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ABSTRACT 

In this paper a genetic algorithms procedure for solving 
optimal control system design for a geothermal plant is 
proposed. The choices for the type of components to be 
used and their assembly configuration are driven by 
reliability objective with the economic costs associated 
with the design implementation, system construction and 
future operation. 

1. INTRODUCTION 

When designing a system, several choices must be made 
concerning the type of components to be used and their 
assembly configuration. The choice is driven by the 
interaction of reliability/availability objectives with the 
economic costs associated with the design implementation, 
system construction and future operation Marseguerra et 
al.(2000), Fyffe (1968) and Goldberg (1989). The approach 
used by us is based on genetic algorithms which are 
computational tools founded on a direct analogy with the 

physical evolution of species and capable of exploring the 
search space in a very efficient manner. They have been 
used to solve several engineering problems and are 
particularly effective for combinatorial optimization 
problems with large, complex search spaces. Within the 
reliability field, however, there have been very few 
examples of their use. 

In our work, the objective function used to measure the 
fitness of a proposed solution is the reliability function. 
Mathematically, then, the problem becomes a search in the 
system configuration space of that design which maximizes 
the value of the objective function. 

2. GENERATION OF TIME TO FAILURE 

At the design stage, analyses are to be performed in order to 
guide the designer’s choices in consideration of the many 
practical aspects which come into play and which typically 
generate a conflict between safety requirements and 
economic needs. This renders the design effort in an 
optimization when one aims to find the best compromise 
solution. 

The geothermal power plant is a component of the cascaded 
geothermal energy utilization system, and is used to convert 
the energy of the geothermal water into electrical energy 
using CO2 as working fluid. The elements of the power 
plant are the following: heat exchangers to vaporize and 
condense the CO2, a reciprocating engine connected with 
the electric generator, a make-up and expansion CO2 tank, 
and a CO2 pump. 

A good functioning of the power plant following the 
required thermodynamic cycle has to insure the heat 

transfer between the CO2 and the geothermal water or the 
cold water.  The control has to maintain the constant CO2 

pressure and temperature in all the important states of the 
thermodynamic cycle. Together with other specialists, we 
decided that we have to implement loops to control the 
following parameters: t1 (CO2 temperature after 
vaporization in the heat exchangers), t3 (CO2 temperature 
after the condensation in the heat exchanger), and h (level 
of the liquid CO2 in the tank). Figure 1 shows the power 
plant layout, together with the control loops shown by 
dotted lines.  
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Figure 1 Geothermal  power plant block scheme 
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Figure 2 RBD for the control system 
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Figure 3 RBD for the t1 control loop 
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Figure 4 RBD of vaporizers 

The reliability of a system depends critically on its 
individual component reliability and how components are 
connected in the reliability scheme. To obtain a realistic 
reliability evaluation of a control system all levels in the 
system must be examined. For reliability purposes three 
levels are defined: component level, control loop level and 
finally the control system level. The reliability model of this 
structure is given in Figure 2, Figure 3 and Figure 4 above, 
Gabor and Popescu (2003). 

We analyzed the system considering that the vaporizers 
system contains 30 vaporizers. 

3. THE GENERAL PROBLEM FOR OPTIMIZING A 
SYSTEM 

We consider a system made up of a series of n nodes, each 
one performing a given function. The task of the designer is 
to select the configuration of each node. This may be done 
in several ways, e.g. by choosing different series/parallel 
configurations with components of different failure 
characteristics and therefore of different costs, Nakagawa 
(1981). The safety vs. economics conflict rises naturally as 
follows:  

1. Choice of components: choosing the most reliable 
ones leads to a safe and high-availability design but it 
may be largely non-economic due to excessive 
component purchase costs. On the other hand, less 
reliable components provide lower purchase costs but 
loose availability and may increase the risk of costly 
accidents. 

2. Choice of redundancy configuration: highly redundant 
configurations, with active or standby components, 
guarantee high system availability but suffer from 
large purchase costs (and perhaps even significant 
repair costs, if low reliability units are used). 
Obviously, for assigned component failure and repair 
characteristics, low redundancies are economic from 
the point of view of purchase costs. However, they 
weaken the system availability, thus increasing the risk 
of significant accidents and the system stoppage time. 

In order to find a solution for system optimization, let’s 
consider a system with n components (each one performing 
a given function) connected as a series reliability 
connection Vladutiu (1989). The components are 

characterized by their fault probability: 

ni , ... q, ... q, qq 21  and by their costs: ni , ... c, ... c, cc 21   

(Figure 5.) 

The reliability, pP , and cost, pC , functions for this 

system, are: 
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Each group element will be reserved by a number of 
identical components ( ni , ... m, ... m, mm 21 ) connected as 

a parallel reliability connection (Figure 3.b.). We consider 
the situation when the groups’ elements are identical in 
their reliability. That is: 

iimii qqqq
i

==== .....21  ,  where ni ,1=  (3) 

For our system, DP , the probability of functioning without 

faults, is a monotonously ascending function. It has n 
variables: ni , ... m, ... m, mm 21 , which are in the 

following relation: 
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Figure 5 The general  reliability model for the n components 

We have to find the maximum value for the function 

DP ( )ni , ... m, ... m, mm 21 .   So, 
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It results in CDM: 
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It results in the following expression for mi: 
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Based on relations (3.8), (3.9), (3.13) and (3.14) which are 
dependent only on the initial data, we obtain the reliability 

function, 0DP , for such system: 
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The problem is that the mi values are real numbers and they 
must be integers. So, they must be rounded to: (m1

*, m2
*, ... 
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*, ... mNc

*) by respecting the maximum value for the CdM 
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For calculating the im , ( )ni ,1= , values for an optimal 

static distributed redundancy, we can develop an 
ordinogram. 

By an iterative genetic algorithm procedure we try to obtain 

a maximum value for the reliability function *
0D

P , when 

*
DC DMC≤ , by selecting k from n  im  values with the 

] [im  value, respectively (n-k)  jm  ( )ij ≠  values with the 

1+jm  value. 

For decision-making purposes, the designer defines an 
objective function, which accounts for all the relevant 
aspects. Here we consider as an objective function the 
reliability for the entire system. 

We assume that after an accident the control system cannot 
be repaired and must be shut down. 

For each node a pool of possible configurations is available. 
The problem is, then, that of choosing a system assembly 
by selecting one configuration for each node, with the aim 
of maximizing the objective function. 

4. THE GENETIC ALGORITHM OPTIMIZATION 
APPROACH 

The primary target of genetic algorithms is the optimization 
of an assigned objective function (fitness), Painton (1995). 

A population of 100 chromosomes (bit-strings), each 
representing a possible solution to the problem, is initially 
considered. This population, then, evolves as dictated by 
the four fundamental operations of parents selection, 
crossover, replacement and mutation for 100 generations. 

In this work, the selection phase is performed by using the 
roulette-wheel selection, also called stochastic sampling 
with replacement. This is a stochastic algorithm and 
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involves the following technique: the individuals are 
mapped to contiguous segments of a line, such that each 
individual's segment is equal in size to its fitness. A random 
number is generated and the individual whose segment 
spans the random number is selected. The process is 
repeated until the desired number of individuals is obtained 
(called mating population). This technique is analogous to a 
roulette wheel with each slice proportional in size to the 
fitness. 

The crossover operator used is single-point crossover: one 
crossover position k[1,2,...,n-1], where n is the number of 
variables of an individual, is selected uniformly at random 
and the variables exchanged between the individuals about 
this point. Then two new offspring are produced.  

For binary valued individuals mutation means flipping of 
variable values. For every individual the new variable value 
is chosen uniformly at random with  probability 10-3. 

During the population evolution we eliminate those 
chromosomes which encode infeasible solutions because 
they violate the cost constraint. With the assigned rules, 
which mimic natural selection, the successive generations 
tend to contain chromosomes with larger fitness values until 
a near optimal solution is attained.  

Recalling that our system is made up of n nodes, we 
identify the possible configurations of each node by a 
binary value so that the system configuration is identified 
by a sequence of n binary numbers, each one indicating a 
possible node configuration. For the coding, we choose to 
take a chromosome made up of a single gene containing all 
the values of the node configurations in a string of n bits.  

For example, for a node i  we can have the value either 
equal to one when the number of components for that node 

is ] [ 1+im , or zero when the number of components for 

node i  is ] [im . 

The choice of this coding strategy, as compared to a coding 
with one gene dedicated to each node, is such that the 
crossover generates children-chromosomes with all nodes 
equal to the parents except for the one in which the splice 
occurs. This avoids excessive dispersion of the genetic 
patrimony thus favouring convergence. 

5. NUMERICAL APPLICATIONS 

The genetic algorithm procedure has been applied to the 
geothermal simple system. Given the relative small number 
of solutions to be spanned in this case, the best 
configuration was found also by inspection.  

The results thereby obtained were compared to those 
obtained by the genetic algorithm and confirmed the good 
performance of the methodology implemented. 

Our genetic algorithm considers a population of 
chromosomes, each one encoding a different alternative 
design solution. For a given design solution, the system 
performance over a specified mission time is evaluated in 
terms of a pre-defined reliability function. This latter 
constitutes the objective function to be maximized by the 
genetic algorithm through the evolution of the successive 
generations of the population in conditions of not 
overlapping a cost constraint for the system. 

The system here considered consists of n = 7 nodes. In 
TABLE 1 we give the failure rates and the costs for the 
system components. The maximum cost allowed for the 
system is: $1000000. 

TABLE 1 

Component i Purchase cost Ci [$103] Failure rate iλ  [10-3 y-1] 

1 67.5 4.8 

2 54 4.3 

3 81 4.6 

4 45 3.6 

5 85.5 3.6 

6 58.5 3.7 

7 13.5 3.8 

8 45 4 

We considered 75 generations for a population of 100 
chromosomes and the evolution was made with a 

probability for crossovers set as 25.0=cp  and the 

probability for the simple mutation set as 01.0=mp . 

Thus, on average, 1% of total bit of population would 
undergo mutation. 

Figure 6 reports the schematic for the optimal configuration 
found by the genetic algorithm procedure, which converges  

only after a few iterations. The reliability value obtained is 
97.712% with a total cost of  $985,000. The following 
simplifying assumptions are made: i) all components have 
exponentially distributed failure times; ii.) all components a 
of node. A are equal; iii) no repair is allowed;  

The simple case considered here has allowed us to compute 
the objective function analytically and the genetic algorithm 

 

Figure 6 The optimal configuration 
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was able to converge very rapidly just in a few iterations. 
However, for more realistic models we can use a Monte 
Carlo method for its evaluation.  

It is important to note that the optimizing approach 
presented in this paper can be extended even for the 
situation of geothermal plant that includes k-out-of-n. That 
is for G schemes (used for reserving the control unit).  

The reliability, that is the percentage of successful runs 
recorded in the simulation of the resulted system was 
calculated in EXCEL by using the AVERAGE function 
applied to the columns where the results of individual 
Monte Carlo runs were recorded. In our case, the resulting 
reliability was: 97.712%. 

6. CONCLUSION 

The genetic algorithm procedure has been applied to a 
simple system. Given the relative small number of solutions 
to be spanned in this case, the best configuration was found 
also by inspection. The results thereby obtained were 
compared to those obtained by the genetic algorithm and 
confirmed the good performance of the methodology 
implemented. 

In conclusion, genetic algorithms can be very useful in 
solving complex design problems. The simple case 
considered here has allowed us to compute the objective 
function analytically and the genetic algorithm was able to 
converge very rapidly just in a few iterations. However, for 
more realistic models we can use a Monte Carlo method for 
its evaluation.  

It is important to note that the optimizing approach 
presented in this paper can be extended even for the 

situation of danger control systems that includes k-out-of-n, 
G schemes (used for reserving the control unit).  
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