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ABSTRACT

In this paper a genetic algorithms procedure for solving
optimal control system design for a geothermal plant is
proposed. The choices for the type of components to be
used and their assembly configuration are driven by
reliability objective with the economic costs associated
with the design implementation, system construction and
future operation.

1. INTRODUCTION

When designing a system, severa choices must be made
concerning the type of components to be used and their
assembly configuration. The choice is driven by the
interaction of reliability/availability objectives with the
economic costs associated with the design implementation,
system construction and future operation Marseguerra et
al.(2000), Fyffe (1968) and Goldberg (1989). The approach
used by us is based on genetic agorithms which are
computational tools founded on a direct analogy with the
The geothermal power plant is a component of the cascaded
geothermal energy utilization system, and is used to convert
the energy of the geotherma water into electrical energy
using CO, as working fluid. The elements of the power
plant are the following: heat exchangers to vaporize and
condense the CO,, a reciprocating engine connected with
the electric generator, a make-up and expansion CO, tank,
and a CO, pump.

A good functioning of the power plant following the
required thermodynamic cycle has to insure the heat
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physical evolution of species and capable of exploring the
search space in a very efficient manner. They have been
used to solve several engineering problems and are
particularly effective for combinatorial optimization
problems with large, complex search spaces. Within the
reliability field, however, there have been very few
examples of their use.

In our work, the objective function used to measure the
fitness of a proposed solution is the reliability function.
Mathematically, then, the problem becomes a search in the
system configuration space of that design which maximizes
the value of the objective function.

2. GENERATION OF TIME TO FAILURE

At the design stage, analyses are to be performed in order to
guide the designer’s choices in consideration of the many
practical aspects which come into play and which typically
generate a conflict between safety requirements and
economic needs. This renders the design effort in an
optimization when one aims to find the best compromise
solution.

transfer between the CO, and the geothermal water or the
cold water. The control has to maintain the constant CO,
pressure and temperature in al the important states of the
thermodynamic cycle. Together with other specidlists, we
decided that we have to implement loops to control the
following parameters; t1 (CO, temperature after
vaporization in the heat exchangers), t3 (CO, temperature
after the condensation in the heat exchanger), and h (level
of the liquid CO, in the tank). Figure 1 shows the power
plant layout, together with the control loops shown by
dotted lines.
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Ttm - rotational speed transducer

TT -temperature transducer RB - control valve
TP - pressure transducer VT - COz_tal’!k
TD - flowrate transducer IN - level indicator

SS - safety valve

Figure 1 Geothermal power plant block scheme
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Figure 2 RBD for the control system
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Figure 3 RBD for thetl control loop
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The reliability of a system depends critically on its
individual component reliability and how components are
connected in the reliability scheme. To obtain a redlistic
reliability evaluation of a control system al levels in the
system must be examined. For reliability purposes three
levels are defined: component level, control loop level and
finally the control system level. The reliability model of this
structure is given in Figure 2, Figure 3 and Figure 4 above,
Gabor and Popescu (2003).

We analyzed the system considering that the vaporizers
system contains 30 vaporizers.

3. THE GENERAL PROBLEM FOR OPTIMIZING A
SYSTEM

We consider a system made up of a series of n nodes, each
one performing a given function. The task of the designer is
to select the configuration of each node. This may be done
in several ways, e.g. by choosing different seried/parallel
configurations with components of different failure
characteristics and therefore of different costs, Nakagawa
(1981). The safety vs. economics conflict rises naturally as
follows:

1. Choice of components: choosing the most reliable
ones leads to a safe and high-availability design but it
may be largely non-economic due to excessive
component purchase costs. On the other hand, less
reliable components provide lower purchase costs but
loose availability and may increase the risk of costly
accidents.

2. Choice of redundancy configuration: highly redundant
configurations, with active or standby components,
guarantee high system availability but suffer from
large purchase costs (and perhaps even significant
repair costs, if low reliability units are used).
Obviously, for assigned component failure and repair
characteristics, low redundancies are economic from
the point of view of purchase costs. However, they
weaken the system availability, thus increasing the risk
of significant accidents and the system stoppage time.

In order to find a solution for system optimization, let's
consider a system with n components (each one performing
a given function) connected as a series reiability
connection Vladutiu (1989). The components are

characterized by their fault probability:
0. 95, ... G, ... 0, and by their costs: ¢, Cy, ... G, ... Cy
(Figure5.)

The reliability, Py, and cost, C,, functions for this
system, are:

n 1
Po =] @-an @
i=1

C,= z c

@)
Each group element will be reserved by a number of
identical components (my, My, ... M, ... M, ) connected as

a parallel reliability connection (Figure 3.b.). We consider
the situation when the groups elements are identica in
their reliability. That is:

Oy =02 =..... =Gy, =G , wherei=1n (3

For our system, Py , the probability of functioning without
faults, is a monotonously ascending function. It has n
variabless my, m,, ... m,...m,, which are in the
following relation:

i m -¢; = Cpu (4)

n-1
Com - m; -G
m, = S S (5)
Cn
and it resultsfor Py :
n-1
1 Com —Zmﬁ
i=1
Po =1—ZQim “Oh o (6)
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Figure5 Thegeneral reliability model for the n components

We have to find the maximum value for the function

Py (m,m,...m,..m,). So

Ry Ingy

=—q" -Ing, +q“*" )
n
G-Ing _ g™ -Indy _ ®
Ci Cn
Let
Gi
B, | 9)
ng;
m
- o= (10)
B,
So,
_Ina-g _fi-Ina-pj (1)
Ing; Gi

It resultsin Cpy:
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It results in the following expression for m;:
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Based on relations (3.8), (3.9), (3.13) and (3.14) which are
dependent only on the initial data, we obtain the reliability

function, Py, , for such system:
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The problem is that the m; values are real numbers and they
must be integers. So, they must be rounded to: (m,", m,’, ...
m’, ... My ) by respecting the maximum value for the Cyy

n
[Z mi* -G ] when the reliability function is maximized.
i=1

For calculating the m, i= (1, n), values for an optimal

static  distributed redundancy, we can develop an
ordinogram.

By an iterative genetic algorithm procedure we try to obtain
a maximum value for the reliability function P;O , when

Cp <Cpy » by selecting k from n m values with the
Jm [ value, respectively (n-k) m; (j #1i) valueswith the

m; +1 value.

For decision-making purposes, the designer defines an
objective function, which accounts for al the relevant
aspects. Here we consider as an objective function the
reliability for the entire system.

We assume that after an accident the control system cannot
be repaired and must be shut down.

For each node a pool of possible configurationsis available.
The problem is, then, that of choosing a system assembly
by selecting one configuration for each node, with the aim
of maximizing the objective function.

4. THE GENETIC ALGORITHM OPTIMIZATION
APPROACH

The primary target of genetic algorithms is the optimization
of an assigned objective function (fitness), Painton (1995).

A population of 100 chromosomes (bit-strings), each
representing a possible solution to the problem, is initialy
considered. This population, then, evolves as dictated by
the four fundamental operations of parents selection,
crossover, replacement and mutation for 100 generations.

In this work, the selection phase is performed by using the
roulette-wheel selection, also called stochastic sampling
with replacement. This is a stochastic agorithm and
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involves the following technique: the individuals are
mapped to contiguous segments of a line, such that each
individual's segment is equal in size to its fitness. A random
number is generated and the individua whose segment
spans the random number is selected. The process is
repeated until the desired number of individuals is obtained
(called mating population). This technique is analogousto a
roulette wheel with each dlice proportional in size to the
fitness.

The crossover operator used is single-point crossover: one
crossover position k[1,2,...,n-1], where n is the number of
variables of an individual, is selected uniformly at random
and the variables exchanged between the individuals about
this point. Then two new offspring are produced.

For binary valued individuals mutation means flipping of
variable values. For every individua the new variable value
is chosen uniformly at random with probability 107,

During the population evolution we eliminate those
chromosomes which encode infeasible solutions because
they violate the cost constraint. With the assigned rules,
which mimic natural selection, the successive generations
tend to contain chromosomes with larger fitness values until
anear optimal solution is attained.

Recalling that our system is made up of n nodes, we
identify the possible configurations of each node by a
binary value so that the system configuration is identified
by a sequence of n binary numbers, each one indicating a
possible node configuration. For the coding, we choose to
take a chromosome made up of a single gene containing al
the values of the node configurationsin astring of n hits.

For example, for a node i we can have the value either
equal to one when the number of components for that node

is ]mi [+1, or zero when the number of components for
node i is Jm].

The choice of this coding strategy, as compared to a coding
with one gene dedicated to each node, is such that the
crossover generates children-chromosomes with all nodes
equal to the parents except for the one in which the splice
occurs. This avoids excessive dispersion of the genetic
patrimony thus favouring convergence.

5.NUMERICAL APPLICATIONS

The genetic algorithm procedure has been applied to the
geothermal simple system. Given the relative small number
of solutions to be spanned in this case, the best
configuration was found also by inspection.

The results thereby obtained were compared to those
obtained by the genetic algorithm and confirmed the good
performance of the methodology implemented.

Our genetic agorithm considers a population of
chromosomes, each one encoding a different aternative
design solution. For a given design solution, the system
performance over a specified mission time is evaluated in
terms of a pre-defined reliability function. This latter
constitutes the objective function to be maximized by the
genetic algorithm through the evolution of the successive
generations of the population in conditions of not
overlapping a cost constraint for the system.

The system here considered consists of n = 7 nodes. In
TABLE 1 we give the failure rates and the costs for the
system components. The maximum cost alowed for the
system is: $1000000.

Component i Purchase cost Ci [$10°] Failurerate A, [10°y]
1 67.5 4.8

2 54 4.3

3 81 4.6

4 45 3.6

5 85.5 3.6

6 58.5 3.7

7 135 38

8 45 4

We considered 75 generations for a population of 100
chromosomes and the evolution was made with a

probability for crossovers set as P, =0.25 and the

probability for the simple mutation set as P, = 0.01.

Thus, on average, 1% of total bit of population would
undergo mutation.

Figure 6 reports the schematic for the optimal configuration
found by the genetic algorithm procedure, which converges
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Figure 6 The optimal configuration

only after a few iterations. The reliability value obtained is
97.712% with a total cost of $985,000. The following
simplifying assumptions are made: i) al components have
exponentidly distributed failure times; ii.) all components a
of node. A are equal; iii) no repair is alowed;

The simple case considered here has allowed us to compute
the objective function analytically and the genetic algorithm



was able to converge very rapidly just in a few iterations.
However, for more redlistic models we can use a Monte
Carlo method for its evaluation.

It is important to note that the optimizing approach
presented in this paper can be extended even for the
situation of geothermal plant that includes k-out-of-n. That
isfor G schemes (used for reserving the control unit).

The reliability, that is the percentage of successful runs
recorded in the simulation of the resulted system was
calculated in EXCEL by using the AVERAGE function
applied to the columns where the results of individual
Monte Carlo runs were recorded. In our case, the resulting
reliability was: 97.712%.

6. CONCLUSION

The genetic algorithm procedure has been applied to a
simple system. Given the relative small number of solutions
to be spanned in this case, the best configuration was found
adso by inspection. The results thereby obtained were
compared to those obtained by the genetic algorithm and
confirmed the good performance of the methodology
implemented.

In conclusion, genetic algorithms can be very useful in
solving complex design problems. The simple case
considered here has allowed us to compute the objective
function analytically and the genetic algorithm was able to
converge very rapidly just in a few iterations. However, for
more realistic models we can use a Monte Carlo method for
its evaluation.

It is important to note that the optimizing approach
presented in this paper can be extended even for the

D. Popescu and C. Popescu

situation of danger control systems that includes k-out-of-n,
G schemes (used for reserving the control unit).
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