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ABSTRACT

Results of geochemical and isotopic investigations in the
Hengill Geothermal area are presented. The area can be
regarded as typical of Icelandic high temperature areas. It's
mainly built up of pillow lavas and hyaloclastites, which
were piled up in sub glacia eruptions. Part of the area is
transversed by a very active NE-SW trending fault zone
about 5km broad, within which are several eruptive fissures
of postglacia age. The volcanic rocks are basalts of various
kinds, but minor occurrences of intermediate and rhyolitic
rocks are a'so found.

The study was based on chemical and isotopic the analyses
of fluid samples from Negavellir prior to production, and
the results data collected in the years 2000-2007 from the
exploited geotherma fields. In addition, new fluid samples
were collected for the present from the Negavellir and
Hellisheidi fields. These samples were analysed for
chemistry and stable isotopes at the institute of Earth
Sciences, University of Iceland. Grapher and Surfer were the
main programs used to plot the data.

The results indicated that the Nesjavellir and Hellisheidi
thermal fluids do not share the same origin. In Negjavdlir
the water comes from a distant source the glacier Langjokull
whereasin Hellisheidi the water is of local originidentical to
the isotopic composition of the Hveragerdi thermal water.
According to the deuterium isotope values well HE.1 in
Hellisheidi is closer in origin to the Negjavellir thermal fluid
than the fluid circulating the Hellisheidi system. The
Hellisheidi system is younger than the Negavellir system as
suggested both by stable isotopes and chemistry of the
thermal fluids (Cl-SO,-HCO; plot). In Nesjavellir the fluid
is richer in ®¥O and chemicaly more mature than in
Hellisheidi, due to more intense water-rock interaction.
Thermal fluids in Hveragerdi are of loca origin as the
Hellisheidi waters.

1. INTRODUCTION

Iceland is located at the junction of the Mid-Atlantic Ridge
and the Greenland-Iceland-Faeroe Ridge, the former being a
part of the global mid-oceanic ridge system. Iceland is
regarded as being a hot sport above a mantle plume, and has
been piled up through emissions of volcanic material, grown
by rifting and crust accretion through volcanism aong the
NE-SW axial rift zone. This is sometimes referred to as the
Neovolcanic zone (Figure.1). Currently, the plume channel
reaches the lithosphere below the north-western part of the
glacier Vatngjokull. The buoyancy of the Icelandic plume
leads to dynamic uplift of the Icelandic plateau, and the high
volcanic productivity over the plume produces a thick crust.
The western part of Iceland lies west of the volcanic zones

and belongs to the North American plate whereas the eastern
part belongs to the Eurasian plate. As necrustis created along
the rift zone, old bed rock moves further from the plate
boundary. Therefore, the oldest rocks exposed on the surface
in lceland, formed about 16million years ago, occur in the
eastern most and western most parts of the country. The
volcanic zone is connected to the Atlantic ridge across
transform faults in both North and South Iceland. In SW-
Iceland, the volcanic rift zone is divided into two separate
parallel zones characterized by severa fissures and fault
swarms. The two branches are connected by the E-W
trending South Iceland Seismic Zone (Saemundson, 1978).
The Hengill area is located just north of a ripple junction
where an oblique spreading ridge, tensiona spreading axes
and a major seismic zone meet (Figure.l). It is part the
Neovolcanic zone in SW Iceland about 40km east of
Reykjavik.

The Hengill area contains three economica geothermal
fields which are already being exploited for heating water
and power production. These are Helllisheidi, Hveragerdi
and Negjavdllir (Figure.2). At the Negjavellir field north east
of Mt. Hengill, 26 wells have been drilled, but 5 of them
have been permanently closed. The depth of these wells
ranges from 1000 to 2200m and temperatures of up to 380°C
have been measured. The average thermal power from these
wells is 60Mwt and 9MWe. The total electricity production
is 120Mwe and 1640l/s of water at 83°C. In Heillisheidi
which is to the south of Mt.Hengill, 28 wells have been
drilled to date at 2-3 km depth; 25 out of these are deviated
wells mainly targeting volcanic fractures and graben
boundaries. A power plant is hosted in this field producing
90MW, soon to be 120MW (Gidlason, 2007.per com).
Hveragerdi is located some 50km from Reykjavik; mainly
for heating purposes. Measured temperatures in this field
range from 170-185°C.

1.1 Purpose of the Study

The harnessing of geothermal heat from the Hengill area has
been going o for atleast more than two decades. Steam and
water samples are taken severa times during the discharge
period to establish the chemical characteristics of the wells
and to monitor any changes (Gislason, 2007 per com). The
present study is based on the analysis of fluid samples and
on the results of previous work in the exploited geothermal
fields. Chemical and isotopic evaluation of geothermal fluids
within the Hengill areawill be carried out to study if mixing
of thermal fluid takes place in these fields, to evaluate
chemical characteristics of the thermal fluid, to determine
subsurface fluid flow paths, the origin of geotherma fluids
and heat in the Hengill geothermal area. In addition to
distinguish and classify therma fluids in the fields. In so
doing, | hope to use this to monitor any possible changes
due to production/exploitation or otherwise now and in the
future.
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Figure 1: TheHengill areain relation to the I celandic Neovolcanic zone and main rock types.
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Figure 2: Location of geothermal fieldsin the Hengill area

2. GEOLOGICAL SETTINGS

A great deal of research work has been done in the Hengill
area by different scientist in relation to the geology,
geophysics, geothermal activity and geochemistry.
Saemundsson (1967) mapped the Hengill Mountain and
produced a 1:25,000 scale geological map. The bedrock in
the Hengill area is composed of basaltic lava layers, thick
sequences of hyaloclastites, and vertical intrusions. Two
NNE-striking volcanic fissures, which intersected the
Hengill volcano 2,000 and 5,500 years ago, act as primary
conduits for sub-surface fluid flow in both Hellisheidi and
Nesjavellir.

The geothermal reservoirs are liquid dominated and
commonly sit on the boiling-point-with-depth profile.

Reservoir fluid is 240-330°C fresh water, low in tota
dissolved solutes (TDS) and gas.

The geology is characterized by the active Hengill central
volcano, a major fissure swarm and the extinct Hveragerdi
volcanic centre hosting geothermal resources.

It is one of the largest high-temperature areas in Iceland,
extending over some 50km? The geothermal activity is
believed to be connected to three volcanic systems. 1) The
Grensdalur system is the oldest system and gives heat to the
Hveragerdi field. 2) North of this is a volcanic system
named after Mt.Hrémundartindur, which last erupted about
10,000 years ago. The geothermal area in Olkelduhals is
connected to that system. 3)West of these volcanic systems
lies the presently active Hengill volcanic system, with
intense tectonic and volcanic NE-SW fractures and faults



extending from Lake Thingvallavatn to Negavellir and
further to the SW through Innstidalur, Kolvidarholl,
Hveradalur(hot  spring  valey) and Hellisheidi
(Saemundsson,1979). The area is amost entirely built up of
volcanic rocks of late Quaternary and postglacia age
(Saedmundsson, 1967). These are mostly basalt flows and
hyaloclastites but small amounts of intermediate rocks and
rhyolites occur as well.

3. USE OF ISOTOPES AND CHEMISTRY IN
GEOTHERMAL, INVESTIGATIONS

Geochemistry including isotope geochemistry has greatly
contributed to the present understanding of geothermal
systems. Ellis (1977) suggests that the detection of even
small changes in the chemical composition of a geothermal
fluid enables a precise assessment of the long term stability
of the field. The chemica and isotopic composition of
geothermal fluid components provides information on their
origin, their recharge area and flow patterns, and may allow
an evauation of subsurface temperatures. In addition,
cooling processes of the fluid during ascent to the surface,
due to heat conduction, admixtures with cold waters or
steam losses, can be studied by means of the changes
introduced in the chemical and isotopic composition of the
thermal fluid.

3.1 Sampling

Sample collection, chemical analysis and data interpretation
are the three main steps involved in geochemical studies of
geothermal fluids. A brief description of the sampling
techniques, sample treatment and analytical techniques
adopted for this is given in this section. For detailed
sampling and analytical techniques see Olafsson (1988);
Paces (1991) and Arnorsson (1991).

The types of samples used in the study are water samples
from hot water wells, water samples from wet-steam water
wells.The collection of representative gas samples from a
discharging well involved the collection of dry gas (non-
condensable gases), condensate, steam (in NaOH solution)
and hot water. It was conducted with the aid of a Webre
separator and a cooling device. Great care was taken to
separate steam completely from liquid.

Sample treatment was specific for particular analytical
methods. The samples were collected in several fractions.
Ru samples are raw and untreated for CO, and H,S analysis
,Rd ones are raw and diluted on site with de-ionized water to
bring SiO, below 100ppm for SiO, analysis, Fu ones are
filtered and untreated for anion analysis, Fp ones are filtered
and precipitated for SO, analysis and Fa ones are filtered for
anions analysis. Samples for isotope analysis were collected
in 500ml small bottles they were also raw and untreated.

The anaytical methods used to obtain the data for the report
included Atomic absorption methods for cations eg.
Mg.NaK,FeAl; Cl and SO, lon chromatography finally for
80, 3D Mass spectrometry.

3.2 Results of Chemical Analysis

The present results are based on the anayses of fluid
samples and on the results of previous work from 00-07 in
the exploited geothermal fields (Table.1, 2, 3 & 4). The fluid
samples were collected between July-August 2007 was aso
analyzed for stable isotopes in the University of Iceland
using the Delta-V -Advantage thermo.
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4. CHEMICAL AND ISOTOPIC CHARACTERISTICS
OF THE THERMAL FLUIDS

Chemica and isotopic data have been compiled and
contoured on maps in order to study the chemical and
thermodynamic properties of the field.
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Figure 3: Nesjavellir wellsin the 80's $*%0 Vs 6°H

4.1 Natural | sotopes

Isotope techniques are a vauable tool in geotherma
prospecting as well as studying the evolution of geothermal
fields as a consequence of exploitation. Among the various
isotopes, the variations of stable isotopes of oxygen,
hydrogen and carbon in major fluid components provide the
most useful results. In this study both hydrogen and oxygen
isotopes were used. In the years 1985-1989 stable isotope
measurements were performed on hydrothermal fluids from
15 wells in the Negjavellir area (Sveinbjérnsdéttir, 1989).
The measurements were done on the Finnegan MAT 251
mass spectrometer of science Ingtitute, University of
Iceland. Exploitation of the Negjavellir field had not begun
at that time. Figure.3 shows the 8* %0 values for the thermal
fluid at Nesjavellir. The mean 50 values for wells east of
the youngest fissure eruption were —6.5%o. whereas for wells
situated west of the fissure it was -8.0%o. No difference was
observed in the 3D values in wells east and west of the
fissure, indicating the same fluid within theproduction area.
The difference in 80 could be explained if the geothermal
activity within the area west of the fissure was considerably
older than the activity east of it (Sveinbjornsdottir, 1989).

Figure.4 shows the spatial distribution of 5120 in Nesjavellir
in the 1980's before exploitation of the field began. High
values of §%0 -5.9 %o and -6.5 %o are observed in the NE-
SW direction of the field. Low values are observed in the
NW part of thefield.

Figure.5 we see the cold water wells of Hellisheidi plotting
directly on the global meteoric water line as was expected
while the hot wells plot to the left of the global meteoric
water line they group around 0 §-7.3%. to 520 6.5%. and
8°H 62.0 80%0 and 5°H 65.0 %o respectively. Hveragerdi
hot wells plot very close to the Hellisheidi wells.While the
Neshjavellir wells both hot and cold wells plot quite apart
from the wells Helisheidi and Hveragerdi.
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Figure 5: A graph showing %0 Vs §°H for all available
datafor the Hengill area.

4.2 Chemistry
4.2.1 The Nesavellir Field

4.2.1.1 Chloride

Chloride is an example of conservative (non-reactive)
congtituents in geothermal systems. Once added to fluid
phase they remain there. Conservative components have not
equilibrated in a thermodynamic sense. They are externally
fixed i.e. by their sources of supply of the geothermal fluid.
Their contents along the flow path are changed only by
mixing and steam loss. The chloride distribution during the

production years in the 80s (Figure 6a) shows a smooth
distribution with the maximum values on the eastern side of
the production field and the lowest values in the North and
Western side of the field and highest values in the eastern
part of the field. During the production years between 00-07
the chloride concentration Values seem to have increased
with high values being observed in the southern part of this
field. The Negavellir reservoir shows great variation in
initial Cl concentrations and important changes due to
utilization(Figure.6b). Initially the Cl concentration in the
wells closest to the young eruptive fissure was unusualy
low, often below 10ppm, but higher concentration was
found in the lower enthalpy wells in the eastern part of the
field There is certainly due to an increase in the
mineralization of the fluids due to mixing or boiling or water
maybe be coming from a different source with a high
concentration of chloride ions.
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Figure 6a: Nesjavellir Cl distribution in the80's
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4.2.1.2 Enthalpy

A comparison is made in the 80's (Figure.7a) and it shows
that the enthalpy distribution prior to exploitation is smooth
with high values of around 2100-2700 kJkg being observed
in the NE-SW direction of the field. The same pattern is



observed for the 520 distribution shown in (Figure.4). This
is the same direction as the NE-SW fissures and faults that
go into the Lake Thingvallatn. The data from the year 2000-
2007 suggest a change in the distribution of the enthalpy
(Figure.7b) where the enthalpy seems to be increasing
outwards from the centre with a notable increase being
observed in the NW direction. Thisis aclear indication of an
increase in temperature from the centre of the field
outwards. As to be expected when production is forced, an
enthalpy riseis predicted over time.
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Figure 7a: Enthalpy (KJ/Kg)valuesin the80's
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4.2.1.3 Carbon Dioxide Distribution (CO2)

Figure.8a shows the distribution of CO, in the Negjavellir
field before and after production before production thereisa
high in the southern(Figure.8a) part of the field and after
some years of utilization high CO, values are observed in

Mutomgaet al.

the opposite direction(Figure 8b). High gas concentrations
are mainly due to flashing in the reservoir fluid (Grimur per
comm. 2007). In response to production there is increased
flashing in the north western part of the field.
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Figure 8a: CO, distribution before utilisation Nesjavellir
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4.2.2 The Hellisheidi Field

The samples for isotopes in this field were collected in the
month of Aug-2007 from both condensate and steam. The
results indicated that the isotopic composition ranged from -
7.3%o 10 -6.5%0 and -62.0%0 and -65%o in the §'30 and 5?H
respectively.

Figure.9a shows the distribution of 50 isotopes collected
this year in Aug-2007 for the wells in Hellisheidi. High
values of 5180 are observed in the SW of the study area with
a decrease being observed in the north. The highest value is
80 -6.5% in the south and the lowest value %0 -7.3%o in
the north. The wells 24 and 25 were producing from the
steam cap, which means that the steam is much lighter in
isotopes than in wells 7 and 17where we have both steam
and water.

Quite high concentrations chloride ions are observed in this
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field with the highest Cl values coinciding with the highest
values of Oxygen isotopes (Figure 9a and 9c). High enthalpy
values are generally observed on the Hellisheidi field,
however they seem to increase in the NE-SW direction.

4.3 Classification of Thermal Fluids

4.3.1 The Na-K-Mg Ternary Diagram

The Na-K-Mg ternary diagram (Giggenbach et a., 1988) can
be used to classify waters into full equilibrium, partial
equilibrium and immature waters (dissolution of rock with
little or no chemical equilibrium). The full equilibrium curve
isfor reservoir water composition corrected for loss of steam
owing to decompression boiling. Uncorrected boiled waters
will generaly plot slightly above the full equilibrium line.
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Figure 9a: Hellisheidi isotope distribution 2007
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The diagram be used to better clarify the origin of the
waters, and then determine whether the fluid has
equilibrated with hydrothermal minerals and to predict the
equilibrium temperatures.

The thermal waters in Negavelir fal in the partialy
equilibrated and mixed waters (Figure.10). There is not
much change from the 1980"s period prior to production and
in the period 2000-2007 when the field was fully exploited.
Most samples fall in the temperature range of 260°C-300°C
except for a few that fall above the fully equilibrated line
probably because of the removal of Mg from the waters.

The wells in Hveragerdi fall within the partialy equilibrated
waters and the mixed waters section, but most samples
above the fully equilibrated waters line. The waters seem to
have low temperatures ranging from 140°C-100°C, with
only a few samples suggesting temperatures above
200°C(Figure 9). Most of the waters in the Hellisheidi field
fall in the partially equilibrated waters (Figure.9) with only a
few samples above the fully equilibrated waters line this
probably de to flashing. That could be due to removal of Mg
ions (very low concentration of the ion probably because of
boiling). All the cold well samples plot in the VMg —corner
of the diagram which means that these waters have not
attained equilibrium.

4.3.2 The Cl-SO,-HCO; Diagram

Giggenbach (1991) proposed a SO4-CI-HCOs ternary
diagram for initial classification of geothermal solutions to
identify whether the geothermometers are applicable for the
given water sample, as most solute geothermometers work
only for neutral waters. According to Giggenbach (1991),
solute geothermometers can only be applied to what is
referred to as “mature waters’, characterized by high Cl and

A Nesjavellir wells from year 00-07

®  Nesjavellirwells in the 80°s
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low SO4. This diagram is also helpful in providing an initial
indication of mixing relationships or geographic groupings.

The chemical composition of the fluids from the Negjavellir
wells in the period 2000-2007 is classified as Cl-rich
geotherma water (Figure.118). In contrast to the period in
the 1980°s where there is a scatter with most samples falling
in the Cl-rich section and some within the HCO; rich
section. The pH range of most of the samples was in the
ranges between 9t0 8.

Hellisheidi hot wells plot on the mature water quadrant
while most (Figure.11a) cold wells plot on the periphera
waters quadrant with some samples plot volcanic mature
waters section. This shows that the cold waters have
probably mixed with the hot well waters. The waters in
Hveragerdi probably C-type waters mature as indicated in
Figure.1lc.

5. DISCUSION

Figure.5 shows deviation of most of the thermal fluids from
the world meteoric water line. The waters range in 6H
between -62%o and -78%. and in 5'°0 between -5.5%0 and -
7.8%0. This is consistent with the observations of
Sveinbjonsdottir and Johnsen (1992) who observed that a
deviation of the Nesjavellir fluid from the meteoric line was
due to an oxygen isotopic exchange with the bedrock. This
exchange is sow when T < 200°C but a higher
temperatures it increases sharply. As basaltic rocks contain
very little hydrogen there is hardly any hydrogen isotopic
exchange between rock and water and therefore the
deuterium value for thermal water still characterizes that of
the original fluid.
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Figure:11la The negavellir CL-SO,-HCOzdiagram for Wellsin the 80’s and from 00-07
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According to Arnason (1976) and Sveinbjornsdottir and
Johnsen (1992) the geotherma water circulating in the
Nesjavellir field originates as does some of the cold water in
the Thingvellir area, from the glacier Longjokull ice cap the
water percolates into the bedrock and flows underground to
Nesjavellir field which is located south of the lake
Thingvallavatn without being disturbed by the lake. The 6D
value of the local precipitation in Nesjavellir (-58%o) is aso
(SMOW) is plotted on Figure.5.So are the cold waters from
Hellisheidi ranging in 5H from -60%o to -52%o. This valueis
considerably higher than in the Negavellir therma fluid
which is between J&H- 72% and O6H -78%0
(Sveinbjornsdottir, 1989). Water samples from drill holes
and hot springs in Hveragerdi have a mean value of -65.4 %o
which is similar to the mean value of the Hellisheidi thermal
water ranging in 82H from -62%. to 82H-65%..While the
deuterium content of the thermal fluids in Hellisheidi and
Hveragerdi suggest similar origin the origin of the thermal
fluid in Nesjavellir is different.

The Na-K-Mg ternary diagram provides a clue to whether
geotherma water samples have been affected by mixing
with ground water Samples that fall in the immature field of
(Figure.10) such waters do not represent equilibrium
conditions and are generaly interpreted to have been
affected by mixing with cold water, as Mg concentration
decreases dramaticaly with increasing temperature
(Fournier and Potter, 1982). Figure.10 shows that the cold
Hellisheidi water samples plotting on the Mg corner as
would be expected of these waters have not matured.
Negavellir therma waters from 2000-2007 and the
Hellisheidi thermal waters follow a similar trend. Some
samples fal in the partialy equilibrated water section and
some above the fully equilibrated water section. They have
very little magnesium or no magnesium at al. The
Hveragerdi waters plot above the full equilibrated waters
line and most of the samples range in temperature from 140-
100°C (Figure.10). The thermal fluids in hveragerdi are also



Cl type fluids. (Figure.llc)this can be interpreted as a
mature system that is cooling.

High CO, gas is due to reservoir flashing, the in-situ fluid
has a small concentration of dissolved CO,. When flashed,
all these CO, molecules will boil into the stream phase and
flow rapidly to the wells downstream. That explains rise in
CO,. As the pressure stahilizes, CO, levels decline again.
This can be seen in Nesjavellir field data (Figure.8a& 8b).

Most of the wells in the Negavellir and Hellisheidi
geothermal fields have excess enthalpy, i.e. the enthalpy of
the discharged fluid is higher than that of steam saturated
water at the respective aquifer temperature. This causes
uncertainty as how to obtain aquifer water composition from
analysis of water and steam samples collected at the
wellhead. Excess enthalpy may be a consequence of severa
processes (Arndrsson et.a.1991). It involves partia
segregation of the water and steam phases in the
depressurization zone around the wells so that the water
fraction is partially retained in the aquifer, while the steam
flows into the wells. 2) Processes involving flow of heat
from the aquifer rock in the depressurization zone to the
fluid flowing into the wells. The pressure drop causes
boiling of the liquid phase, which results in cooling, and
hence a positive temperature gradient is created between the
aquifer rock and the flowing fluid. 3) Excess enthalpy could
also be a reflection of high steam fraction of the initia
aquifer fluid.

In Hellisheidi field there is no clear relationship between the
80 isotopes and enthalpy (Figure.9a&9b). However it
seems that samples with high enthalpy values have low 580
values while those with low enthalpy values have 30 high
values.

lvarsson, (1998) used fumarole gas chemistry to estimate
subsurface temperatures in this area, the highest
temperatures were consistently found to be at the utilised
Nesjavellir field, while progressively low temperatures were
found at the Olkelduhals and the Hveragerdi field. Both gas
chemistry and resistivity measurements suggest that the
Nesjavellir and Olkelduhals fields are not connected at lower
levels.

According to (Bjornsson et a, 2006) Hellisheidi and
Nesiavellir are subfields of the Hengill system. The
conceptual reservoir model suggests an upflow zone of hot
fluid resides beneath the summit of the Hengill volcano. A
gradua rise in temperature is observed with depth in
Nesavellir, whereas temperatures are reversed at
Hellisheidi, the reversal is explained by alateral, cooler fluid
recharge from the south. The ascending fluid then flows
diagonally or laterally into both the Nesavellir and the
Hellisheidi fields (Bjornsson et a, 2006). However the
isotopes suggest a different story. They suggest that the fliud
circulating the Negavellir system comes from a distant
source with §°H ranging from -72%o0-78%o being very similar
with the local precipitation at the glacier Langjokull some
100km north of Negjaviller. The Hellisheidi thermal fluid is
very similar in 8°H to the Hveragerdi waters. There is
therefore a high probability that these systems share a
similar origini.e. local precipitation.

6. CONCLUSIONS

The Negjavellir and Hellisheidi waters do not share the same
origin. In Nesjavellir the water comes from a distant source
the glacier Laungjokull whereas in Hellisheidi the water is
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of local origin, identical to the isotopic composition of the
Hveragerdi thermal water.

According to the deuterium isotope values well No.1 in
Hellisheidi is closer in origin to the Negjavellir thermal fluid
than the fluid circulating the Hellisheidi system.

The Hellisheidi system is younger than the Negavellir
system as suggested both by stable isotopes and chemistry of
thermal fluids (Cl-SO4,-HCO; plot). In Negavellir fluid is
richer in O and chemically more mature than in
Hellisheidi, due to more intense water-rock interaction.
Thermal fluids in Hveragerdi are have a close origin as the
Hellisheidi waters.

There is invasion of a different fluid with a high
concentration of chloride ions in the Negjavellir field, there
is also increased boiling in this field generally probably in
response to production.

There is a pressure drop in both fields which causes boiling
of the liquid phase which results in cooling, and hence a
positive temperature gradient is created between the aquifer
rock and the flowing fluid. Evidence of boiling can be seen
in both Nesavellir and Hellisheidi by high CO, values.
However boiling is more pronounced in the Hellisheidi field
asindicated by the Na-K-Mg.

REFERENCES

Arnason, B., 1976: Groundwater systems in lceland traced
by deuterium. Soc. Sci. Idandica, 42, Reykjavik, 236
pp.

Arndrsson, S., 1991: Geochemistry and geothermal
resources in Iceland, In: D"Amore, F. (co-ordinator),
Applications of geochemistry in geothermal reservoir
development. UNITAR/UNDP publication, Rome, 145-
196.

Bjornsson, G., Gunnlaugsson, E., and Hjartarson, A., 2006:
Applying the Hengill geothermal reservoir model in
power plant decision making and environmental impact
studies. Proceedings of the TOUGH symposium 2006,

11 pp.

Ellis, AJ, and Mahon, W.AJ, 1977: Chemistry and
geothermal systems. Academic Press, New York, 392

pp.

Fournier, R.O., and Potter, RW., 1982: An equation
correlating the solubility of quartz in water from 25° to
900°C at pressures up to 10,000 bars. Geochim.
Cosmochim Acta, 46, 1969-1973.

Giggenbach, W.F., 1988: Geothermal solute equilibria
Derivation of Na—K-Mg-Ca geoindicators. Geochim.
Cosmochim. Acta, 52, 2749-2765.

Giggenbach, W.F., 1991: Chemica techniques in
geotherma exploration. In: D' Amore, F.(Coordinator),
Application of geochemistry in geothermal reservoir
development. UNITAR/UNDP publication, Rome, 119-
142.

fvarsson, G. 1998: Fumaroles gas geochemistry in
estimating subsurface temperatures at Hengill in south-
western Iceland. Proceedings, of the 9" Symposium on
Water-Rock Interaction, Balkema, 459-462.

Olafsson, M., 1988: Sampling methods for geothermal fluids
and gases. Orkustofnun, Reykjavik, report OS-
88041/JHD-06, 17 pp.



Mutonga et a.

Paces, T., (editor), 1991: Fluid sampling for geothermal
prospecting. In: D"Amore (coordinator), Applications
of geochemistry  in  geothermal reservoir
development. UNITAR/UNDP publication, Rome, 93

pp.
Sveinbjérnsdéttir, A.E., and Johnsen, S.J., 1992: Stable

isotope study of the Thingvallavatn area. Groundwater
origin, age and evaporation models.- Oikos,64,136-150.

Sveinbjornsdéttir, A.E., Johnsen, S., and Arndrsson, S.,
1995: The use of stable isotopes of oxygen and

10

hydrogen in geothermal studies in Iceland. Proceedings
of the World Geotherma Congress, 1995, Florence,
Italy, 2, 1043-1048.

Saemundsson, K., 1967: Vulkanismus und Tektonik des
Hengill-Gebietes in Sudwest-Island. Acta Nat. Idl., 11-7
(in German),195 pp.

Saemundsson, K., 1979: Outline of the geology of Iceland.
Jokull, 29, 7-28.



Mutomgaet al.

VT €86 600 290 90 6ST P'€9L |0'GSC | V90T | L'¢cc WA 6'€E9T 09 09 0/0S| P0O0cC € LT €CCTN
'0LT 99 200 8T0 €°GE 2'8ST 2z2s8 |0'8h [Sh4) 8'cc 868 0'9t9T ta 4" T60S| 900cC'9'62 Z2ZTN
T |C2€9T | T'ST TOO 9T 0 6,2 G'8ET 0'0LL |V'6E 69T eve S8'8 O'T88T 00c /90S| <200cVv'6T ccTN
T |V/9T | T'G2 200 €20 v'6c L'8ET 0'G/.8 |6°LV tArHA 4 vece VAS WA 0'cOoTC | 8'v6T 2ce0S c00c'c’ L ccTN
20 |L00C | gcT TOO [SrAle] 82 V'EET 6'T.. |88 S'9L oce .8 0'/96T | €V6T OVT |C€T /905 TO0Z'S'¢ 2N
/2’0 |2'’e0c | 88T 200 /.0 8'8cC 6'6ET TTLL |L798 TVve S'TC T9'8 O'TI8.LT ovT 83S0S| TOOC'€ L2 22N
vvitT | v'1IT 200 870 S'62 L'TST €./, |8°66 9L, L'cc 98 0'8esc ovT 060S| 900c9°/LZ TZCTN
v'T |2ETT | 6°GE TOO 9€0 82 6°09T 0'6SL (99T | 82OV | O°c2 8T'9 o'8vee | T'TST €€0S co0cc L TZCTN
OT |V'Teec | ¢2s SO0 /80 6. S/20C 0'690T |E'TT 9/Tc | O°¢cc V6 0/coc | T'IST oVt L€ 890G TO0Z' 'S¢ TN
20 |V'99T 62 200 80 v'ee V'S6T ,'8/8 |8'80T S'60T | L2 616 0'G9¢ce ovT 090S| TOO0c'€e L2 TN
TO |S9€LT | €2 000 cv'o L'TE €T 0'secL |9PS gece T'€ec 20’6 0'98€T 0’6 0’6 LTOS oooczcv 0OZCN
,'2ST €9 €00 €0 ce LVvrT 8'GZ28 |6'99 L'ET 9cc er'8 OvS6T 9'ET ¥60S| 9002'8+vT 6TCN
OT |V'6sT 000 600 82 verT 269 |L29 T6T cg'ecc T9'8 oeL 8/8T VT ¥60S| 100Z 0T Vv 6TCN
€T |VvrT | 9'G2 000 600 6'9¢C C'TET 0’806 |EVL [o)e] v'ic '8 0O'€66T | 8'66T v.T vE0S c00c'c'8 6TCTN
TT |€9TT | 889 000 600 TSe T6TT €'GT8 |9°29 O'TT ocec SO0'8 0°'000c 29T 040S 0002c'Sv 6TCN
9'88 L'€E 200 S0 62 €°09T 9269 |(0V<CT Svr | T'ec 28’8 Ov8.T TVT 980S| 900c'9°CT O9TTN
o6 TOO ve0 c'lc L VST O'T6L |0CTT 9/LT 0°'0cST | V'EST [ 4 /60S| 0O00C'TT6 O9TCN
ZT |OSTT | 988 000 SE0 ,1'9¢ 2'8rT 0'0cL |0'8ET v/lc cve o8'8 0°'0S9T TVT 29T 0S0S| 000cC€9T OTCN
T'ceec 14 000 €0 z2oge ,L'€9T T°,0L |S5°cCE 6'TC lL'ecec €6 O'S6TT | L'06T oVt LTTS| €00c’Lcc YT-CN
€T |L90¢C | L2 000 1220 c2oe 89T 0O'9T.L |9°€V 0'9c o'eec 126 0’00V T O'ST |S'ST 8T0S oooccv YT-CN
60 |9¢sT 200 Y10 T'82 VT 9'00L (229 T9T T'22 T8 0O'9€6T | 9'96T 99T |99T €60S| P00Z 0TV €TTN
S'/9 200 vo ove S'SPT ov08 |(OTTT oOvT oze 806 o'Lvze | 8°¢6T S'ST 60S5| 0002682 TT-CN
TT S'GL to %=1 000 6E0 8€c V'EET L9, |0 TCT 8'0c TV 9.'8 0°'006T S'ST |8'ST 610G 000C € 9T TTCN
LT |9TCT TZ TOO SEO T6c £€9T O'ST.L |€'GL oce €T 9€'6 O'OVTT S'ST |S'ST SP0S| 000c'2'Sc| OT-©ON
LETT | 9'ST 200 950 90 2EeLT 6'c/9 |L'T6 6°0L o'eec 20’6 O'EVET L'ET S80S 9002'9°L 2-ON
€T |OCTT | TVP 000 8€0 XA 2'S9T 0°'c99 |'96 299 z2'0c 8T'6 0°'0S0T O'ST |S9'ST 0S| 000c2'¢'S2 2-ON
2’0 |G°L9T TOO 820 €62 SVST 69€9 |[T'TS 8T 812 G/.'8 0'€6TZ 8'GT 260S| t00C'8'LZ 9-9ON
0'86T 000 8T°0 S’/ EEVT 0'€elL |699 Occ 9E'8 0o'geece | ¢'S6T O9T |C9T S60S| 000cC OTv 9-ON
OT |LVIT | 68T TOO 920 8/, c'cST 8169 |E'S8 1’99 o've 658 0'006T 8'ST |8'ST 80S| 000cC €'9T S-ON
= 1D rOS BN ed ! eN cols SZH [4eje] Do/ Hd OH S1 BdaAv| sd [oN a|dures 91ed|ON IPM
/0-00 woiis|pm lljprelsaN 2 319dv.L

v1T 0976 0291 ga/-  |oes-  |evs- 0851 £'g- Z0 9/- 071T- 8T L0T2T¥9  [¥6952°T2-

30T £0v6 €21 gz.-  leor-  [eel- 0'6/1 8L Z0 Tl 10T T 6966079  [59882°T2-

zez Zewie v'161 osl-  loTs-  [z9s- 8'€6T €9- 80 e 69 9T 960TT+9  |S6/G2T2-

v IrT LLT9T 7'961 gz.- oo |- 2012 L9- S0 S'G- 6.- ST 5196079  |GL.G2T2-

36 0°/6ET 0881 6v.- [LTL-  [e6l- 09/1 v'9- ¥0 zS- z'8- vT 8y06079  |09T.ZTe-

Ll 5'95€2 6861 e€q/-  |[tes-  |ess- 1€0C 09- 80 0v- z9- €T 6/86079  [96692 Te-

59T §'GSET €261 6v.- |[82.- o8- 9'8/T 6/ 0 89- 76" zT 98E0T+9  |£8082 T2-

6Sy £71T22 €067 evl-  [169- |6v.- L06T G9- 60 Y- 89- 1T SE/0Tv9 86292 Te-

) 1'GEET 0°€6T 69/.- |oss-  Joos- 1'86T 9'9- 0 LS z'8- 0T 2e00T¥9  |vesszTe-

0921 89212 §'9ST evl-  |6%9-  |psi- v'ELT z9- 80 ve- L9- 6 TOY60+9  |18892 T2-

07181 829- [res-  |zeo- 0'9rT 29- 0T 9¢C- v'9- 8 9956079 |S€6.2T2-

9.2 0°L0€T 5681 6G.-  [rer- loel- £68T 9'9- 0T 9G- £8- L 0/S0T+9  |eviSeTe-

1718 0/292 €112 8v.- [tel-  Josz- 8'€ze 9'G- 0 0v- 09- 9 G996079  [/62/2T2-

9/ Ovv.T 5061 ST.-  [169- [svi- S /€T £9- 80 TS- S/- S v9E0T¥9  |6v092 Te-

02T 8./- |6%s-  |o6l- 0ZrT ¥'9- 0T 872 99- T TSZ0T¥9  |€8992°T2-

70 [BoDAdeyug[ O.des 1| ae AQQ bae [0D.des L 052 |omeswess| Aog,e | 60,2 | ONIPM|UMON ©3d(M D3A
(686T"1110psulo[queAS) JljPAR SN 4O UOIFes||1in 810jeq (686T-G86T) SPNfeA SSdOTs!8|qeIS T8|qe.L

11



Mutonga et a.

820c G6 100 L'S v'62 2z 865 2S.T 6%ST G S 8805 200299 /Z-aH
9T €Llv 100 TT 682 T20C G259 OTET L2ZWT 6€ 6€ G805 L002'90Z SGZ-3H
6TT 29 T00 22T 96 LT.T T009 8T6T TT.T 8 8 ¥80S L002°96T ¥Z-3H
vITT L'2€ €60 LTIT 9805 6.2T 8z 8¢ €805 L00Z'9°6T €Z-3H
Tz T€eL 0 9r'e  L¥Z VYT v vir T¥Z 2E€ €6 206 O ZE€ TE Z€TS 90022T'T 22-3H
g8y §9 200 90 ¥S9 §9/z SSE0T 99 ve L€ /8.  SIST TS 9605 9002'8°0€ TZ-aH
Zoor 26 T00 /90 €65 G279 8G6 €8 €6 8€T 8 G881 9 9 ¥80S 9002'S0E TZ-aH
g€z STy <200 ¥I'e S2€ T2 0.5 €2 €0T €€z 288  690T 8 €0TS 9002°0T'0E  0Z-3H
Z0gZ 805 €00 8€€  L2ZE 279z T6LS 6VYyr G66 L€ €v8  €S0T S LY S60S 9002862 0Z-3H
1822 Tl€ 200 62S L27€ 8S€Z €088 Tvr 82T S€ €98  6G0T S S €805 9002'S0E 0Z-3H
880z ¥ZT TO0 990 9€€ TLlZ 90W9 09ST 28/T 88 88 9TIS 200ZL/T 6T-3H
820z SOT 0 IS0 L€E Vel €9 ¥8ST 918 SP0S L002°€62 6T-3H
9/ST 90T T00 [€0 €28 SO06T T6IT gertT 12 605 L00Z+'8T 8T-3H
8ez L6 TO /€T  9€E vesT LlE€L L€ 9Se LT SS6  9e2T 2 8. 1/0S 900Z+6T 8T-3H
8e0c €8  T00 8 6'G6T  L'878 6TeEC  €/8T gzt TOTS  2002°2°€ LT-9H
90.T 86T 0 690 62 V9T Sl6. 7. G6E T S6L €8S¢ 8.8T 2T €Tl vETS 90022TZ LT-3H
5502 S00 €0 86 89T 896.L 6GF € 888  6.ST 80T 8505 90027, LT-GH
8'66T T00 680 Z9¢ 6287 2618 9% 62 €€ T6 9zeT zT /0TS S00Z2T'ST  ZT-3H
Ge6T 9€z TO0 T6T 6T€ LT0Z 2229 Sr 9€E vvZz 2€6 VeIl v TV 080S 9002'S6 9T-aH
6'G6T T00 ¥90 €2¢ €681 TIS9 8y <TLT 9%z 6€6  TKel 88 T80S G00Z'9'GT GT-IH
LT6T T00 290 LT€ T98T SOV GTZz LO0Z 82 SE6  v.IT 88 88 1/0S S00Z'S2T ST-3H
g6t 100 SKT  9€z TIST  ve09 2E€E  ¥IE TEZ 196  S96 S S 8/0S S00Z'SCT €T-3H
€192 T00 T90 62 99/T 2989 T9S 82 8Tz g6 262T GS68T 8TIT 8Tl 9505 S002'€6 ZT-aH
S6LT 26 0 /120 T9e 8.8T GSIL 6£8T AN 8y0S L00Zv2T TI-3H
TET €917 0 w0 28 T6.T 298, 65 L9 9e8T T08T 9STIT 86 €€TS 90022T'9 TI-3H
998T 100 SS0 vIE ST 98, 98 <ZIvr 2 998 G62T 8T6T LYt 00TS #00Z'0TTZ TI-3H
895 G2Z€¢ T00 2€0 €T 628 ZT0T 1512 6 6 0S0S 00Zv'8T  6-3H
5202 T00 80T oe 8G/T 9€6L 222 .8 €89z 699T zL GZIS €002 TTZT  6-3H
S0TT TO LT 'Sz 8T9T  96y9 LST €80T L2Z ¥5'6 €It vz vz 2/0S t00Z'9€z  8-3H
86Tc €0T T00 90 L9¢ €Llz 82 €2ST 08T €6 LTIS L002°L°/T  L-3H
z60z  S6 0 /€0 8S€ 89l 2TIL €zt 6718T TOT T90S 200Z2+92  L-3H
622 6 200 8y0 LS€ T€0Z €87, 9GSk G52t 59 /605 9002'8°0€  L-3H
6'€02 600 ¥0 1€ 6v6T €S89 95 82 6% 26 68T S2Z8T Ol SOl SOTS €00ZL'ST  /-3H
6862 €2 T00 9¥0 682 968 O¥S €95 89 €Tz 616 6SYT 98T STT 20TS €002°S6T  L-3H
9Tz Z'Se 0 8y0 TTZ 996T Tve TI6 62yl T'/8T Szt S90S €00Z€TT  L-3H
G§2/T 90z T00 SL0 S82 z8T 629 L7, O 8Tz 96 VIWT 6.1 0T 60TS 20022T'8T  L-3H
€6IT 9% T0O0 820 262 TOST 9908 zest T /¥0S  L00Z2v2T  9-9H
6'€6T 2€ T00 90 G9Z €TLT 2S29 988 LTS 62 826 66T €99T 89 90TS €00ZL'ST  9-9H
vo0z  v'l2 0 850 962 TS.T /85 v2e 9S8 L0Z 886  VSET 6%9T 2L TL TOTS €002°S6T  9-9H
829T 09 0 8T ZT9 LTSt ¥Z 626 SIET 88ST S ¥90S €00Z€TT  9-9H
€8. 202 0 9g0 0E  6LTLT 6969 v6TT v8 v8 ¥#0S 2002€82  S-3H
6'G2T 922 0 6.0 S¥Z TOST 28§ L92 €L. ¥TZz 996  [ZIT G€9T 6'S 80TS 2002 TT'9Z  S-3H
GTT T6¢ 0 T90 892 8S8T 195 /28T L€8 LTZ 96 ITOT  ZT9T €9 /0TS 200Z0TTE  S-3H
T/SC €ve 0 /S0 LSz 6/8T €8y9 96€ 6€T € vr6 88T 2T 18 8/0S €00C¥T ¥-3aH
€90z 76T 0 90 T/Z T88T V¥609 9S€ +8T 12C 6v6  8SET GTIT SL €605 <200Z60T v-aH
1822 8¢ 0 120 €92 L¥6T 8%6S PIe 9YT 6¥Z 856 92T 6891 SL L /805 20029%T  ¥-3H
Eve 0 60T e 6G/T 26S. G0E V6l €¥e 9r'6e  vegT GEe9l 9 €905 200Z2Y9T  ¥-3H
€ee g2 0 660 96 TO¥Z ¥859 96T 2SI 92 €6  96ET 96ST SS 2605 200Z60T €-3H
S9TE  9tb 0 18T TSE L€ v665 €6T P9Il 9ve 2€6 O0€T 85T S 2GS 9805 200Z29%T  €3H
8682 0 /9% €2¢ 98Iz €98, T¥l €8T ¥Z  ¥I'6  66IT GEST ey 2905 200Z+9T  €-3H
D [vos | bW | e | M [ eN [zos [szH [200[ 0./ ] HA | oH | sL PdoAv] sd JoNadures] ared[oN IPM

£0-00 Wo ljs|pm

IPBUSI|PH € 3719V.1L

12



Mutomgaet al.

06'9TT 850 0z, |€89%9- | ¥T¥2- | 6'€9¢ | 2TT20L 0'806T vel9- | 198 | v609- | 285 |vz3H Z€1S | 055079 | SovETe-
GegTT TEE0 007 | ¥9T'99- | T90°2- | T'8ELC | €2L709 0'0TET vzzl- | lze- | 19T9- | 166G |sg3H TETS | 96¥0%9 | 69VETe-

GEE0 08¢C | €9%9- | weL- | LTele | 2or1ss 0'6.2T 007 | 166 | L6%6S- 65 |ez3H 0TS | v/50%9 | T8EETe-
05'6.T T€90 | 0STT | Tevv9- | TSTL- | €282 | 886'68L 0'/¥0¢ 6759- | ¥08- | 2979- | €96 |[TT-IH 6C1S | ZEv0¥9 | 89TETe-
0T'6EC £8€0 026 | ve619- | 9859- | 6°€/C | Sv8opL 0'€Z5T 75/9- | 918- | €£€9- | 196 |L0-IH [TIS | €580%9 | T8SETe-
92861 8070 0c8 | 989°G0- | 6629- | 869 | 9€LL2L 0'095T 9989- | 8- | ¥9€9- | 219G |6T-IH 9IS | 962079 | OW/ETe-
9%°C1C 6920 | OTTT | 92T'29- | ¥0L'9- | 0782 | 6.628L 0'6TEC 1679- | S¢L- | €65 | 68Y- |LT-3H T01S | G079 | L9SETe-
GZ'06T Z€50 05 | 2/9v9- | €1€2- | 0vbie | ¥2eee9 0751 ve69- | 88%8- | 9¢65 | €95 |ZaH 8805 | 19509 | 6/TETe-
10 [omeswesis| sq Ha 08T | ©)oH | (NOH [(OH)Adeyuz| G)Ha | ©)ost | ()Ha | (D os8T | oulpm |ousjdures | BulyioN | Bunses

100z S3|dwres IpBUs!|pHY 319V L

13




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.5
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org)
  /PDFXTrapped /Unknown

  /Description <<
    /FRA <>
    /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
    /DEU <>
    /PTB <>
    /DAN <>
    /NLD <>
    /ESP <>
    /SUO <>
    /ITA <>
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
    /SVE <>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


