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ABSTRACT  

Understanding climate change processes on the basis of 
geothermal observations in boreholes is an important and 
highly complex problem. Many non-climatic effects could 
cause changes in ground surface temperatures. In this study, 
the effects of deep lakes on the borehole temperature 
profiles observed within or in the vicinity of the lakes were 
investigated. A method based on the utilization of a Laplace 
equation with non-uniform boundary conditions is 
proposed. The proposed method makes it possible to 
estimate the maximum effect of deep lakes on the borehole 
temperature profiles. This method also allows one to 
estimate the accuracy of the geothermal gradient 
determination. 

1. INTRODUCTION  

At present, many efforts are made to determine the trends in 
ground surface temperature history (GSTH) from 
geothermal surveys. In this case, accurate subsurface 
temperature measurements are needed to solve this inverse 
problem of estimating the unknown time dependent ground 
surface temperature (GST). The variations of the GST 
during the long-term climate changes resulted in 
disturbance anomalies in the temperature field of geological 
formations. Thus, the GSTH data could be evaluated by 
analyzing the present precise temperature-depth profiles. In 
the past, the effects of surface temperature variations on the 
temperature fields of formations have been widely 
discussed in the literature (Cermak, 1971; Lachenbruch and 
Marshall, 1986; Beltrami et al., 1992; Shen and Beck, 1992; 
Mareschal and Beltrami, 1992; Wang, 1992; Shen et al., 
1992, 1995; Kukkonen et al., 1994; Bodri and Cermak, 
1995, 1997; Harris and Chapman, 1995; Huang et al., 1996; 
Guillou-Frottier et al., 1998; Huang and Pollack, 1998; 
Huang et al., 2000; Pollack and Huang, 2000; Majorowicz 
and Safanda, 2005; Eppelbaum et al., 2006; Hamza et al., 
2007; Hopcroft et al., 2007; Rath and Mottaghy, 2007; 
Gonz´alez-Rouco et al., 2008; Kooi, 2008; Mann et al., 
2009; Woodbury et al., 2009). 

2. PREVIOUS INVESTIGATIONS: A SHORT 
REVIEW 

Earlier, the forward calculation approach (FCA) was used 
for the analysis and interpretation of borehole temperatures 
in terms of the GSTH (Eppelbaum et al., 2006). Three 
groups were formed based on geographical proximity. 
Fifteen borehole temperature profiles from Europe (5), Asia 
(4) and North America (6) were selected (Huang and 
Pollack, 1998). The objective of this study was the 

estimation of the warming rates in the 20th century using the 
FCA method and comparing this to results obtained using 
the few parameter estimation (FPE) technique (Huang et al., 
1996; Huang and Pollack, 1998). It is reasonable to assume 
that for closely spaced boreholes, the values of the warming 
rates obtained by the two inversion methods should vary 
within narrow limits. The results of inversions (FCA) 
showed that for boreholes in North America, the current 
warming rates vary in the 0.41-2.45 K/100a range. The 
wide warming rate range of 0.33-2.48 K/100a was 
determined for boreholes in Europe. Interesting results were 
obtained for four boreholes in Asia (China) (Eppelbaum et 
al., 2006). In this case, the warming rate has a relatively 
narrow range (1.16-1.59 K/100a.). The warming rate 
estimated by the FPE technique (Huang and Pollack, 1998) 
varied in wide ranges: 0.38-2.49 K/100a in North America); 
0.21-3.75 K/100a in Europe, and 0.30-2.53 K/100a in Asia. 
Thus, we can conclude that for boreholes in North America 
and Europe, both approaches provide practically the same 
ranges of warming rates. For Asian boreholes, the FCA 
approach gives a more consistent (narrow) range of 
warming rates.  

The results of temperature inversion using both techniques 
indicate that some non-climatic effects (vertical and 
horizontal water flows, steep topography, lakes, vertical 
variation in heat flow, lateral thermal conductivity 
contrasts, thermal conductivity anisotropy, deforestation, 
forest fires, mining, wetland drainage, agricultural 
development, urbanization, etc.) may have perturbed the 
borehole temperature profiles. The influence of these 
factors has been studied by many authors (e.g., Carslaw and 
Jaeger, 1959; Lachenbruch, 1965; Kappelmeyer and 
Haenel, 1974; Blackwell et al., 1980; Lewis and Wang, 
1992; Majorowicz and Skinner, 1997; Powell et al., 1988; 
Guillou-Frottier et al., 1998; Lewis and Wang, 1998; 
Ichinose et al., 1999; Kohl, 1999; Safanda, 1999; Pollack 
and Huang, 2000; Cermak and Bodri, 2001; Gosselin and 
Mareschal, 2003; Gruber et al., 2004; Bodri and Cermak, 
2005; Fan and Sailor, 2005; Mottaghy et al., 2005; Nitoiu 
and Beltrami, 2005; Allen et al., 2006; Taniguchi, 2006; 
Chouinard and Mareschal, 2007; Hamza et al., 2007; 
Safanda et al., 2007; Lind and Rind, 2008; Flanner, 2009; 
Yamano et al., 2009). Thee exact calculation of all of these 
factors is a complex physical and mathematical problem, 
which will be solved in the future using the method of 
successive approximations.  

The temperature regime of sedimentary formations is 
influenced by many environmental and geological factors 
(local relief, sedimentation, erosion, lateral conductivity 
contrasts, underground water movement), past climate, and 
the heat flow from the Earth’s interior (terrestrial heat 
flow). Most temperature surveys of this type are conducted 
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in boreholes. In many cases, the drilling sites of boreholes 
are located within or outside of deep lakes (we employ the 
term “deep lake” to designate that the long term mean 
annual temperature of bottom sediments can be considered 
constant). The objective of this study was to evaluate to 
what extent the proximity of deep lakes can affect the 
temperature profiles of wellbores. In 1974, Balobayev and 
Shastkevich published the results of their analytical study, 
which can be used to determine the configuration of the 
steady state temperature field of formations beneath lakes 
of an arbitrary contour (Balobayev and Shastkevich, 1974). 
Taking into account that this publication is not easily 
accessible to researchers, a brief summation of its are 
presented below (Balobayev and Shastkevich, 1974). The 
authors assumed that the lake existed for an infinitely long 
period of time. In this case, the solution of the Laplace 
equation with nonuniform boundary conditions can be used 
to describe the steady state temperature field of formations 
beneath the lakes and estimate the maximum effect of lakes 
on borehole temperature profiles (due to the assumption 
that the lake existed for an infinitely long period of time). 

3. APPROACHES USED IN CLIMATE RECON-
STRUCTION; THEIR LIMITATIONS AND 
IMPEDIMENTS  

We should note that all climate reconstruction methods are 
based on a one-dimensional heat conduction equation. It 
was assumed that a uniform boundary condition is applied 
on a plane surface, the formation is a laterally homogeneous 
medium, and the thermal properties depend only on depth. 
For this reason, any subsurface temperature variations 
arising from conditions that depart from this theoretical 
model have the potential to be incorrectly interpreted as 
climate change signatures (Pollack and Huang, 2000). Two 
examples are briefly presented to demonstrate the well 
selection procedures. In the study conducted by Guillou-
Frottier et al. (1998), only 10 of 57 temperature profiles 
were selected for inversion of past ground surface 
temperatures. Nitoiu and Beltrami (2005) reported that only 
about 10 % of more than 10,000 borehole temperature logs 
worldwide (The International Heat Flow Commission 
global geothermal data set) are currently used for climate 
studies because a number of known non-climatic energy 
perturbations are superimposed on the climatic signal. 

Therefore, extreme caution should be used in the selection 
of temperature-depth profiles for inferring ground surface 
temperature histories, according to the following 
guidelines: 

1. The borehole should be sufficiently deep that the lower 
section of the temperature-depth profile allows a reliable 
determination of the geothermal gradient, presumably free 
of the effects of recent climate changes. Order of magnitude 
calculations indicate that surface temperature changes 
during the last few centuries penetrated to depths of 
≈150 m, 

2. The time elapsed between cessation of drilling and the 
temperature log reading should be at least an order of 
magnitude greater than the duration of drilling, 

3. The temperature-depth profile should be free from the 
presence of any significant non-linear features in the bottom 
parts of the borehole, usually indicative of advection heat 
transfer by fluid movements, either in the surrounding 
formation or in the borehole itself, 

4. The elevation changes at the site and in the vicinity of the 
borehole should be relatively small so that the topographic 

perturbation of the subsurface temperature field at shallow 
depths is not significant, 

5. The lithologic sequences encountered in the borehole, 
should have relatively uniform thermal properties and 
should be sufficiently thick so that the gradient changes 
related to variations in thermal properties do not lead to 
systematic errors in the procedure employed for extracting 
the climate related signal. 

Only 17 of 129 temperature logs were found to satisfy the 
above set of quality assurance conditions (Hamza et al., 
2007). Corrections can be applied to correct borehole 
temperature profiles for the effect of topography 
(Lachenbruch, 1965; Blackwell et al., 1980; Safanda, 1994, 
1999). However, this is rarely done because the amplitude 
of the climatic signals is often smaller than the uncertainty 
on these corrections (Chouinard and Mareschal, 2007). 
Safanda et al (2007) presented interesting results of 
repeated temperature logs from Czech, Slovenian and 
Portuguese borehole climate observatories within a time 
span of 8-20 years. The repeated logs revealed subsurface 
warming in all the boreholes amounting to 0.2-0.6 oC below 
20 m depths. A warming rate of 0.05 oC/yr. was estimated 
at the Czech observatory located in a park within the 
campus of the Geophysical Institute in Prague. This 
warming rate is two times greater than the simulated value 
(using the surface air temperature as a forcing function). It 
was assumed that the subsurface temperature at the station 
was influenced by new structures built within the campus of 
the Geophysical Institute within the last 10-20 years and/or 
by other components of infrastructure built 40-50 years ago. 
The authors (Safanda et al., 2007) conducted a quantitative 
analysis of these effects by numerically solving the heat 
conduction equation in a 3D geothermal model of the 
borehole site. It was discovered that the mentioned 
anthropogenic structures influenced the temperature in the 
borehole quite strongly. 

Nitoiu and Beltrami (2005) attempted to correct borehole 
temperature data for the effects of deforestation. The 
authors simulated the ground surface temperature changes 
following deforestation by using a combined power 
exponential function describing the organic matter decay 
and recovery of the forest floor after a clear-cut (Covington, 
1981). The presented examples demonstrate that application 
of this correction could allow the incorporation of many 
borehole data into the borehole climatology database 
(Nitoiu and Beltrami, 2005). 

4. APPLIED EQUATIONS 

Let us assume that the well site is located within or outside 
of a deep lake. As mentioned above, the long-term mean 
annual temperature of bottom sediments was considered to 
be constant (this problem was shortly outlined for the first 
time by Balobaev et al. (2008)). The bottom of the lake had 
a vertical coordinate of z = 0. The temperature regime of 
geological formations in this area (within and outside of the 
lake) is subjected to the thermal influence of the lake. The 
extent of this influence depends mainly on the lake’s 
dimensions, the current depth, the distance from the lake, 
and the difference between the long term mean annual 
temperature of bottom sediments and the long term mean 
annual temperature of surrounding lake formations (at z = 
0). It was assumed that the lake existed for an infinitely 
long period of time. The designations shown below were 
used. 

ρ, φ, z are cylindrical coordinates (ρ is the distance from the 
z axis, φ describes the angle from the positive xz-plane to 
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the point, and z is depth). Tis is the long term mean annual 
temperature of bottom sediments, and Tot is the long term 
mean annual temperature of surrounding lake formations at 
z = 0. Firstly, consider a lake of an arbitrary contour, as 
shown in Figure 1. 

 

Figure 1: Division of an arbitrary contour lake into 
sectors (after Balobayev and Shastkevich, 1974). 

The Laplace equation for the semi-infinite solid area is   
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where Г is the regional geothermal gradient (outside the lake 
area). 

The solution of the Laplace equation is possible by division 
of a lake of an arbitrary contour into sectors. However, the 
solution is expressed through a complex Poisson integral, 
and fairly elaborate and time-consuming computations are 
needed (Balobayev and Shastkevich, 1974). Let ρmax be the 
maximum value of the set ρ1, ρ2, ρn. By introducing a safety 
factor (the maximum thermal effect of the lake on 
temperature profiles), we can assume that the lake has a 
circular shape with a radius Ri = ρmax. Now the Laplace 
equation and boundary conditions are 
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The solution to Equation 2 is (Balobayev and Shastkevich, 
1974) given in the following Equations: 
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where ),(   and  ),( 2
2

2
1 kk αα ΠΠ are the complete 

elliptical integrals of the third order (Abramowitz and Stegun, 
1965).  

For the center of the island (ρ = 0): 
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The temperature gradient for a well drilled at the center of the 
lake (ρ = 0) can be determined from Equations 3 and 8: 
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For distances ρ > 0, Equations 11 and 12 were obtained from 
Equation 3:  
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Introducing the reduced temperatures, TR(ρ, z) from Equation 
3, we can write 
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4. EXAMPLE CALCULATION 

Consider a 30 m deep lake with a radius of Ri = 100 m and 
Tis = 10 oC. The regional geothermal gradient is Г = 0.0300 
oC/m, and Tot = 20 oC. The drilling site of a 3000 m 
wellbore is located 150 m from the center of the lake. 

Table 1. The functions dM(z,0)/dz and M(z, ρ) 
The function M(z, ρ) 

Distance from the center of the lake 
(ρ), m 
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It is desired to know the magnitudes of the formation 
temperature perturbations (expressed through the reduced 
temperatures) caused by the lake. The results of 
calculations from Equations 4 and 8 are presented in Table 
1 and Figure 2. It is noted that because the bottom of the 
lake has a coordinate z = 0, the actual depth is z* = z + 30 
m. In this case, Tis – Tot = –10 oC, and the lake has a 
cooling effect on the temperature profiles. The values of 
TR(ρ, z) decrease with depth and practically can be 
neglected for radial distances of 550-600 m from the center 
of the lake, as can be seen in Figure 2. 
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Figure 2: The reduced temperatures versus radial 
distance for three depths 

No consider the determination of the maximum values of 
TR(ρ, z) and ∆Г(ρ, z) for the 300-500 m section of the 
wellbore. The values of TR(ρ, z) can be estimated directly 
from Equation 13 and Table 1: 

TR(150,300)= –10oC·0.0384 = –0.384 oC ,      

TR(150,500)= –10oC·0.0172 = –0.172 oC . 

To determine the values of ∆Г(ρ, z) for this case, the 
approximation of the function M by a quadratic polynomial 
is suggested. This polynomial is shown in Equation 14, and 
the results of the approximation are displayed in Table 2. 

 
Table 2. The approximation of the function M by a 

quadratic polynomial (Equation 14) 
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Then, the values of ∆Г(ρ, z) can be determined from 
Equations 12 and 15: 

∆Г(150,300) = 1,6174·10-3 oC/m;  

∆Г(150,500) = 0.4684·10-3 oC/m 

The values of TR(ρ, z) and ∆Г(ρ, z) are presented in Figure 3 
for the 300-500m section of the well. In our example, the 
value of the regional geothermal gradient (Г) is 0.03 oC/m.  

 

Figure 3. The reduced temperature and ∆Г with depth 
for ρ = 150 m 

Thus, the accuracy of the determined geothermal gradient is 
somewhere between 

(0.4684·10-3/0.03)·100% = 1.56%  

and  

(1.6174·10-3/0.03)·100% = 5.39% . 

For a wellbore located at the center of the lake, the values 
of TR and ∆Г are maximal. From Table 1 and Equations 12 
and 13:. 

TR(0,300) = –10oC·0.0513 = –0.513 oC ,   

TR(0,500)= –10oC·0.01942 = –0.194 oC ,  

∆Г(0,300) = 3.16·10-3 oC/m ,    

∆Г(0,500) = 0.754·10-3 oC/m .   

A commercially available software called Maple 7 
(Waterloo Maple, 2001) was utilized to compute the 
function M(ρ, z). 

5. CONCLUSION 

It is shown that borehole paleoclimate investigations are 
complicated by many disturbing factors, and the exact 
calculation of these effects is a complex physical-
mathematical problem. The proposed method allows the 
estimation of the maximum effect of deep lakes on the 
borehole temperature profiles observed within and outside of 
the lakes. It was assumed that the lake existed for an 
infinitely long period of time. In this case, the solution of the 
Laplace equation with nonuniform boundary conditions can 
be used to describe the steady state temperature field of 
geological formations beneath the lakes and estimate the 
maximum effect (due to the assumption that the lake existed 
for an infinitely long period of time) of lakes on the borehole 
temperature profiles. The example calculations presented 
testify to what extent the proximity of a deep lake affects the 
borehole temperature profiles. The accuracy of the 
determination of the geothermal gradient was also estimated. 
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