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ABSTRACT

The heat transfer mechanism in the rock mass around a
borehole is an axisymmetric heat conduction process.
Earlier works considered this phenomenon to be a two-
dimensional radia heat flow, which is congruent in any
horizontal plane. The solution is obtained by solving the
differential equation of the heat conduction, applying a
cylindrical coordinate system. Accordingly a cylindrical
interface is the boundary between the heated and the
undisturbed rock mass.

Now a new method will be applied in which the heat flux
field is the function determined primarily, instead of the
temperature field. The axisymmetric heat flux field can be
described by complex-variable analytic functions. Because
of the vdidity of the Cauchy-Riemann eguations the
particular solutions of them can be superimposed. In our
model the terrestrial heat flux is a homogeneous
component, to which a line-source of variable intensity is
placed as a singularity, distorting the homogeneous heat
flux field.

The heat flux field can be determined analogously to an
axisymmetric perfect fluid flow. The isotherms of the
temperature filed forms a set of axisymmetric surfaces,
analogously to the velocity potential, orthogonally to the
stream surfaces which are tangentiad to the heat flux
vectors. The thermal potential function and the heat-stream
function are determined by potential-theory method. The
stream surface determined by the zero constant, divides the
heated region from the intact rock mass. This domain is a
paraboloid-like body of revolution around the well axis. Its
equation is obtained by anaytic method. The equation of
the bounding surface is a complex transcendent expression,
can be determined numerically only.

This method is more accurate to describe and calculate the
borehole heat transfer.

LINTRODUCTION

The wellbore heat transfer is among the phenomena most
important to engineers in geothermics. It has been the
object of much attention in the last half century. There have
been severa theoreticd and experimental studies to
determine the temperature distribution of the flowing fluid
along the depth in geothermal wells.

BoLDIzsAR (1958) was the first to make a thorough attack
on the borehole heat transfer problem. His theory was based
on the transient heat conduction equation written for the
rock mass around the well. The obtained parabolic
differential equation was transformed, applying a Laplace-
transformation, into a Bessel-type differentia equation. The
solution was obtained in terms of Bessel functions. The
thermal resistance between the fluid and the adjacent rock
was neglected.

RAMEY (1962) was made same simplifications on
BoLDIzsAR's solution. However the overall heat transfer
coefficient was taken into consideration. He thus derived an
ordinary, first order, inhomogeneous differential equation.
Its solution has got some approximations. i.e. the well
completion is homogeneous along the depth, the overal
heat transfer coefficient and the transient heat conduction
functions are considered to be uniform.

Several authors: WILLHITE (1968), Bosok (1987), TOTH
(2002) have completed RAMEY’s method by more
sophisticated details. This paper is focused to a substantial
element of RAMEY’s solution: the transient heat conduction
function. It is described here a computational method which
shows that this function depends on the depth. In the
succeeding sections a new mathematical approach is
introduced, which is motivated by the two-dimensional
method of thermal singularities Bosok (1981). The present
study is the generalized version, for three-dimensional,
axisymmetric case.

2.BASICMETHOD

Asit is well-known, the temperature distribution of the up-
flowing fluid in the tubing can be obtained by RAMEY’S
method as:
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inwhich T, isthe surface temperature

% isthe geothermal gradient

z is the depth coordinate

H is the bottom-hole depth
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where  Misthe mass flow rate of the fluid
c isthe specific heat capacity of it

k is the heat conductivity of the rock

RTi istheinternal radius of the tubing

U

Tijs the overall heat transfer coefficient
referring to Ry

f isthe transient heat conduction function.
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In steady state heat conduction the overall heat flux is
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Where TW is the temperature at the borehole wall
R,  istheradiusof the borehole

R_  istheradiusof the heated region around
the well.

Following this formulation of the problem, the assumption,
that the transient heat transfer function doesn’'t depend on
the depth is equivaent with the statement that the radius of
the heated region are the same a any depth i.e. the
bounding surface of the heated region is a cylindrical
surface. Instead of this, in the following it will be
demonstrated that this boundary surface is a surface of
rotation around a vertical axis.

3. METHOD OF THERMAL SINGULARITIES
The main feature of the method of singularities is that,
instead of the solution of the heat conduction equation, the

heat flux vector field is primarily determined. The heat flux
vector is obtained by FOURIER's law

a =—kgradT @

Assuming uniform heat conductivity we get

a =grad(—kT) = gradU (5)

In this case U=-kT can be considered as a thermal potential
function. Its existence yield

rotq=0 (©)

If the heat conduction is steady and assuming no heat
sources, the heat flux field is solenoidal:

divq=0 ™
These latter two equations for two-dimensiond flow are
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From Eq. (5), it follows

q =% 6, =% (o
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Eq.(9) is fulfilled, if the expressions

q = 6, =2 @
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are vaid. The harmonic function V is the so-called heat
flux stream function. This can be proven easily: along the
curves V=const, it is obvious

dV:a—de+a—de:O (12)
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Substituting Egs.(13) into (14) we get

—-q,dx+q,dy=0 (13)

From which it follows that

d—X = ﬂ (24)
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and we can recognized that V=const. curves are everywhere
tangent to the heat flux vectors. From Egs.(12) and (13) it
fellows that
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These equations are called CAUCHY-RIEMANN equations.
The necessary and sufficient conditions for complex
variable function W to be analytic are that they satisfy the
CAUCHY-RIEMANN equations let it be differentiable and
single-valued.

Thus each two-dimensional heat flow pattern corresponds, a
complex variable function W(z) in which thereal part is the
thermal potential U(x,y) and the imaginary part is the heat
flux stream function V (x,y) as

W(z) =U(Xx,y)+iV(X,y) (16)

In heat conduction problems we must generaly restrict W
to the class of analytic function: both the function W(z) and

its derivate d_ are single valued and finite.
V4

In this case W(2) is called to the complex potential of the
heat flux filed. Of course there can be points on the z plane,
where the W(z) function is not analytic, but it is analytic at
every point in the plane, than such apoint is called singular
point asa singularity of the function. For example, if

W=Klnz 17

where K is area constant, the function is analytic at every
point except of the point z=0, where it is discontinuous,
hence z=0 is singular point. The mathematical singularity
corresponds always a therma singularity. In the above
example at the point z=0 there is a heat source. It can be

show easer thaa Q=K2m, where Q is caled the



strength of source. If Q<O it is a sink. Any singularities
induce a heat flow pattern around it. Although singularities
are simply mathematical convenience, they are great
practical value in that, when combined with other simple
heat flow patterns they can reproduce closely many
complicated natural heat flux patterns. The possibility of
the superposition stems from the linearity of LAPLACE'S
equation. If we add together a number of complex
potentials the sum of these will satisfy LAPLACE's equation.

The terrestrial heat flux has the same regional interior. Its
complex potential can be written as

W=q.z (18)

obviously satisfies the LAPLACE’ s equation. Combination of
this potential with the potential of singularities can produce
practically important heat flux patterns. The rea part of the
potentia lines determine the isotherms in the plane. The
imaginary part of the complex potential obtains the heat
flux streamlines

Re(W) = U(X,y) = const (19)
Im(W) =V (x,y) = const (20)

Findly the derivative the complex potential W is the
conjugate the heat flux vector.

a=q, -ig, = (21)
Y dz

Applying the method of singularities for two-dimensional
heat conduction problems we can obtain solutions relative
easily even for complicated boundary conditions.

The greatest advance of the method of singularitiesis that it
can be expanded for three-dimensional axisymmetric case.
The thermal potential function U satisfies the LAPLACE'S
equation. It can be written in cylindrical coordinates as

Ei(ra_uj iaz_U_i_az_(D:O (22)
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For axisymmetric heat flux vector field

q,=9,(zrq,=0 q,=9,(r,z) (2

In this case
q = .- e
odr 9z

The LAPLACE equation for thiscaseis

0°U  9°U 1du
RN N
or 0z~ r dr
Anaogously to the two-dimensional case a heat flux stream
function can be interpreted. The stream surfaces are

adiabatic boundary surfaces, tangented by the heat flux
vectors.

0 (25)

In this case the component of the heat flux are
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Substituting these to Eq. (6) the stream function satisfies the
equation

02V 0%V 1oV
4 =2 =0
o> 9z ror

This isn't the LAPLACE'S equation yet, but its structure is
quite similar, the sign of the third term negative only. Thus
in three-dimensional case there is no complex potential of
the heat flow. But the thermal potential exists, its constant
values determined potentia surfaces i.e. isotherms. The
heat flux components are obtained by a simple
differentiation. Complicated heat flow patterns can be
constructed by superimposing elementary thermal potential
functions.

@7)

The heat flux field around a production well is influenced
by two effects. The first is the terrestrial heat flux, flowing
vertically upward with a uniform strength. Its potential can
be written as

U=q.z (28)

The other is the well, heating the surrounding rock mass
with a radially outward flux. The strength of this flux
depends on the temperature difference between the
upflowing water and the surrounding rock. This difference
is zero at the bottom of the well and has its maximum at the
wellhead. We may assume approximately, that this
temperature difference linearly increases from the
bottomhole to the wellhead. The materia thermal
inhomogeneity can be replaced in the mathematical model
by asingularity: aline source of varying strength.

The potential of this line source can be written as

PR

. iZOG (i)m (29
inwhich 6(§) isthe strength of the line source,
é is the running point of the integration,
H is the bottomhol e depth of the well.

Thus the axisymmetric potential heat flow around the well
can be approximated superimposing the potential of a line
source of varying strength on that of the uniform terrestrial
heat flow. The combined thermal potential can be expressed
in the form.

U(r,z)=q.z- f 6(&)% (30)
£=0 r°+(z-%)

The stream function is obtained from the Egs. (7) and (26):

r’ 17 1
V(r,Z):qw?+4—n§IO 0(§)Tz_§)2_1 dg
(31)
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The strength of the line source can be determined applying
an approximate assumption.

The overall heat flux in the rock around the well is actuated
by the temperature difference between the borehole wall and
the undisturbed rock mass. The temperature of the borehole
wall can be hardly determined. Let's consider Fig.1. The
temperature of the flowing fluid differs, only a few
centigrades from the bottomhol e temperature.

T, =T, +7H (32

The temperature at the outer radius of the cement sheet of
the well is closer to Ty, than the fluid temperature. Thus,

instead of the temperature difference T,, — T, —YZ, the

difference T, — T, —7YZ is taken. The overall heat flux
for alayer of unit thicknessis obtained as

Q= ZnKY(H—R_Z) (33
In—=
RW
Since
E=H-z (34)

it can be written, that
c=C¢ (35)

Thus the strength of the line source is a simple linear
function which can be integrated easily. It is evident that the
surface V(r,z) equa to a sequence of constants are all point
tangent to the heat flux vectors and hence define adiabatic
surfaces of perfect heat isolation. The stream surface
determined by the equation V=0 is that adiabatic surface
which forms the contour of the heated region around the
well. Thus we got the expression

r2 17 1
q.—+
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After integration atranscendent equation is obtained

~1)-C-£-dE=0

(36)

qr’ C, r’+(z-H? Cr
S I ot~
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The solution of this equation can be possible numericaly
only. A sequence of z values is taken and in each depth the
equation is solved for r. It was carried out applying the
method of MATLAB Fzero. To the obtained points a
polynome was fitted by the method of MATLAB PLOYFIT.
The curve had been determined by this procedure was
rotated around the coordinate axis z. This leads to the
equation of the surface of rotation

2(r) = z(yx* +y?) (39)

(arc:tgz_—H—arctgé)—i C-H?=0
r r 8n

The obtained surface is shown in Fig.2. It is substantially
different than the earlier assumed circular cylindrical
contour.

4. EXPERIMENTAL RESULTS

The contour of the heated region can be determined by
experiments too. It is obtained by RAMEY’ s solution that

AZ—I=T—TO—yz (39)

The coefficient A can be determined knowing the measured
temperature distribution of given well. It is shown in Fig.3.
The coefficient A; can be calculated by finite differences:

_T-Ty—=vz
Ai - Ti+1 _Ti “
Zi,y 4

Expressing the transient heat conduction function from
Eq.(2) we get

f = 2nAk—mc— < )
1B 1B
For steady heat conduction
R
f=ln— 42
R, (42)

Thus the radius of the contour of the heated region is
obtained as

R.=R,e" 43)

The points of the contour calculated by this procedure are
compared the ones obtained by the singularity method. This
can be shown in Fig.4.

5. SUMMARY

A new mathematica approach is demonstrated for
determination of the contour of the heated region developed
in the adjacent rock mass around a geotherma well. The
two-dimensiona method of therma singularities is
expanded for a three-dimensional axisymmetric heat
conduction problem. Instead of the solution of the
differential equation of the heat conduction, two basic
equations are written for the heat flux vector. Its components
can be obtained from a thermal potential by simple
derivation. The equpotential surfaces of this potential |.e. the
isotherms can be determined without integration. The
orthogonal set of surfaces form a stream function tangenting
the heat flux vectors. These stream surfaces are adiabatic
surfaces. There is no heat flux across them. The contour of
the heated region such an adiabatic stream surface can be
obtained as an axisymmetric surface of rotation. The validity
of the model must of course checked by experiments. The
points of the contour had been cal culated from the measured
temperature distribution of the flowing fluid through the
well. Calculated and measured data are in rather good
agreement.
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Fig.1. The temperature difference actuating the radial heat
flux
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Fig.2. The contour of the heated region
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Fig.3. Mesasured temperature distribution
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Fig.4. Comparison of the calculated contour to experimental
data



