ

− + ≠ − + + +⎡ ⎤⎣ ⎦
+ +

.

 (5) 

Sarak et al. (2009) shows that for most of the cases of 
practical interest, the most of the heat is stored in the solid 
part (typically 80 to 90 percent of the total heat in rock and 
fluid) and hence the first term in the right-hand side of Eq. 
4 is well approximated by  

 ( ) ( )ln 1 ln 1 ln lns s w w s sc c cφ ρ φ ρ φ ρ− + ≈ − + +⎡ ⎤⎣ ⎦ .

 (6) 

Eq. 6 may justify why Ht (and also PW which depends on 
it) follows closely a log-normal distribution. 

4. QUANTIFICATION OF UNCERTAINTY 

We first state our definitions to be used for characterizing 
uncertainty in PW. For this characterization, we adopt the 

convention proposed by Capen (2001). We will refer to P10 
as “proved”, P50 as “probable”, and P90 as “possible”, 
where P10, P50, and P90 correspond to 10th, 50th and 90th 
percentiles of the cumulative distribution function, 
respectively, for PW.  

It is worth noting that in SPE literature and also in some 
papers in geothermal literature (e.g., Sanyal and Sarmiento, 
2005), P10 used throughout in this paper is referred as 
“P90” (or proved resources) indicating that there is at least 
a 90% probability that the quantities actually recovered will 
be equal or exceed the estimate, and P90 used in this paper 
is referred to as “P10” indicating that there is a 10% 
probability that the quantities actually recovered will be 
equal or exceed the estimate. In our definition, P10 (or 50 
or 90) refers to 10th (or 50th or 90th) percentile indicating 
that there is a 10% (or 50% or 90%) probability that the 
quantities actually recovered will be equal or less than the 
estimate.  

As discussed in the previous section, based on the CLT 
theorem, the uncertainty on the resource PW of a single 
field will tend to be a log-normal distribution. So, lnPW 
follows a normal distribution characterized by its mean 

( ln PWµ ) and variance ( 2
ln PWσ ), while PW is a log-normal 

by its mean ( PWµ ) and variance ( 2
PWσ ).  The two sets of 

parameters are related by the equations: 

2
ln

lnexp
2

PW
PW PW

σµ µ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

, (7) 

and 

( )2 2 2
lnexp 1PW PW PWσ µ σ⎡ ⎤= −⎣ ⎦ . (8) 

We can also derive the following equations from Eqs. 7 and 
8: 

2

ln 2

1
ln ln 1

2
PW

PW PW
PW

σµ µ
µ

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
, (9) 

and 

2
2
ln 2

ln 1 PW
PW

PW

σσ
µ

⎛ ⎞
= +⎜ ⎟

⎝ ⎠
. (10) 

 

The 10th, 50th and 90th percentiles of PW are computed from 
the following equations: 

( )2
ln lnP10 exp 1.28PW PWµ σ= − , (11) 

( )lnP50 exp PWµ= . (12) 

and 

( )2
ln lnP90 exp 1.28PW PWµ σ= + . (13) 

In following subsections, we review some basic equations 
and methods used for quantification of uncertainty (i.e., 
computing mean, variance, P10, P50, and P90 given by 
Eqs. 7-13) in PW (or lnPW) by the volumetric method (Eq. 
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1 or 3). We first consider the Monte Carlo method (MCM) 
and then the analytic uncertainty propagation method 
(AUPM).  

4.1 Monte Carlo Method (MCM) 

The MCM relies on a specified probability distribution of 
each of the input variables and generates an estimate of the 
overall uncertainty in the prediction due to all uncertainties 
in the variables (Kalos and Withlock, 2008). As it does not 
require a linearization of the function and a continuity of 
the random variables, it is a more general approach for 
characterizing the uncertainty for any given nonlinear 
random function f. In our case, f represents PW given by 
Eq. 1 or lnPW given by Eq. 3. In the applications to be 
given, we perform Monte Carlo simulations by using 
@RISK,TM spreadsheet-based software (2004). 

4.2 Analytical Uncertainty Propagation Method 
(AUPM) 

Here, we derive an uncertainty propagation equation for a 
function f (PW in Eq. 1 or its natural logarithm given by Eq. 
3) where it is treated as a continuous random function due 
to uncertainties in the input variables. We assume that all 
uncertainties are due to the random uncertainties in the 
input variables and ignore the systematic errors in the input 
variables. The error propagation equation we present is 
based on a Taylor series approximation of the function 
around the mean values of the variables up to its first 
derivatives with respect to each of the input variables. As a 
consequence of this approximation, the uncertainty 
propagation equation provides a linearization of the 
function in terms of its input random variables (Barlow, 
1989; Coleman and Steele, 1999; Zeybek et al., 2009).  

The AUPM provides a simple approach for estimating the 
variance of a function defined by several random variables 
− particularly so, of a function defined by products and 
quotients of random variables, whether they are 
independent or correlated. The method does not assume a 
specific type of distribution for the input variables and all 
needed to use the AUPM are the statistical properties of the 
distribution of each random variable; specifically the mean, 
variance (or std. dev.), and the covariance (or correlation 
coefficient) among variable pairs if the random variables 
are correlated (Sarak et al., 2009).  

Before we present the derivation of the AUPM, it is worth 
noting that the AUPM provides an exact result for the mean 
and variance of a random function f if f is linear with 
respect to the input random variables. Otherwise, i.e., if f is 
nonlinear, then the AUPM provides only approximate 
estimates of the mean and variance of f. The approximation 
gets better if nonlinear f can be well approximated by a 
linear function near the means of the input random 
variables.  

For the problem of interest in this work, we wish to 
estimate the mean and variances of PW given by Eq. 1. PW 
given by Eq. 1 is, in general, a nonlinear function of the 
input variables. As noted before, if we work, however, with 
the natural logarithm of PW, we obtain a partially linearized 
equation for lnPW (Eq. 3). We say “partially linearized” 
because lnPW is still nonlinear with respect to the input 
variables involved in lnHt (Eq. 4), but linear with respect to 
the variables lnRF, lnY and ln(1/LF).   

As shown by Sarak et al. (2009), three different approaches 
could be considered when the AUPM is used to derive 
approximations for the mean and variance of PW. For 

example, we can directly apply the AUPM to the PW given 
by Eq. 1 as a function of the input variables (Approach 1) 
or can directly apply the AUPM to the lnPW function given 
by Eq. 3 by treating it as a function of input variables 
(Approach 2) or as a function of the natural logarithms of 
the input variables (Approach 3). Sarak et al. (2009) shows 
that the Approach 3 provides the best accurate estimates of 
the mean, variance, P10, P50, and P90 of the lnPW; i.e., we 
apply the AUPM directly lnPW (Eq. 3) as a function of the 
natural logarithms of the input variables. In this paper, we 
present the equations for the AUPM based on Approach 1 
and Approach 3. The equations of the AUPM based on 
Approach 2 can be found in Sarak et al. (2009). In this 
paper, from this point on, the Approach 3 is to be referred 
to as Approach 2. 

4.2.1 AUPM for PW (Approach 1) 

Let’s consider a random function f of M variables, Xi, i 

=1,2,…,M, i.e., ( )1 2, , , Mf f X X X= K . Then, expanding 

f around the mean (or true) values of Xis (denoted by 
, 1,2, ,

iX i Mµ = K ) by using a Taylor series up to first 

derivatives, we obtain:  

( ) ( )

( )
1 21 2

1 , 1,...,

, , , , ,
M

i

i Xi

M X X X

M

i X
i i X i M

f X X X f

f
X

X
µ

µ µ µ

µ
= = =

=

⎛ ⎞∂+ − ⎜ ⎟∂⎝ ⎠
∑

K K

. (14) 

It can be shown that the mean ( fµ ) and variance of f ( 2
fσ ) 

are approximated by: 

( )
1 2
, , ,

Mf X X Xfµ µ µ µ= K , (15) 

and 

1
2 2 2

1 1 1

2  ( , )
i

M M M

f i X i j i j
i i j i

cov X Xσ θ σ θ θ
−

= = = +

= +∑ ∑∑ , (16) 

where cov(Xi,Xj) represents the covariance between the 
variable pairs Xi and Xj, and if we use the relation between 
covariance and correlation coefficient, ,i jX Xρ , then we can 

express Eq. 16  in terms of the correlation coefficient as:  

1
2 2 2 2 2

,
1 1 1

2  
i i j i j

M M M

f i X i j X X X X
i i j i

σ θ σ θ θ ρ σ σ
−

= = = +

= +∑ ∑∑ . (17) 

In Eqs. 16 and 17, iθ  is the derivative of f with respect to 

the variable Xi, i.e., 

, 1,...,i Xi

i
i X i M

f

X
µ

θ
= =

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠
. (18) 

Note that θi represents the sensitivity of f to the variable Xi 
evaluated at the mean values of all the variables. It can be 
noticed (from Eqs. 16 and 17) that the uncertainty 
propagation on to f is determined not only by the variances 
of the variables and correlation among them, but also the 
sensitivity of f to each variable in the volumetric method for 
PW (see Eqs. 1).   

As mentioned previously, for the problem of interest, f in 
Eqs. 14-17 represents PW given by Eq. 1. The sensitivities 
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of PW (i.e., θis) required in Eqs. 16 and 17 can be obtained 
by analytical differentiation of Eq. 1 with respect to the 
input variables in Eq. 1. These sensitivities are presented in 
Table 1.  

Table 1: Sensitivity of PW (Eq. 1) with respect to a 
given input variable Xi in Eq. 1. 

Variable Xi θi = ∂PW/∂Xi
* 

φ ( ) ( )

310
s s w w r F

F

c c A h T T R Y

L pt

ρ ρµ µ µ µ µ µ µ µ µ
µ

−− +
 

cs ( ) ( )

3

1

10
s r F

F

A h T T R Y

L pt
φ ρµ µ µ µ µ µ µ

µ
−−

 

ρs ( ) ( )

3

1

10
s r F

F

c A h T T R Y

L pt
φµ µ µ µ µ µ µ

µ
−−

 

cw 
( )

310
w r F

F

A h T T R Y

L pt
φ ρµ µ µ µ µ µ µ

µ
−

 

ρw 
( )

310
w r F

F

c A h T T R Y

pL t
φµ µ µ µ µ µ µ

µ
−

 

A ( ) ( )
3

1

10
s s w w Fr

F

c c h R YT T

L pt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ
µ

−
⎡ ⎤− +⎣ ⎦  

h ( ) ( )
3

1

10
s s w w Fr

F

c c A R YT T

L pt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ
µ

−
⎡ ⎤− +⎣ ⎦  

T-Tr ( )
3

1

10
s s w w F

F

c c A h R Y

L pt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ
µ

⎡ ⎤− +⎣ ⎦  

RF ( ) ( )
3

1

10
s s w w r

F

c c A h YT T

L pt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ
µ

−
⎡ ⎤− +⎣ ⎦  

Y ( ) ( )
3

1

10
s s w w Fr

F

c c A h RT T

L pt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ
µ

−
⎡ ⎤− +⎣ ⎦  

LF ( ) ( )
3 2

1

10
s s w w Fr

F

c c A h R YT T

p Lt

φ ρ φ ρµ µ µ µ µ µ µ µ µ µ µ
µ

−
⎡ ⎤− +⎣ ⎦

−
 

*evaluated at the mean values of the variables Xis 

 

Once the mean ( PWµ ) and variance ( 2
PWσ ) of PW are 

computed by the use of Eqs. 15 and 16 (or 17), we then use 
these values in Eqs. 9 and 10 to compute the mean ( ln PWµ ) 

and variance ( 2
ln PWσ ) of lnPW, which is normal based on 

the CLT theorem. The other uncertainty markers such as 
P10, P50, and P90 can be computed from Eqs. 11-13. 

4.2.2 AUPM for lnPW (Approach 2) 

The second approach is based on the Taylor series 
expansion of lnPW around the mean values of natural log of 
the input variables; i.e., ln s

iXµ . For this case, the AUP 

equations are given by Eqs. 14-18 with f replaced by lnf, Xis 
by lnXis, and s

iXµ by ln s
iXµ . So, in this approach, the 

mean and variance of lnPW are computed from: 

( )
1 2ln ln ln lnln , , ,

MPW X X XPWµ µ µ µ= K , (19) 

and 

1
2 2 2
ln ln ln ,ln ln ln

1 1 1

2  
i i j i j

M M M

PW i X i j X X X X
i i j i

σ θ σ θ θ ρ σ σ
−

= = = +

= +∑ ∑ ∑  

(20) 
where the sensitivities θis in Eq. 19 are given by: 

, 1,...,

ln

ln
i Xi

i
i X i M

PW

X
µ

θ
= =

⎛ ⎞∂= ⎜ ⎟∂⎝ ⎠
, (21) 

and are tabulated in Table 2.  

Table 2: Sensitivity of lnPW (Eq. 3) with respect to a 
natural logarithm of a given variable Xi in 
Eq. 3. 

Variable Xi θi = ∂lnPW/∂lnXi
* 

φ ( )
( )1

s s w w

s s w w

c c

c c

φ ρ ρ

φ ρ φ ρ

µ µ µ µ µ

µ µ µ µ µ µ

− +

⎡ ⎤− +⎣ ⎦
 

cs ( )
( )

1

1
s s

s s w w

c

c c

φ ρ

φ ρ φ ρ

µ µ µ

µ µ µ µ µ µ

−
⎡ ⎤− +⎣ ⎦

 

ρs ( )
( )

1

1
s s

s s w w

c

c c

ρ φ

φ ρ φ ρ

µ µ µ

µ µ µ µ µ µ

−
⎡ ⎤− +⎣ ⎦

 

cw 

( )1
w w

s s w w

c

c c

ρ φ

φ ρ φ ρ

µ µ µ
µ µ µ µ µ µ⎡ ⎤− +⎣ ⎦

 

ρw 

( )1
w w

s s w w

c

c c

φ ρ

φ ρ φ ρ

µ µ µ
µ µ µ µ µ µ⎡ ⎤− +⎣ ⎦

 

A 1  

h 1  

T-Tr 1  

RF 1  

Y 1  

LF 1−  
*evaluated at the mean values of the variables Xis 

 

Once the mean ( ln PWµ ) and variance ( 2
ln PWσ ) of lnPW are 

computed by the use of Eqs. 19 and 20, we then use these 
values in Eqs. 7 and 8 to compute the mean ( PWµ ) and 

variance ( 2
PWσ ) of PW. The other uncertainty markers such 

as P10, P50, and P90 can be computed from Eqs. 11-13 by 

using the values of ln PWµ  and 2
ln PWσ . 

Finally, a few remarks are order for the AUP equations 
based on the Approach 1 or 2. Our numerical results 
indicate that Approach 2 provides a slightly better estimate 
of the variance than does Approach 1.  However, unlike the 
Approach 1, the Approach 2 requires us to work with the 
means and variances of the natural-log of the input model 

variables, i.e.,  ln iXµ  and 2
ln iXσ . In the correlated case, we 

will also need to convert to correlation coefficient between 
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two pairs, say ,i jX Xρ  to ln ,lni jX Xρ , but our results show that 

ln ,ln ,i j i jX X X Xρ ρ=  for all practical purposes. If the 

distribution of Xi is chosen as a log-normal with mean 
iXµ  

and variance 2

iXσ , then lnXi is normal with the mean  ln iXµ  

and variance 2
ln iXσ  which can be simply computed from:  

2

ln 2

1
ln ln 1

2
i

i i

i

X
X X

X

σ
µ µ

µ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

, (22) 

and 

2
2
ln 2

ln 1 i

i

i

X
X

X

σ
σ

µ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

. (23) 

If the chosen distribution for the input variable Xi is not log-
normal, then we can use descriptive statistics on the 

available data to compute ln iXµ  and 2
ln iXσ . If such 

exhaustive data are not available, then we may generate 
samples from a known distribution and use descriptive 

statistics on these samples to compute ln iXµ  and 2
ln iXσ . 

4.3 Example Applications 

In this section, we consider some example applications 
comparing the results obtained from MC and AUP 
approaches for predicting the uncertainty in thermal 
resource PW for a single field.   

4.3.1 Example Application 1 

The first example application pertains to a case where all 
input variables are independent in PW given by Eq. 1. For 
the purpose of this example, we consider two cases: Case 1 
assumes that the distribution of each input variable in Eq. 1 
can be characterized by a triangular distribution, whereas 
Case 2 assumes that the distribution of each input variable 
in Eq. 1 can be characterized by a log-normal distribution. 
For Case 1, the minimum, most likely (mode), and 
maximum values of the input variables are given in Table 3. 
The values of mean and variance given in Table 3 were 
computed from the well-known formulas for a triangular 
distribution: 

3iX

Min Max Modeµ + += , (24) 

and 

( ) ( ) ( )

( )

2 2 2

2

18

18

iX

Min Max Mode

Min Max Min Mode Max Mode

σ
+ +

=

× + × + ×
−

. (25) 

The data given in Table 3 pertain to Izmir Balçova-
Narlıdere geothermal field in Turkey and were taken from 
Satman et al. (2001). For this application, Tr = 60 oC.  

For Case 2, we assume that the distribution of each input 
variable Xi is a log-normal with the mean and variances 
computed from Eqs. 24 and 25 (see 5th and 6th columns of 
Table 3). Table 4 presents the values of the mean and 

variances for lnXi computed (see 4th and 5th columns) by 

using the values of mean (
iXµ ) and variance ( 2

iXσ ) for Xi 

given in the 2nd and 3rd columns in Eqs. 22 and 23.  

Table 3: Distributions of the input variables; 
triangular distribution; Case 1 

Variable 

iX  

Min Mode Max Mean+ 

iXµ  

Variance+ 

2

iXσ  

φ 0.02 0.05 0.1 0.057 2.722×10-4 

cs, kJ/(kg oC) 0.75 0.9 1.0 0.883 2.639×10-3 

ρs, kg/m3 2550 2650 2750 2650 1.667×103 

cw, kJ/(kg oC) 4.00 4.18 4.21 4.130 2.150×10-3 

ρw, kg/m3 922 931 987 946.7 2.067×102 

A, m2 5×105 9×105 2×106 1.1×106 1.006×1011 

h, m 250 350 1000 533.3 2.764×104 

T-Tr, 
oC 40 75 85 66.67 9.306×101 

RF 0.07 0.18 0.24 0.163 1.239×10-3 

Y 0.7 0.85 0.9 0.817 1.806×10-3 

LF 0.35 0.41 0.5 0.42 9.500×10-4 

tp, s. 8×108 8×108 8×108 8×108 0.0 
+mean and variance were computed from the known formulas 
given for a triangular distribution, see Eqs. 21 and 22. 

 

Table 4: Distributions of the input variables; log-
normal distribution; Case 2.  

Variable 

iX  

Mean 

iXµ  

Variance 

2

iXσ  

Mean 

ln iXµ  

Variance 

2
ln iXσ  

φ 0.057 2.722×10-4 -2.905 8.045×10-2 

cs, kJ/(kg 
oC) 

0.883 2.639×10-3 -0.1261 3.379×10-3 

ρs, 
kg/m3 

2650 1.667×103 7.882 2.374×10-4 

cw, kJ/(kg 
oC) 

4.130 2.150×10-3 1.418 1.260×10-4 

ρw, 
kg/m3 

946.7 2.067×102 6.853 2.306×10-4 

A, m2 1.1×106 1.006×1011 13.871 7.986×10-2 

h, m 533.3 2.764×104 6.233 9.275×10-2 

T-Tr, 
oC 66.67 9.306×101 4.189 2.072×10-2 

RF 0.163 1.239×10-3 -1.837 4.558×10-2 

Y 0.817 1.806×10-3 -0.2035 2.702×10-3 

LF 0.42 9.500×10-4 -0.8702 5.371×10-3 

tp, s. 8×108 0.0 2.05×101 0.0 

 

Figures 1 and 2 show histograms of PW generated from the 
MCM by using the distributions given in Table 3 and 4, 
respectively, in @RISK. The statistical variables (e.g., 
mean, variance, P10, P50, and P90) for each histogram are 
given in the insets of Figures 1 and 2.   

As is expected from the CLT, both histograms shown in 
Figures 1 and 2 are log-normal and also the statistical 
parameters obtained for both cases are very similar. So, as 
discussed previously, in fact, there is no reason to insist 
upon any particular probability distribution for our input 
variables provided that means and variances are the same 
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for the chosen distributions for the input variables unless 
the data we have suggests otherwise. 
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Figure 1: Histogram of recoverable power, PW, 
generated from the MCM, for the case 
where each input variable is based on a 
triangular distribution (see Table 3); Case 
1 . 
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Figure 2: Histogram of recoverable power, PW, 
generated from the MCM, for the case 
where each input variable is based on a 
log-normal distribution (see Table 4; Case 
2. 

 

Now, we compare the estimates of means, variances, P10, 
P50, and P90 computed for PW from the MCM and AUPM 
based on Approaches 1 and 2 as described earlier. Table 5 
compares the values of means and variances computed from 
MCM and AUPM for PW and lnPW for Case 2.As can be 
seen from Table 5, the computed values of means and 
variances from the MCM and AUPM for PW and lnPW 
functions agree well. We also notice that the values of 
means and variances for PW and lnPW computed from the 
AUPM based on Approach 2 better agrees with 
corresponding ones from the MCM. This is not surprising 
though, and is an expected result because as mentioned 
previously, the AUPM provides a linear approximation to a 
nonlinear random function around the mean values of the 
input variables and can provide exact results for the mean 
and variance for a function f if that function is linear with 
the input random variables. In our case, PW (Eq. 1) are in 
fact nonlinear functions of their input variables. On the 
other hand, lnPW (Eq. 3) are almost linear (or weakly 
nonlinear) functions of the input variables. Consequently, 

the AUPM (based on either Approach 2) provides estimates 
of means and variances for PW and lnPW functions that 
agree very well with those computed from the MCM.  

Table 5: A comparison of means and variances from 
the MCM and AUPM for PW (Eq. 1) and 
lnPW (Eq. 3) function; Case 2.  

Mean Variance  

MCM AUPM MCM AUPM 

PW, 
MW 

37.96 37.66† 

37.91* 

409.3 367.4† 

408.3* 

lnPW 3.511 

 

3.513† 

3.510∗ 

0.2509 

 

0.2303† 

0.2501∗ 

†AUPM based on Approach 1 
∗AUPM based on Approach 2 

 

Next, we compare the 10th, 50th and 90th percentiles 
computed from the MCM and AUPM for PW, and lnPW 
functions for Case 2. Table 6 presents the results. As can be 
seen from Table 6, the values of P10, P50, and P90 
percentiles computed from the MCM and AUPM (based on 
Approaches 1 and 2) agree quite well. They are essentially 
identical. 

Table 6: A comparison of the values of 10th, 50th and 
90th percentiles computed from the MCM 
and AUPM for PW and lnPW functions; 
Case 2.  

P10 P50 P90  

MCM AUPM MCM AUPM MCM AUPM 

PW, 
MW 

17.6 18.1† 

17.6* 

33.6 33.5† 

33.4* 

62.9 62.0† 

63.4* 

lnPW 2.87 2.90† 

2.87* 

3.52 3.51† 

3.51* 

4.14 4.12† 

4.15* 

†AUPM based on Approach 1 
*AUPM based on Approach 2  

 

4.3.1 Example Application 1 

Our next example application pertains to a case where some 
of the input variables in Eq. 1 are correlated. As mentioned 
previously, it is possible that various input variables in 
stored heat and recoverable power can be correlated with 
each other. For example, the solid rock specific heat may be 
negatively correlated with the density of the solid rock, the 
density of water may be negatively correlated with 
temperature, and the solid rock specific heat can be 
positively correlated with temperature. In addition, we may 
expect that area (A) and thickness (h) are positively 
correlated (Murtha, 1994). For this investigation, we use the 
same input distributions given in Table 3, but assume 
correlation between the five correlated pairs and the 
correlation coefficients given in Table 7.  

Figure 3 shows the histogram PW (Eq. 1) generated from 
the MCM by using the distributions given in Table 3 and 
the correlation coefficients given in Table 7 in @RISK. As 
can be seen, correlation did not change the shape of the PW 
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distribution. It is still nearly log-normal. When the result of 
Fig. 3 for the correlated case is compared with the results of 
Figure 1 for the uncorrelated case, we see that correlation 
increased the variance significantly (about 30%). 
Correlation increased the 10th, 50th and 90th percentiles of 
Ht and PW slightly (about 6%) compared to the 
corresponding results for the uncorrelated case.  

 
Table 7: Correlated variable pairs and correlation 

coefficients.  

Correlated 
Variable 

Pairs 

( ),i jX X  

Correlation 
Coefficient 

,i jX Xρ  

 

( ),s rc T T−  0.63+  

( ),s sc ρ  0.44−  

( ),w rT Tρ −  0.62−  

( ),w wc ρ  0.42−  

( ),A h  0.24+  
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Figure 3: Histogram of recoverable power, PW, 
generated from the MCM, correlated case. 

 

Table 8 compares the values of means and variances 
computed from MCM and AUPM for PW and lnPW. We 
used the AUPM based on Approach 2 to compute means 
and variances of PW and lnPW functions. This approach 
requires that we work with the correlation coefficient 
between the pairs in terms of the natural-log of input 
random variables; i.e., ln ,lni jX Xρ . Our results 

indicate ln ,ln ,i j i jX X X Xρ ρ= . That is; one can use the 

correlation coefficients based ,i jX Xρ when using the AUPM 

method based on Approach 2. Note that the means and 
variances obtained from MCM and AUPM based on 
Approach 2 for lnPW are essentially identical.  

Table 9 compares the values of P10, P50, and P90 
computed from the MCM and AUPM (based on Approach 
2). Again, there is a very good agreement in the 10th, 50th 
and 90th percentiles computed from both methods.   

Table 8: A comparison of means and variances from 
the MCM and AUPM for PW and lnPW 
functions, correlated case. 

Mean Variance  

MCM AUPM MCM AUPM 

PW, 
MW 

39.9 37.7 530.7 438.5 

lnPW 3.534 

 

3.536 0.3148 

 

0.3177 

 

Table 9: A comparison of the values of 10th, 50th and 
90th percentiles computed from the MC 
and AUP methods for PW and lnPW 
functions, correlated case.  

P10 P50 P90  

MCM AUPM MCM AUPM MCM AUPM 

PW, 
MW 

16.4 16.7 34.4 34.3 70.7 70.6 

lnPW 2.82 2.81 3.53 3.54 4.25 4.26 

 

In summary, our results show that correlation among 
variables, particularly between A and h, if they exist and 
that data available permits one to identify correlation 
among variables, should be accounted for accurate 
characterization of uncertainty in PW. The results also 
indicate that the AUPM works as good as the MCM to 
estimate uncertainty (variance, 10th, 50th, and 90th 
percentiles) in PW even for the case where the input 
variables are correlated.  

5. AGGREGATION OF THERMAL RESOURCES 

Here, we consider the problem of aggregating (or adding) 
thermal resources of diverse fields.  Should one use an 
arithmetic or probabilistic addition to determine “proved” 
and “probable” (which corresponds to P10 and P90 
percentiles of the cumulative distribution function, 
respectively) corresponding a geothermal project or a 
country which may involve many diverse fields, each with  
its estimated values of mean, variance,  P10, P50, and P90? 

The aggregation problem has been studied in the petroleum 
engineering literature by a number of authors; see for 
example, Capen (1996, 2001), Carter and Morales (1998), 
van Elk et al. (2000), Demirmen (2007), and Delfiner and 
Barrier (2008). However, this problem has not yet received 
much attention in the geothermal literature. In our previous 
work (Sarak et al., 2009), it was shown that the simple 
arithmetic sum may significantly underestimate the P10 and 
significantly overestimates the P90, relative to the 
corresponding ones estimated by probabilistic sum and that 
the statistically proper method of aggregating divers fields’ 
resources is by probabilistic sum. However, it should be 
note that our previous work assumed that the all fields 
considered in aggregation process are independent or 
uncorrelated. Here, we further discuss the aggregation of 
diverse field reserves by considering the fact that some of 
the fields may be correlated.     

As is well known [for example see, Capen (1996, 2001), 
Carter and Morales (1998), and Delfiner and Barrier 
(2008)], the correct procedure when aggregating the 
resources of many diverse fields is a probabilistic addition 
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whether the fields to be aggregated are independent or not. 
As to be shown mathematically, the arithmetic sum 
assumes that all fields considered in aggregation are fully 
correlated (i.e., pairwise correlation coefficients for all 
fields is equal to unity). In other words, probabilistic sum 
will be equal to the arithmetic sum if all fields are fully 
correlated. On the other hand, if we assume that all fields 
are independent and apply the probabilistic addition, then 
the probabilistic sum overestimates the P10 and P90 of the 
all fields used in aggregation.  

As well stated by Delfiner and Barrier (2008), in reality 
fields are neither perfectly dependent nor perfectly 
independent, but instead are correlated. So, although the 
probabilistic sum is the most general approach that one 
should use whether the fields are independent or not, 
however it requires the knowledge of pairwise correlation 
coefficients for the fields. Suppose that we aggregate 
thermal resources of n geothermal fields, then one has to 
consider a total of n(n-1)/2 pairwise correlations. For 
example, if n = 10, then   we would need 45 correlation 
coefficients, if n = 20, then we would need 190 correlation 
coefficients. In practice, the estimation of all such 
correlations between field-resource estimates may not be 
possible and feasible. Therefore, some authors have 
proposed simplified and pragmatic approaches for 
aggregating field resources [Carter and Morales (1998), van 
Elk et al. (2000), and Delfiner and Barrier (2008)]. For 
example, Delfiner and Barrier (2008) propose a partial 
probabilistic addition in which group of fields presumed to 
be relatively dependent or relatively are defined, and the 
summation is performed using arithmetic or probabilistic 
addition depending on the assumed values of correlation 
coefficients between pairwise fields. We refer the readers to 
the work of Carter and Morales (2007) and Delfiner and 
Barrier (2008) for further details regarding such simplified 
aggregation procedures.   

5.1 Aggregation of Means, Variances, P10, P50, and P90  

In the following, we provide a general formulation for 
estimating the values of mean, variance, P10, P50 and P90 for 
a total of n geothermal PW resources, each following a log-
normal distribution characterized by its mean 

( , 1,2, ,
jPW j nµ = L ) and variance ( 2 , 1,2, ,

jPW j nσ = L ). 

Note that if each PWj, j = 1,2,...,n,  is a log-normal 
distribution, then lnPWj, j = 1,2,…,n, is a normal 
distribution with a mean equal to ln , 1,2, ,

jPW j nµ = L and 

a variance equal to 2
ln , 1,2, ,

jPW j nσ = L . The two sets of 

parameters are related by Eqs. 7-10 for each field’s 
resource.  

Now suppose that we are interested in the uncertainty of the 
total resources (denoted by PWS ) which is equal to the sum 
of the resources of all PWj, j = 1,2,…,n, given by: 

1

n

S j
j

PW PW
=

=∑ , (26) 

It is not difficult to show that the mean (or expected value 

denoted by 
SPWµ ) and the variance of PWS (denoted by 

2

SPWσ ) are given by the following equations, respectively:  

1
S j

n

PW PW
j

µ µ
=

=∑ , (27) 

and 

1
2 2 2 2

,
1 1 1

2
S j i j i j

n n n

PW PW PW PW PW PW
j i j i

σ σ ρ σ σ
−

= = = +
= +∑ ∑∑ , (28) 

where ,i jPW PWρ  represents the pairwise correlation 

coefficient between field resources i and j.  

A few remarks are in order for Eqs. 27 and 28: Eq. 27 
indicates that the mean of the sum of the resources is equal 
to the arithmetic sum of the mean of each resource PWj, 
whether field resources used in aggregation are correlated 
or not.  So, this result indicates that we can add the mean of 
each field resources to find the mean of the sum of all 
fields’ resources.  Eq. 28 indicates that the variance of the 
sum of the resources will not be equal to the sum of the 
variances of individual resources unless all field resources 

are independent, i.e., , 0
i jPW PWρ =  for all field resource 

pairs i and j.  So if all fields are independent Eq. 28 reduces 
to: 

2 2

1
S j

n

PW PW
j

σ σ
=

=∑ . (29) 

On the other hand, if we assume that all pairwise 
correlations in Eq. 28 are equal to unity, i.e., , 1

i jPW PWρ = , 

for all i and j such that i ≠ j, then it is not difficult to show 
that Eq. 28 reduces to: 

2

2

1
S j

n

PW PW
i

σ σ
=

⎛ ⎞= ⎜ ⎟
⎝ ⎠
∑ . (30) 

In theory, the sum of log-normal distributions (i.e., the sum 
given by Eq. 26) is not log-normal. Rather, by the CLT, it is 
expected to be normal. As discussed by Capen (2006) and 
shown numerically on an example application by Sarak et 
al. (2009), Monte Carlo simulations show that the 
convergence to normal distribution is slow because of the 
skewed shape of the log-normal distribution and that log-
normal model is a better approximation for the aggregation 
of field resources than is a normal distribution. As it is 
much easier to derive some of the limiting forms we would 
like to show here, for now we will assume the sum of log-
normal distribution of thermal field PW resources is normal 
so that the P10, P50, and P90 of the PWS are given by 

2P10 1.28
S SS PW PWµ σ= − , (31) 

P50
SS PWµ= , (32) 

and 

2P90 1.28
S SS PW PWµ σ= + . (33) 

Now, we would like to show that the sum of P10, P50, and 
P90 based on probabilistic addition given by Eqs. 31-33, 
respectively, will be equal to P10, P50, and P90 that would 
be obtained by using an arithmetic sum if all fields involved 
in aggregation are perfectly correlated, i.e., the variance of 
the sum of n log-normal field resources are given by Eq. 30.  
Using Eqs. 27 and 30 in Eqs. 31-33 gives: 
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( )
1 1

1 1

P10 1.28

1.28 P10

j j

j j

n n

S PW PW
j i

n n

PW PW j
j j

µ σ

µ σ

= =

= =

⎛ ⎞= − ⎜ ⎟
⎝ ⎠

= − =

∑ ∑

∑ ∑
, (34) 

1 1

P50 P50
j

n n

S PW j
j j

µ
= =

= =∑ ∑ , (35) 

and 

( )
1 1

1 1

P90 1.28

1.28 P90

j j

j j

n n

S PW PW
j i

n n

PW PW j
j j

µ σ

µ σ

= =

= =

⎛ ⎞= + ⎜ ⎟
⎝ ⎠

= + =

∑ ∑

∑ ∑
. (36) 

So, Eqs. 34-36 clearly show that the probabilistic sum is 
identical to the arithmetic sum if all fields are perfectly 
correlated so that Eq. 30 is valid.  

In the case where we assume that the sum of n field log-
normal resources is still log-normal, i.e., PWS given by Eq. 
26 will have a log-normal distribution. As discussed before, 
in practice with a finite number of fields, this assumption 
provides better results for P10S , P50S , and P90S . For this 

case, PWS given by Eq. 26 follows a log-normal distribution 

With mean equal to 
SPWµ (Eq.  27) and variance equal to 

2

SPWσ  (Eq. 28). These parameters are related to the mean 

ln SPWµ and variance ( 2
ln SPWσ ) of lnPWS by:  

2

ln 2

1
ln ln 1

2
S

S S

S

PW
PW PW

PW

σ
µ µ

µ
⎛ ⎞

= − +⎜ ⎟⎜ ⎟
⎝ ⎠

, (37) 

and 

2
2
ln 2

ln 1 S

S

S

PW
PW

PW

σ
σ

µ
⎛ ⎞

= +⎜ ⎟⎜ ⎟
⎝ ⎠

. (38) 

The P10, P50, and P90 of the PWS, based on the assumption 
that PWS is log-normal, are given by 

( )2
ln lnP10 exp 1.28

S SS PW PWµ σ= − , (39) 

( )lnP50 exp
SS PWµ= . (40) 

and 

( )2
ln lnP90 exp 1.28

S SS PW PWµ σ= + . (41) 

5.2 Example Applications  

In this section, we consider a few example applications to 
verify our theoretical findings given in the previous section 
for aggregation of field resources of PW.  

We consider a geothermal project consisting of 5 fields, 
each having its log-normal distribution of PW with its 

values of mean, variance, P10, P50, and P90 as given in 
Table 10. 

Table 10: The values of mean, variance, 10th, 50th 
and 90th percentiles for each pseudo 
field’s PW.  

 
PWµ  

MW 

2
PWσ  

MW
2
 

P10 

MW 

P50 

MW 

P90 

MW 

Field 1 853 80656 538.2 808.7 1229 

Field 2 404 25600 230.9 375.9 606.9 

Field 3 97 1089 60.11 91.93 141.0 

Field 4 51 729 21.67 42.92 82.85 

Field 5 41 529 18.42 35.83 70.67 

 
In Tables 11 and 13, we compare the values of mean, 
variance, P10, P50, P90 for the sum of field thermal 
resources of the 5 fields, obtained from arithmetic and 
probabilistic sum (based on MC sampling using @RISK, 
Eqs. 27, 28, 31-33, and Eqs. 37-41). The results given in 
Table 11 are for the case assuming that all 5 fields are 
independent. Table 12 presents the results for the case 
assuming that all 5 fields are perfectly correlated.  Table 13 
presents the results for the case assuming that all 5 fields 
are correlated with all pairwise correlation coefficients that 
are identical and equal to 0.05. 

As expected, the results given in Tables 11-13 indicate that 
(i) arithmetic provides almost identical values of P10, P50, 
and P90 for the sum of 5 fields’ resources if all  fields are 
fully or perfectly correlated with each other, (ii) if all fields 
are independent or correlated with pairwise positive 
correlation coefficients different from unity, then the 
arithmetic sum will underestimate the value of P10 and 
P50, but overestimate the value of P90, and (iii) the 
probabilistic addition assuming normality for the sum of all 
fields’ resources (Eqs. 28-30) does not provide as accurate 
estimates of P10, P50, and P90 as the probabilistic addition 
based on the assumption of log-normality for PWS (Eqs. 36-
38). 

In summary, we can state that the arithmetic addition 
assumes that all fields resources considered in aggregation 
are perfectly correlated and provides a “pessimistic” 
estimate of P10. On the other hand, the probabilistic 
addition based on the assumption that all fields considered 
in aggregation are independent provides a “optimistic” 
estimate of P10. In reality, the correct P10 value should be 
between the P10 values estimated from the arithmetic sum 
which always assumes that all fields are perfectly correlated 
and the probabilistic addition based on the assumption that 
all fields are independent because fields are neither 
perfectly dependent nor perfectly independent, but instead 
are correlated. Of course, then, the issue is how to 
estimation the pairwise correlation coefficients of the fields 
involved in aggregation, though some authors have 
proposed simplified and pragmatic approaches for 
aggregating field resources [Carter and Morales (1998), van 
Elk et al. (2000), and Delfiner and Barrier (2008)], as 
discussed previously.  
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Table 11: The values of mean, variance, 10th, 50th 
and 90th percentiles for the sum of all 5 
fields for the case all 5 fields are treated 
as independent.  

 
SPWµ  

MW 

2

SPWσ  

MW
2
 

P10 

MW 

P50 

MW 

P90 

MW 

Arithmetic 
sum  

1446 108603 869 1355 2130 

Probabilistic 
sum (MC) 

1445 108931 1062 1404 1887 

Probabilistic 
sum (Eqs. 27, 
28, 31-33) 

1446 108603 1024 1446 1868 

Probabilistic 
sum (Eqs. 37-
41) 

1446 108603 1057 1410 1880 

 
Table 12: The values of mean, variance, 10th, 50th 

and 90th percentiles for the sum of all 5 
fields for the case all 5 fields are treated 
as perfectly correlated.  

 
SPWµ  

MW 

2

SPWσ  

MW
2
 

P10 

MW 

P50 

MW 

P90 

MW 

Arithmetic 
sum  

1446 108603 869 1355 2130 

Probabilistic 
sum (MC) 

1446 278959 868 1352 2139 

Probabilistic 
sum (Eqs. 27, 
28, 31-33) 

1446 280676 768 1446 2124 

Probabilistic 
sum (Eqs. 37-
41) 

1446 280676 862 1358 2138 

 
Table 13: The values of mean, variance, 10th, 50th 

and 90th percentiles for the sum of all 5 
fields for the case all 5 fields are treated 
as correlated with identical pairwise 
correlation coefficients equal to 0.05.  

 
SPWµ  

MW 

2

SPWσ  

MW
2
 

P10 

MW 

P50 

MW 

P90 

MW 

Arithmetic 
sum  

1446 108603 869 1355 2130 

Probabilistic 
sum (MC) 

1446 117696 1056 1406 1909 

Probabilistic 
sum (Eqs. 27, 
28, 31-33) 

1446 117059 1008 1446 1884 

Probabilistic 
sum (Eqs. 37-
41) 

1446 117059 1044 1407 1897 

 

5. CONCLUSIONS 

On the basis of this work, we conclude that: 

1. The distribution of thermal resource power for a 
single geothermal field, based on a volumetric 
method, is log-normal, regardless of the types of 
probability distributions chosen for the input variables 
in the volumetric equation. This result follows 
directly from the fundamental theorem of statistics 
and probability − Central Limit Theorem (CLT).  

 

2. Analytic uncertainty propagation equations (AUPEs) 
− based on a Taylor-series expansion around the 
mean values of the input variables − were presented 
for computing the mean and variance of the 
recoverable power resource for a field. The AUPM 
method, when combined with the assumption of log-
normality for the recoverable power resource, 
provides a fast alternative to the Monte Carlo 
simulation for accurately characterizing uncertainty 
markers such as variance, P10, P50 and P90.  

 
 
3. The derived AUPEs are quite general in that it can 

account for correlation among the input variables 
used in the volumetric equation. It was shown that 
ignoring correlation, if it exists, may underestimate or 
overestimate the uncertainty in recoverable power.  

 

4. Finally, we showed that a simple arithmetic sum of 
the “proved” and “probable” (P10 and P90 percentiles, 
respectively) thermal power resources from individual 
fields assumes that all fields considered in 
aggregation are perfectly correlated and may 
significantly underestimate the true P10 and 
significantly overestimate the true P90, obtained from 
the probabilistic sum accounting for pairwise 
correlations existing between the fields’ power 
resources. On the other hand, it was show that using a 
probabilistic sum based on the assumption that all 
fields involved in aggregation process are 
independent may overestimate the true P10 and 
underestimate the true P90 if some or all of the fields’ 
power resources are correlated.    
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