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ABSTRACT  

The aim of this paper is to obtain a first reliable evaluation of 
the geothermal potential of the country. It’s caracterised by 
more than 70 hot springs, several deep hot aquifers, more 
than 1000 petroleum exploration wells and various existing 
geological, geophysical and hydrogeological data. So, its was 
possible to distinguish the mains geothermal features if the 
country, by evaluating both the underground temperature and 
the potential reservoirs. 

The hydrostratigraphical study of each basin revealed several 
potentiel reservoir layers in which the carbonate aquifer of 
Turonian (Tadla basin and Agadir basin) and Liasic (North-
western basin of Morocco and North-Eastern basin) are the 
most important hot water reservoirs in Morocco. this study 
made it possible to identify the main aquifers, their 
temperatures, depth and extension. 

A shallow geothermal prospecting has been performed in four 
zones in Morocco for wich few deep thermal data are 
available (North-western basin of Morocco, North-Eastern 
basin of Morocco, Tadla basin and Agadir basin). These areas 
are different geologically and hydrogeologically. The shallow 
temperature measurements program has been launched to 
estimate the natural geothermal gradient in these areas, to 
determine the principal thermal anomalies, to identify the 
main thermal indices, and to characterize the recharge, 
discharge and potential mixing limits of the aquifers.The 
main thermals clues and the principal thermal anomalies that 
coincide with zone of artesianism of Turonian and Liasic 
aquifers have been identified, as well as the potential mixing 
limit of the aquifers systems. Also,for each basin a conceptual 
model is presented to interpret the relation between 
temperature, hydrodynamism and topography within the 
sedimentary basins . 

The chimical of several thermal springs, in the north part of 
Morocco, has been  investigated. Measured temperature 
ranges from 21 to 54°C, discharges rates range from 2.5 to 
40l/s and TDS range 132 mg/l to 3g/l. The waters are mainly 
HCO3-Ca-Mg type, resulting from the great influence of 
carbonate rocks, and the Na-Cl type, resulting from the 
interaction of water with marine sediments.The geochimical 
prospecting using geothermometers(silica, Na/K, Na-K-Ca,  

 

Na-K-Ca-Mg, Mg/Li and Na/Li) has been applied and only 
the silica geothermometrs seem to give plausible values. 

Alkaline geothermometers used for the thermal springs are 
not reliable for prospecting, inasmuch as the chemical 
composition is greatly affected by the enormous dilution with 
the shallow cold water and probably affected by interaction 
with the evaporitic rocks that are ubiquitous in the basin.The 
application of Giggenbach method  to springs revealed that 
the waters result from mixing of deep water with shallow 
cold water. In this case the reservoir deep temperature is 
given by the mixing model. 

The deep geothermal study is based on the  petroleum well 
data which present  1126 BHT and 78 DST. A statistical 
method is used to process these temperature indications and 
gives a geothermal gradient ranging from 16 to 41°C/Km. In 
order to establish the first geothermal gradient map for the 
whole of Morocco , the country is subdivided to five 
hydrogeothermal basins. Each basin is characterized by its 
geodynamical evolution and  its specific reservoirs and 
hydrodynamism.  Also, The data were treated separately and 
five maps of geothermal gradient were realized. The resulting 
map of Morocco shows that the geothermal anomalies are 
related to deeper hydrodynamic, recent tectonic, volcanism or 
to elevation of the Moho.  

1. INTRODUCTION  

For Morocco, the oil crises and the decrease in local energy 
ressources, gave impetus to geothermal energy, for potential 
assessment, exploration and utilisation. The evaluation of 
hydrogeothermal resources of Morocco is mainly done by the 
knowledge of the temperature, the chemical characteristics of 
water, the hydrodynamics of the reservoirs containing hot 
water. The research undertaken showed a country with real 
potentialities either by its important deep aquifers or by the 
relatively high values of geothermal gradient. It is expected 
that these efforts of geothermal investigation will continue in 
the future. 

2. GEOLOGICAL SETTING  

Morocco is located in a strategic area at the interaction of 
several plates (Africa, European, Mediterranean and 
Atlantic). The structural framework is characterized by 
transition from the African domain in the southern part of 
Morocco to Alpin foldeed structures (Atlasic domain and Rif 
troughs). Four main structural units are defined from South to 
North (Fig. 1): Anti-Atlas and Saharian domain corresponds 
to the Precambrian basement, Atlas corresponds to an Alpine 
intracontinental range, Mesetas corresponds to stable 
Paleozoic-Mesozoic basement, Rif represents the Alpine belt 
around the Western Mediterranean . 

Morocco was subdivided into five hydrogeothermal basins 
(Fig. 1), distinguished by specific geological and 
hydrogeological feautres (North-Western basin, North-
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Eastern basin, South-Western basin, Tadla basin, Errachidia-
Ourzazate-Boudnib basin and Tarfaya. Laayoune-Moroccan 
Sahara basin).  
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Figure 1: Simplified geological map of Morocco with the 
study zones and their hydrostratigraphical 
logs. 

3. HYDROSTRATIGRAPHICAL  STUDY 

The basic data were mainly obtained from final well reports, 
from both oil and hydrogeologic research. Also some data 
have been acquired on the land (piezometrical level, chemical 
analysis of water, measure of temperature). These data 
proved useful for characterising the hot aquifers of Morocco. 

The hydrostratigraphical study (Fig.1) of each basin revealed 
several potential reservoir layers in which the carbonate 
aquifer of Turonian (South-Western and Tadla basin) and 
Liasic (North-Western and North-Eastern basin) are the most 
important hot water reservoirs in Morocco (Zarhloule, 1999, 
Zarhloule et al.2001). These areas are different geologically 
and hydrogeologically. 

3.1 Hydrogeological characterstics of the Turonian 
aquifers 

3.1.1 South-Western basin 

In the Agadir basin the aquifer is mainly limestone. The 
outcrops are limited to High-Atlas, Haffaia, Sidi-bourja, 
Ouled bou Rbia, El Aaricha and Tagtrannat zones. The 
aquifer thickness ranges from 10m in the East to 120m in the 
West. The depth of the aquifer varies from the outcrops in the 
south of the basin to 500 m in the East (Fig. 2a). The 
hydrodynamic flow is from the Est (outcrops zone) to the 
West of the basin, where the reservoir is deep and artesien 
(Ouled Teima, El-Klea and El gouna zones) (Fig. 2b).  The  
aquifer temperature and the salinity varies respectively from 
22°C to 32°C and from 330 mg/l to 750 mg/l. 
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Figure 2a:  Structural map of Turonian aquifer. 
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Figure 2b:  Piezometric  map of Turonian aquifer. 

3.1.2 Tadla basin 

In the Tadla basin the aquifer is represented by the 
carbonate. The outcrops are limited to the Nord of Kasbat 
Tadla-El Borouj. The tickness varies from 20m to 100m. 
The depth of the reservoir ranges from the outcrops to 500m 
(Fig. 3a ). In the north part of Kasbat Tadla-El Borouj, the 
hydrodynamic flow is from the North to the South of the 
basin and to South-Ouest, but in the South of this limit the 
aquifer is deep and the groundwater flow is toward ENE-
WSW . The discharge zone is in the South-Ouest of El 
Brouj (Fig. 3b). The aquifer temperature and the salinity 
varies respectively from 21°C to 47°C and from 530mg/l to 
2530mg/l 
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Figure. 3a.  Structural map of Turonian aquifer. 
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3.2 Hydrogeological characterstics of  the Liasic aquifers 

3.2.1 North-Western part of Morocco 

In this zone, the aquifer is mainly limestone. The outcrops 
are limited to the South of the basin. The tickness varies 
from 14 m to 370m. The deep of the aquifer ranges from 
outcrops to 1000m (Fig. 4a). The hydrodynamic flow is 
from the South to the North in the Eastern part of the basin 
and to the West in the Western zone of the basin (Fig. 4b). 
The aquifer temperature and the salinity varies respectively 
from 22°C to 55°C and from 132mg/l to 2334mg/l. 
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Figure 4a:  Structural map of Liasic aquifer. 
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Figure 4b:  Piezometric map of Liasic aquifer. 

3.2.2 North-Eastern part of Morocco 

In this zone, the aquifer is mainly limestone. The outcrops are 
limited to Beni Snassen, High-Atlas, Midle-Atlas and the 
South of the basin. The tickness varies from 50 m to 1140m. 
The deep of the aquifer ranges from outcrops to 1370m. The 
hydrodynamic flow is from the South to the North of basin 
(Fig. 5). The aquifer temperature and the salinity varies 
respectively from 20°C to 52°C and from 130mg/l to 
3000mg/l. 
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Figure  5b:  Piezometric map of Liasic aquifer. 

4. SHALLOW GEOTHERMAL PROSPECTION IN 
MOROCCO 

The shallow geothermal methods has ben used in many 
locations and has met with considerable succes in the past 
(Leshack and lewis 1983; Smith 1983; Sass et al., 1984; Ben 
Dhia et al., 1992).The shallow temperature measurements 
program has been undertaken in four zones in Morocco (Fig. 

1) for which few deep thermal data are avaible (North-
Western basin, North-Eastern basin, South-Western basin, 
Tadla basin). It has been launched to estimate the natural 
geothermal gradient in these areas, to determine the principal 
thermal anomalies, to identify the main thermal indices, and 
to characterize the recharge, discharge and potential mixing 
limits of the turonian and liasic aquifers (Zarhloule et al., 
1998, 2001). 

 The temperature data from depths between 15 and 500m of 
250 wells have been analysed.  The temperature 
measurements were made at 5m depth intervals using 
portable thermistor probe equipment with 0.01°C resolution. 
The shallow temperature data allowed to establish a thermal 
profile for each investigated well, assumed to be in thermal 
equilibrium (Fig. 6). 

53 : Apparent shallow geothermal gradient (C°/km), WT : Water table (m)
T0i: Interception temperature(°C) 
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Figure 6: Example of thermal profile. 

Thermal behaviour is changing from an area to an another, 
from a well to another  as well as within the same well. These 
differences in the Lateral and vertical temperature assessment 
depend  on several factors: geological and structural 
homogeneity within the same region, the lithology and its 
degree of homogeneity within each well, the depth of water 
table and its temperature and the well location within the 
hydrodynamic frame. The temperature values of water range 
from 18 to 55.5°C.   

From a well to another, several main types of profiles have 
been distinguished depending on whether the evolution V.S 
depth is increasing (Fig. 7a), steady (Fig. 7c) or decreasing 
(Fig. 7b). In the same well three main slope breaks in the 
termal profile have been noticed that are (Fig. 7d): G0 is the 
thermal gradient between the surface and the limit of 
influence of surface effects (10m), G1 is the thermal 
gradient between the groundwater level and he bottom of 
the limit of influence of surface effects, G2 is the thermal 
gradient between the groundwater level and the bottom of 
the well and GGSA is apparent shallow geothermal 
gradient. Also an another gradient has been defined Gwater 
that corresponds to the thermal gradient between the 
groundwater level and the interception temperature (T0i). 

The cartography of some parametrizes (water temperatures 
and GGSA) for each basin show that the recharge outcrops 
zones of the turonian and lisaic aquifers are characterised by 
the high topography, high water potential, shallow cold water, 
low geothermal gradient and negative anomalies (Fig.8a-d). 
The disharge zones are characterised by low topography, low 
piezometric level, high geothermal gradient, high water 
temeprature with hot spring and positive anomalies (Fig. 9a-
d).   
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Figure 7: Different types of geothermal gradient: a) 
positive gradient; b) negative gradient; c) no 
gradient; d) main slope breaks in the thermal 
profile. 
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Figure 8a: Temperature distribution map of water of the 
Turonian and Plio-Quaternary aquifers 
(Agadir basin). 
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Figure 8b: Temperature distribution map of water of 
the Liasic aquifer (South-Western basin: 
Saïss). 
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Figure 8c: Temperature distribution map of water of the 
Liasic aquifer (South-Eastern basin: Oujda). 
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Figure 8d: Temperature distribution map of water of 
the Turonian aquifer (Tadla basin). 
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Figure 9a: Isovalue map of apparent shallow geothermal 
gradient (°C/km)  (Agadir basin). 
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Figure 9b: Isovalue map of apparent shallow geothermal 
gradient (°C/km) (South-Western basin: 
Saïss). 
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Figure 9c: Isovalue map of apparent shallow geothermal 
gradient (°C/km)  (South-Eastern basin: 
Oujda). 
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Figure 9d: Isovalue map of apparent shallow geothermal 
gradient (°C/km)   (Tadla basin). 

The bottom shallow wells temperatures values are plotted 
against depth (Fig. 10) showing a rather important disturbed 
points either for highs or lows. Giving the fact that normal 
temperature can be considered, at a given depth, as the one 
in agreement with the regional geothermal gradient, 
noticible higher and lower values at the same depth, should 
be considered as anomalous. Negative anomalies 
correspond to the recharge zone of each aquifer with 
topographic highs and infiltration meteoric cold water, 
whereas positive anomalies correspond to the shallow 
upcoming hot water and to the more or less well defined 
disharge zones. 
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Figure 10: Bottom shallow hydrogeological wells 
temperture V.S depth 

The main thermal indices (Fig. 11) and the principal thermal 
anomalies coincide with the zones of turonian and Liasic 
aquifers. Also  the water temperatures of the shallow aquifer 
is higher to the neighborhood of the artesianisme zones of the 
deep aquifers that in the rest of the basins. What explians the 
existence of a groundwater flow from deep aquifer to shallow 
one favoured by an abandant fracturation. 

5. GEOCHEMISTRY OF THERMAL SPRINGS IN 
NORTHERN MOROCCO 

The Northern Morocco basin is constituted by a lithological 
succession from paleozoïc to Quaternary (Fig.1) and only 
the Liasic limestone aquifer is an importante 
hydrogeothermic unit. The Numerous hot springs are know 
in the North part of Morocco (Fig. 12a-b) (Lahrach et 
al.1998, Zarhloule, 1999). 

The outcrops are limited to the Middle-Atlas (Saïss), the 
Northern and the Southern areas of Oujda. The aquiclude 
consists of the Cretaceous to Tertiary sediments (schale). 
The hot springs emanating from the limestone liasic aquifer, 
have been inventoried and analysed in order to characterize 

the origin-reservoir, to evaluate undergroud temperature and 
to determined the mixing shallow cold water with deep hot 
water.  
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Figure 11: Map of shallow geothermal anomalies in 
Morocco. 
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Figure 12a: Geological skech map of the North western  
of Morocco (Saïs basin) with location of 
simpling sites.  

5.1 Water chemistry 

Major (Na, K, Ca, Mg, HCO3, SO4 and CL) and minor 
(SiO2, Li) components in solution (mg/l) are reporeted in 
Table 1.  

We retained all the analysed springs with good ionic 
balance. From Table I it can be seen that PH varies from 6.9 
to 7.9, temperature ranges from 22 to 54°C, salinity from 
0.13 to 27.6 g/l. From the North Western to the North  
Eastern part of Morocco, there are wide variations in these 
parametrs because for the same aquifer system there may be 
heterogeneity within a given reservoir and /or variation in 
the upflow routes linking the reservoir to the surface 
(Zarhloule 1999, Lahrach et al.1998). 

Based on the relative amount of major ions, The water 
classification has been made in Figure.13, using the 
Langelier and Ludwing diagram (1996).  
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Figure 12b: Geological skech map of the North Eastern  
of Morocco with location of simpling sites. 
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Figure 13: Langelier-Ludwing diagram for the water 
samples investigated. 

The hot waters can be grouped into Ca (Mg)-SO4 (Cl) (A) 
type waters with moderate salinity (<3g/l), Ca(Mg)-HCO3 
(B) type waters with low salinity (<700mg), and Na-Cl (C) 
type waters with a salinity that varied from 0.61mg/l to 
27.6g/l. The C type waters showed a chemical composition 
nearby to the Ca-Mg with the exception of springs N° 
5,11,13 and 32 who have a high salinity. This can be due to 
the interaction of water with the different rocks principally 
evaporitic one. 

Table 1: Chemical composition of thermal waters from northern Morocco 

30 2311/ 12 28 7.1 580 1.7 74 76 56 142 366 33 12

N°

1 A.H.du Zalagh 35.5 7.1 3850 32 1325 88 42 2066.1244 184.3 17.1 5

Name T (°C) pH TDS
K

+
Na

+
Ca

2+
Mg

2+
Cl

-
HCO

3
-

2 A. Anseur 24 7.3 510 9 70 68 21 78.1 280.6 111.9 10.3 1.2
3 A.Maaser 25 7 610 2 125 73 18 177.5 256.2 62.5

Ben Kachour18 51 7.2 2680 14 899 70 51 1391 311 181 26.4 0.1

5 M. Y. Outita 39 7.4 6230 37.8 1704.7 349.2 122.4 3735.9292.8 1139 24.8 7
6 A. El Beida 22 7.6 460 8.5 65 84 18 92.3 219.6 64.2
7 A. Es-Skhoun 25 7.5 440 1.9 51.1 74.8 24.8 87.3 283.6 34.5 18
8 A. H. My. Idriss31 7.2 2850 6.2 282.2 465 106.1 476.4 283.6 1379 12.8 5.2
9 A. Skhinat 33 7.1 1020 6 244 66 38 440.2 292.8 59 11.1 1.3

10 S. Harazem 35 7.3 710 3.8 150 62 36 312.4 256.2 14 9.4 1.7
11 My. Yacoub Fès54 7.2 23430 320 7900 1150 260 13668 219.6 28 30.8 60
12 A. Allah 45 7 450 1.3 50 50 48 71 335 67 11.1 0.4
13 M. Y. Tiouka 24 7.8 27610 143 10230 775 400 15365 756 328 16.3 5.3
14 A. S. Metmata 31 7.6 1120 3 300 50 36 525.4 317.2 36.2 10
15 A. H .Bou Draa 22.5 7.3

39016 2527/15 38 7 2 57 41 22 149.1 170.8 37.8 11.1 0.4
3.1 75 87.4 29.9 120 271.4 89.7 13

17 Camp. Rose

20 2843 / 12 28 7.6 1010 2.3 53 61 55 220 154 90.5 10.2
1225 / 1219 26 7.4 1040 13 335 14 34 362 133 102.8 13 0.1

21 2899 / 12
27

7.6 620 2.7 80 60 52 230 135 57.6 11.2
22 2933 / 12
23 2952/ 12 46.5 7.1 2960 18 920 114 52 1508 372 192 25.7 0.2
24 2431 / 12 30 6.9 695 1.8 72 70 59 181 353 48 15
25 2364 / 12 26.5 7.4 615 1.6 117 72 58 106 378 172 13.8
26 2363 / 12 28 7.4 700 2.1 69 76 58 135 402 52 12.3
27 Oued Nachef IV33 7.1 870 3 149 66 60 305 378 96 18 0.2
28 Champ de tir 29 7.5 2880 9.8 869 80 50 1363 323 96 16 0.2
29 1255 / 12 29 7.2 640 3.2 179 64 54 255 323 139 12.8 0.1

31 1125/ 12 28 7.3 715 1.7 71 74 58 156 347 67 12.4
32 S. Gouttitir 49 7.3 9700 24.7 2472 870 169.2 4110.9 199 2146.1 34.61
33 Tercha 28 7.3 360 1.5 30 37 38 35 268 67.5 12.3
34 Fezzouane 37 7.9 340 1.1 22 70 36 28 292 19.5 15.3
35 Sidi Rahmoune 29 7.4 500 1.7 43 66 44 106 353 24.3 13.2
36 Aichoun 29 7.8 130 1.7 32 74 33 60 341 33.4 12.8

37 S. Aoulout 20.5 7.4 320 2.6 32 55 49 60 341 55.9 12.2
38 S. Kiss 27 7.1 780 45 330 104 52 610 281 176 17.3
39 1292 / 7 24 7.2 755 1.9 94 60 50 184 341 33 12

40 1267 / 7 34.5 7.9 395 0.7 18 60 44 24 378 33 20 0.1
41 22 / 18 26 7.1 870 2.3 162 86 49 273 286 124 13.6

42 62 / 18 27.5 7.2 630 2.8 135 56 62 266 274 76 12.6
43 159 / 18 26.5 7.7 860 2.5 142 56 44 220 268 48 13
44 170 / 18 27.5 7.1 1020 39.9 135 58 68 248 280 187 12.1
45 171 / 18 25 7.9 1740 5.9 219 170 94 433 225 470 12

188 / 1846 26 7.3 1710 4.1 175 160 94 426 237 350 14
47 35 / 18 29 7.3 625 3 144 56 65 266 274 144 15

4 A. S. Trhat 26 6.9 840 4.6 198 34 28 277.2 305 139.9 15.4 1.7

SO4
2- SIO2
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Table 2: Chemical geothermometry. Application in Northern of Morocco. 

30 2311/ 12 28 45 31.5 13 17 81 122 70 115 117 237 17

N°

1 A.H.du Zalagh
Name T (°C)Qz Rof Qz ArnCal RofCal Arn

Na/Li
 L S

Na/Li
H S

2 A. Anseur
3 A.Maaser 25 61 91 49 91 98 88 67

Ben Kachour18 51 74 61.5 43 46 7 60 10341 48 89 97 270 27 28

5 M. Y. Outita
6 A. El Beida 22 224 218300 300 241 165 67
7 A. Es-Skhoun 25 59.5 46 27 31 114 155.5 103 155.5 146 108 47
8 A. H. My. Idriss 31 48 34 15 19 353 112254 79 67 112 115 98 67.5 52
9 A. Skhinat 33 43 29 10 15 195 244 85 120 73 120 120 112 26 45

10 S. Harazem 35 37 23 4.5 9 280 306 87 122 76 122 122 108 27 51.5
11 My. Yacoub Fès 54 80.5 68 49 52 538 161 107272 118 161 150 165 69 88
12 A. Allah 45 43 28 10 15 237 124 77276 89 124 123.5 96 19
13 M. Y. Tiouka 24 56 42 23 27.5 456 54.5 82 42242 82 91.5 123 29 74.5
14 A. S. Metmata 31 39 25 6.5 11 39 63 26 63 76 84
15 A. H .Bou Draa 22.5 48 34 15 20 120 163 109 163 152 116 45
16 2527/15 38 42 29 10 15 223 108 148265 97 148 141 110 28 33
17 Camp. Rose 28 49 35 16 20 162 189 152 217 188 310 27.5

20 2843 / 12 28 40 26 7 12 123 158 112 167 155 279 22
1225 / 1219 26 48 34 16 20 45 115 151 10481 157 147 346 36 32

21 2899 / 12 25.5 43 29 10 105 14315 94 145 139 270 20
22 2933 / 12 27 51 38 19 23 148 178 138 199 177 302 39
23 2952/ 12 46.5 73 60 41 45 31 72 11467 60 104 108 283 49 41
24 2431 / 12 30 53 39 21 25 86 126 75 121 121 243 15
25 2364 / 12 26.5 50 36 17 22 53 97 41 81 90 214 11.5
26 2363 / 12 28 46 32 14 18 99 137 87 136 133 255 20
27 Oued Nachef IV33 60 46 27 31 128 74 115166 62 106 110 246 14 39
28 Champ de tir 29 55 42 23 27 34 44 89 3269 70 82 244 25 41
29 1255 / 12 29 47 34 15 19 75 67 109.5 55112 98 103 242 15 28

31 1125/ 12 28 46 33 14 18 84 124 72 118 119 239 16
32 S. Gouttitir 49 85 73 54 57 59 95 39 26 63 76 232 84 6283
33 Tercha 28 46 32 14 18 134 166.5 123 181 164 281.5 20
34 Fezzouane 37 54 40 21 25 134 166.5 123 181 164 265 35
35 Sidi Rahmoune 29 49 35 16 20 116 152 105 159 148.5 265 26
36 Aichoun 29 48 34 15 19 138 170 128 187 168 279 45
37 S. Aoulout 20.5 46 32 13 18 175 200 166 234 200 320 35
38 S. Kiss 27 58 45 26 30 229 241 223.5 307 245 455 131
39 1292 / 7 24 45 31.5 13 13 74 116 62 106 110 207 10
40 1267 / 7 34.5 63 50 31 35 260 115 151294 104 157 147.5 243 18 29
41 22 / 18
42 62 / 18 27.5 47 33 14 19 75 117 64 108 111 247 12
43 159 / 18 26.5 48 34 15 20 66 109 54 97 103 237 16
44 170 / 18 27.5 46 32 13 17 340 319 344 465 332 545 147
45 171 / 18 25 45 31.5 13 17 90.9 130 79 127 125.5 265 32

188 / 1846 26 51 37 18 22 82.5 123 71 116.5 118 250 26
47 35 / 18 29 53 39 21 25 75.7 117 64 108 111 249 11

4 A. S. Trhat 26 54 40 21.5 25 245 282 82 116 70 115.9 117 112 57
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The application of the IIRG diagram (D’Amore et al.1983) 
(Fig.14 ), show the same results gotten by the Langelier and 
Ludwing diagram. 
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Figure 14: IIRG diagram for the water samples 

investigated. 

 The thermal waters  are mainly Cl or HCO3-Ca and Mg. 
The parameterize  calculated (A, B, C, D, E, F) are reported 
in Figure and Table . That shows that the thermal springs (1, 
3, 4, 5, 9, 10, 11, 13, 14, 18, 19, 23, 27, 28, 29, 38, 41 and 
42) have a deep circulation in detrital layers , what shows 
the influence of the evaporitic  rock of the Triasic on the 
chemical composition of the water. The springs and a 
borholes (2, 6, 7, 12, 15, 16, 17, 20, 24,  25, 26, 30, 31, 33, 
33, 34, 35, 36, 37, 39, 40 and 43) have a limestone origin 
also revelead by the local geology near of the emergence 
zones (36, 37 and 2). The points (21, 22, 44, 45, 46 and 47) 
show that the waters circulated in the limestone resrvoir in 
contact with a evaporitic rock of the Triasic.  The thermal 
springs N°32 and 8 have a deep circulation with influence 
of gypseous layers. 

5.2  Geothermometry 

The following geothermometers were applied to estimate 
subsurface temperatures and the depth of the thermal 
aquifers by using the geothermal gradient (Zarhloule, 1999, 
Lahlou Mimi et al 1999): silica (Fournier et Rowe, 1966,  
Arnorson et al., 1983), Na/K (Fournier, 1979, Truesdell, 
1976, Michard, 1979, Arnorson et al., 1983, Arnorson, 
1983), Na-K-Ca ( Fournier and Truesdell, 1973), Na-K-Ca-
Mg ( Fournier and Potter, 1979), Mg/Li (Kharaka and 
Mariner, 1986) and Na/Li (Fouillac and Michard, 1981). 
Table 2, shows the temperature estimates from the above 
geothermometers. Extreme values revealed by each are: 37 
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to 85°C (QzRof), 23° to 73°C (Qz Arn), 7 to 54°C (cal Rof) 
and from 12 to 57°C (cal Arn). The mesaured températures 
are ranges from 20°C to 54°C. 

In order to evaluate the applicability of those 
geothermometers (Lahrach et al.1998, Zarhloule, 1999), the 
estimated values are plotted against the measured 
values(Tm). Figures 15a-i, show the plots of Tm versus 
alkaline geothermometers (TNa/K-Arn2, TNa/K-Tr, TNa/K-
Mi, TNa/K-Rof, TNa-K-Ca, TNa-K-Ca-Mg, TMg/Li, 
TNa/Li high salinity and TNa/K low salinity).  
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Figure 15a-i: Plot of Tm Vs alkaline geothermometers. 

The wide spread of the geothermometer values reveal that 
these temperatures can not be considered reliable. This 
could be explained by  a strong possibility of a mixing 
between fresh and deep waters during upflow from the 
reservoir to surface such mixing could greatly affect all the 
geothermometry. Also the water composition is greatly 
affected by the interaction with the evaporitic rocks that are 
ubiquitous in the region.   

The silica geothermometers have been applied: quartz Rof 
(TQRof ), quartz Arnorsson (TQArn), chalcedony-Rof 
(Tcal-Rof) and chalcedony-Arnorsson (Tcal-Arn). Figure 
16a-d, shows the plot of TQRof,  TQArn, Tcal-Rof and 
Tcal-Arn against Tm, with the correlation coefficients of 
67%. 
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Figure 16a-d: Plot of Tm Vs silica geothermometers. 

Temperature estimated by QRof are systematically higher 
than for the other three.  It ranges from 37 to 85°C for Qrof, 
23 to 73°C for QArn, 7 to 54°C for Cal-Rof, 12 to 57°C for 
Qcal-Arn. The mesured temperatures ranges from 20 to 

54°C. Also the gap between the measured and estimated 
temperatures (TQRof) are all positive (except N°12) and it 
ranges from 2.4°C (n°10) to 36.4°C (n°32). On the other 
hand, several Tcal-Rof and Tcal-Arn are lower than Tm, for 
which silica equilibrium seems to be in correspondence with 
Quartz (Fig. 17).  
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Figure 17: Application of the silica gheothermometer. 

While the other springs especially for n°5, 7, 13, 32 and 38 
show a  good tendency to ward the chalcedony curve. The 
deep reservoir temperatures cannot be lower than the spring 
discharge temperatures, so the chalcedony temperatures 
appear to be in error for the other springs. So, only the silica 
geothermometers quartz Rof and quartz Arnorsson seem to 
give plausible values, except for the springs n° n°5, 7, 13, 
32 and 38 whose temperature is estimated better by 
chalcedony. The silica geothermometer used for the thermal 
waters in North part of Morocco gave 81°C as a maximum 
value (n°11). Similar estimates have also been obtained 
through application of the K-Na-Mg technique 
(Giggenbach, 1988) summarized in the K/100-Na/1000-
Mg1/2 ternary diagram of Figure 18.  where the most of 
thermal springs are aligned towards the Mg corner, 
suggesting very low K2/Mg deep temperatures that varying 
between 60 and 100°C, what could be to explaine by the 
enormous dilution with the waters of shallow aquifers in the 
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Figure 18: Application of ternary diagram (Giggenbach, 
1988) showing relative cation concentrations 
for thermal springs.  



Zarhloule et al. 

 9 

The depth of the thermal aquifers in the North part of 
Morocco is gotten by the use of the deep geothermal 
gradient calculated from the petroleum well that ranges 
from 19 to 42°C/km (Zarhloule, 1999) and the deep 
temperatures estimated from the geothermometers. The 
depth of thermal aquifers ranges from 524m to 1700m. 

 5.3 Schematic and idealized hydrogeological model of 
thermal waters in Northern Morocco. 

As shown in Figure 19, the outcropings zones of the Liasic 
aquifer are characterized by shallow cold water and both 
from  cold spring and hydrogeological wells are mainly 
Ca(Mg)-HCO3 type, resulting from great influence of 
carbonate rocks. The discharge zones are characterized by 
shallow hot water. The  hot springs are generaly Ca(Mg)-
SO4(Cl) or Na-Cl, resulting from infleunce of evaporitic 
rocks. The midle of the basin shows a communication 
between the deep and the shallow aquifers and the waters 
are Ca(Mg)-SO4(Cl) or Ca(Mg)-HCO3. In this zone there is 
a high dilution  of thermal water by the shallow aquifers. 
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Figure 19: Conceptuel model: relation between 
topography, temperature, geochimestry 
and hydrodynamics.  

6. DEEP GEOTHERMAL GRADIENT OF 
MOROCCO: PETROLEUM DATA 

The aim of this study is to establish a geothermal gradient 
map for the whole of Morocco, by using thermal data 
obtained from petroleum exploration wells. Both the 
corrected bottom-hole temperatures (BHT) and the drill-
stem test temperature (DST) were used to elaborate the 
geothermal gradient map. A total of 410 wells provided 
1204 temperature values (1126 BHT and 78 DST) (Fig. 20). 

100 km

Oujda

Melilla
Tanger

Rabat
Casablanca Fès

Taza

Tadla

Colomb Bechar

Errachidia

Ouarzazate
Agadir

Bir LahlouSmara
Boukraa

Boujdour

Tarfaya

Laayoune

Guelta Zemmour

Bir Enzaran

10 km

10 km

Mediterranean sea

Atlantic  ocean

N

Essaouira

Iles canaries

ZL1
AZ1

Smara2-17

TW561

TW521

IFNI1

E1

MO4

AF4

OZ101

KAT1

IZA1

LARA1
ANS1

DHT1

MAO1

TAT1
RH1 à 9

NDK

DIR

ESS1

RR1

ATM1

BHL1

RJK1

MO8

TGA1

Corc1

TW7-1

EAN1

4°6°8°10°12° 2°14°16°

34°

32°

30°

28°

26°

24°

 

Figure 20: Location of petroleum wells used.  

 BHT were systematically corrected for mud circulation 
cooling effects either by Horner technique when several 
temperature records are available at a given depth or by the 

comparison of all BHT with test temperatures (DST) that 
are representive of the actual formation temperatures. In 
order to establish the geothermal gradient of Morocco , the 
area was subdivided into five hydrogeothermal basins (Fig. 
1): north-eastern basin, north-western basin, Errachidia-
Boudnib basin, south-western basin and the tarfaya-
laayoune-sahara basin. Each basin presents the same 
geodynamical evolution and is characterised by its specific 
reservoirs and hydrodynamism. For each basin the 
petroleum well data have been processed. The objective was 
to set a regional geothermal gradient map, and then to 
compilate a geothermal gradient map of Morocco. 

6.1 Processing of temperature values 

Temperature behaviour with depth is studied both for the 
rough BHT (Fig. 21a-g) and DST (Fig.22).. 
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Figure 21: BHT vs depth for each basin 

The least squares fitted straight line gave: For BHT(Fig. 
21), T= az+Ts, where a is the slope of the straight line and 
the average geothermal gradient measured in the mud, Ts is 
the BHT at the surface and T is the BHT (°C) at any given 
depth z(m). For Morocco the average geothermal gradient is 
20°C/km. For the DST (Fig. 22), T=az+Ts, where a is the 
averge geothermal gradient of DST, which could be the 
value nearest the true geothermal gradient, and Ts is the 
surface temperature, representing the mean annual 
temperature as indicated by climatic surveys. For Morocco 
the geothermal gradient from DST is 24°C/km 
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Figure 22: DST vs depth for each basin 

With DST values as references, it was possible to calculate 
the difference (∆T) beween DST and BHT at the same depth 
for each value. Plotting the ∆T values with depth (Fig. 23a) 
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gave a curve wich is used a correction abacus. Also, for the 
Northern part of Morocco, there is  no DST values, the 
application of the Horner plot method’s allowed us to 
correct the BHT tempertures in this area (Fig. 23b). 
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Figure 23a: ∆T vs depth 
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Figure 23b: Application of Horner plot method’s. 

Thus, after correcting all the BHT values, we plotted 
coorected BHT and DST with depth (Fig. 24a-g). The least 
squares fitted straight line gave: T= az + Ts, where T is the 
undergroud temperature at any given depth z, a is the slope, 
representing the average geothermal gradient in the region 
(28°C/k for north-eastern basin, 27°C/km for north-western 
basin, 28°C/km for Errachidia-ouarzazat-Boudnib basin, 
21°C/km for the south-western basin, 21°C/km for the 
tarfaya-laayoune-sahara basin, 22°C/km for Tadla basin and 
23°C/km for the whole of Morocco) and Ts is the surface 
temperture. 
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Figure 24: Corrected temperature vs de 

6.2 Geothermal gradient map of each basin 

Corrected BHT and DST values for each well will be used 
to estimate theaverge geothermal grdaient to selected wells 
and thus to construct the geothermal gradient map for each 
hydrogeothermal basin and  the compilation of the regional 
maps  allowed us to establish he geothermal gradient for the 
whole of Morocco. 

In the North-Western part of Morocco (Fig. 24a) the deep 
geothermal gradient ranges from 26°C/km to 35°C/km . 
Zones of relatively high geothermal gradient seem to 
correspond to zones proved or supposed faults. Also the 
anomalies are related  to deep hydrodynamic activities 
(Zarhloule, 1999). 

The spatial distribution of geothermal gradients in the 
North-Eastern Morocco (Fig. 24b) could be related to the 
hydrodynamic effects and the neotectonic associated to the 
recent volcanim. It ragnes from 15 to 42°C/km (Zarhloule, 
1999). 

Fes
Rabat

Tanger
Sebta

O
C

E
A

N

A
T

L
A

N
T

IC

100 km

Larache

SPAIN

28 geothermal isogradient curve (°C/km), petroleum borhole

N 
6° 5°

35°

34°

26

28

32
30

32

28
26

28

30

34

Mediterranean
         Sea

 

Figure 24a: Geothermal gradient map of the North-
western basin of Morocco. 
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Figure 24b: Geothermal gradient map of the North-
Eastern  basin of Morocco. 

In the South-Western basin (Fig.  24c), the higher 
geothermal gradient observed in the center could be the 
consequence of proximity to the Tidsi diapir, given the high 
thermal conductivity of evaporitic rocks (Zarhloule et al., 
1998).  Also the anormal geothermal gradient is related to 
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the deep hydodynamic effects (oxfordian reservoirs) 
(Zarhloule, 1994). In the South of the basin, the geothermal 
gradient is related to the basement faulting. 
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Figure 24c: Geothermal gradient map of the South-
Western basin of Morocco. 

The Tarfaya-Laayoune-Sahara basin (Fig. 24d) presents two 
domains with a relative high geothermal gradient: the on-
shore domain characterized by a great fault basement of 
N65 to N70 direction revealed by geophysics, and the off 
shore domain where the Miocene volcanoes of the Canary 
Islands contribute to increased geothermal gradients 
(Zarhloule, 1999). 
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Figure 24d: Geothermal gradient map of Tarfaya-
Laayoune-Sahara basin.  

The regional distribution of geothermal gradients in the 
Errachidia-Ouarzazate-Boudenib basin (Fig. 24e) shows that 
the relatively high geothermal gradients could be related to 
subsidence and the  basement  proximity, respectively, in 
the south-eastern and southern sectors in the basin 
(Zarhloule, 1999). 
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Figure 24e: Geothermal gradient map of the Errachidia-
Ouarzazate-Boudnibe basin.  

For the whole of Morocco (Fig.  25) the geothermal gradient 
varies from 15 to 42°C/km. A distinction can easily be made 
between zones of high geothermal gradient (>30°C/km) and 
others of low geothermal gradient (<30°C/km). The major 
part of the region is characterized by low gradient ranging 
from 20 to 30°C/km. The areas of high gradient marked in 
the regional maps (Fig. 24a-e) are in the geothermal 
gradient map of Morocco (Fig. 25). The isogradient curves 
dispaly several main directions where the geothermal 
anomalies are related to deeper hydrodynamic, recent 
tectonic, volcanism or to elevation of the Moho (Zarhloule, 
1999, 2003). 

0 100 km

Oujda

Melilla

Tanger Sebta

Kénitra

Fès

Azrou

Tadla

Errachidia

Ouarzazat

Marrakech

Boujdour

Laayoun

Guelta Zemmour

Dakhla
Bir Enzaran

MIDITERRANEAN  SEA

ATLANTIC   OCEAN

A
lg

er
ia

LAR.A1

N

Essaouira

Azemmour

Agadir

30

25

Tarfaya

Deep Geothermal gradient GG. (°C/km)
GG > 35
30 < GG < 35
25 < GG < 30
2 0 < GG < 25
2 0 < GG  

Deep geothermal anomalies

2°

34°

4°6°8°10°12°14°16°

32°

30°

28°

26°

30

20

25

35

30

30

30

3030

25

25

25

2030

30

30

30

20

20

25

25

25

 

Figure 25: Geothermal gradient map of Morocco. 

7. SYNTHETIC GEOTHERMAL APPROACH AND 
CONCLUSION. 

Geothermal studies of  sedimentary basin have revealed lateral as 
well as vertical variations in the temperature fields. These 
variations are commonly interpreted as resulting from thermal 
conductivity heterogeneities or local variations in basement heat 
flow. Variations many also result from groundwater flow systems. 
The movement of water in deep aquifers can significantly perturb 
the local underground temperature distribution in sedimentary 
basins (Zarhloule, 1994). 
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In sedimentary basins of Morocco, the treatment and the 
compilation of geological, geophysical and hydro-geothermal data 
allowed the construction of  a conceptual model  showing the 
relationships between topography, hydrodynamism, chemistry and 
temperature of  the all  hot aquifers in Morocco (Fig.  26). 
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Figure 26.Conceptual model of  circulation of hot water 
of the different aquifers in Morocco: 
relationship between hydrodynamism, 
temperature, chemistry and topography 
(schematic section). 

The recharge zones are characterized by shallow cold water, 
low apparent geothermal gradient, negative anomalies and 
high topography. The waters are mainly HCO3-Ca-Mg type, 
resulting from the great influence of carbonate rocks. 

The discharge zones are characterized by shallow hot water, 
high apparent geothermal gradient, positive anomalies and 
low topography. The hot springs are generaly Ca (Mg)-SO4 
(Cl) or Ca (Mg)-HCO3 type, resulting from the main 
influence of evaporitic rocks.  

The middle of the basin shows a low apparent geothermal 
gradient. However, the communication between the deep and 
the shallow aquifers found expression in a potentiel mixing 
zone, with a hot water and a  high apparent geothermal 
gradient. 

In general the shallow geothermal gradient is high near hot 
springs. Hot springs represent discharge from deep reservoir, 
and upward moving growndwater flow. The upward moving 
water may come from the centre of the basin and the 
discharge zone may be related to the hydrologic limit of the 
aquifer or to the existence of faults or fractures. 
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