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ABSTRACT  

The heat transfer mechanism in the rock mass around a 
borehole is an axisymmetric heat conduction process. 
Earlier works considered this phenomenon to be a two-
dimensional radial heat flow, which is congruent in any 
horizontal plane. The solution is obtained by solving the 
differential equation of the heat conduction, applying a 
cylindrical coordinate system. Accordingly a cylindrical 
interface is the boundary between the heated and the 
undisturbed rock mass. 

Now a new method will be applied in which the heat flux 
field is the function determined primarily, instead of the 
temperature field. The axisymmetric heat flux field can be 
described by complex-variable analytic functions. Because 
of the validity of the Cauchy-Riemann equations the 
particular solutions of them can be superimposed. In our 
model the terrestrial heat flux is a homogeneous 
component, to which a line-source of variable intensity is 
placed as a singularity, distorting the homogeneous heat 
flux field. 

The heat flux field can be determined analogously to an 
axisymmetric perfect fluid flow. The isotherms of the 
temperature filed forms a set of axisymmetric surfaces, 
analogously to the velocity potential, orthogonally to the 
stream surfaces which are tangential to the heat flux 
vectors. The thermal potential function and the heat-stream 
function are determined by potential-theory method. The 
stream surface determined by the zero constant, divides the 
heated region from the intact rock mass. This domain is a 
paraboloid-like body of revolution around the well axis. Its 
equation is obtained by analytic method. The equation of 
the bounding surface is a complex transcendent expression, 
can be determined numerically only. 

This method is more accurate to describe and calculate the 
borehole heat transfer. 

1.INTRODUCTION 

The wellbore heat transfer is among the phenomena most 
important to engineers in geothermics. It has been the 
object of much attention in the last half century. There have 
been several theoretical and experimental studies to 
determine the temperature distribution of the flowing fluid 
along the depth in geothermal wells. 

BOLDIZSÁR (1958) was the first to make a thorough attack 
on the borehole heat transfer problem. His theory was based 
on the transient heat conduction equation written for the 
rock mass around the well. The obtained parabolic 
differential equation was transformed, applying a Laplace-
transformation, into a Bessel-type differential equation. The 
solution was obtained in terms of Bessel functions. The 
thermal resistance between the fluid and the adjacent rock 
was neglected. 

RAMEY (1962) was made same simplifications on 
BOLDIZSÁR’s solution. However the overall heat transfer 
coefficient was taken into consideration. He thus derived an 
ordinary, first order, inhomogeneous differential equation. 
Its solution has got some approximations: i.e. the well 
completion is homogeneous along the depth, the overall 
heat transfer coefficient and the transient heat conduction 
functions are considered to be uniform.  

Several authors: WILLHITE (1968), BOBOK (1987), TÓTH 
(2002) have completed RAMEY’s method by more 
sophisticated details. This paper is focused to a substantial 
element of RAMEY’s solution: the transient heat conduction 
function. It is described here a computational method which 
shows that this function depends on the depth. In the 
succeeding sections a new mathematical approach is 
introduced, which is motivated by the two-dimensional 
method of thermal singularities BOBOK (1981). The present 
study is the generalized version, for three-dimensional, 
axisymmetric case. 

2. BASIC METHOD 

As it is well-known, the temperature distribution of the up-
flowing fluid in the tubing can be obtained by RAMEY’s 
method as: 
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in which T0 is the surface temperature 

γ is the geothermal gradient 

z is the depth coordinate 

H is the bottom-hole depth 
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where 

.

m is the mass flow rate of the fluid 

c is the specific heat capacity of it 

k is the heat conductivity of the rock 

TiR
is the internal radius of the tubing 

TiU
is the overall heat transfer coefficient 

referring to TiR
  

f is the transient heat conduction function. 
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In steady state heat conduction the overall heat flux is 
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Where wT  is the temperature at the borehole wall 

wR  is the radius of the borehole 

∞R  is the radius of the heated region around 

the well. 

Following this formulation of the problem, the assumption, 
that the transient heat transfer function doesn’t depend on 
the depth is equivalent with the statement that the radius of 
the heated region are the same at any depth i.e. the 
bounding surface of the heated region is a cylindrical 
surface. Instead of this, in the following it will be 
demonstrated that this boundary surface is a surface of 
rotation around a vertical axis. 

3. METHOD OF THERMAL SINGULARITIES 

The main feature of the method of singularities is that, 
instead of the solution of the heat conduction equation, the 
heat flux vector field is primarily determined. The heat flux 
vector is obtained by FOURIER’s law 

kgradTq −=
→

 (4) 

Assuming uniform heat conductivity we get 

gradU)kT(gradq =−=
→

 (5) 

In this case U=-kT can be considered as a thermal potential 
function. Its existence yield 

0qrot ≡
→

 (6) 

If the heat conduction is steady and assuming no heat 
sources, the heat flux field is solenoidal:  

0qdiv ≡
→

 (7) 

These latter two equations for two-dimensional flow are 
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From Eq. (5), it follows 
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Eq.(9) is fulfilled, if the expressions 
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are valid. The harmonic function V is the so-called heat 
flux stream function. This can be proven easily: along the 
curves V=const, it is obvious 
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Substituting Eqs.(13) into (14) we get 

0dyqdxq xy =+−  (13) 

From which it follows that 
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and we can recognized that V=const. curves are everywhere 
tangent to the heat flux vectors. From Eqs.(12) and (13) it 
fellows that 
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These equations are called CAUCHY-RIEMANN equations. 
The necessary and sufficient conditions for complex 
variable function W to be analytic are that they satisfy the 
CAUCHY-RIEMANN equations let it be differentiable and 
single-valued. 

Thus each two-dimensional heat flow pattern corresponds, a 
complex variable function W(z) in which the real part is the 
thermal potential U(x,y) and the imaginary part is the heat 
flux stream function V(x,y) as 

)y,x(iV)y,x(U)z(W +=  (16) 

In heat conduction problems we must generally restrict W 
to the class of analytic function: both the function W(z) and 

its derivate 
dz

dW
 are single valued and finite. 

In this case W(z) is called to the complex potential of the  
heat flux filed. Of course there can be points on the z plane, 
where the W(z) function is not analytic, but it is analytic at 
every point in the plane, than such a point is called singular 
point as a  singularity of the function. For example, if 

zlnKW =  (17) 

where K is a real constant, the function is analytic at every 
point except of the point z=0, where it is discontinuous, 
hence z=0 is singular point. The mathematical singularity 
corresponds always a thermal singularity. In the above 
example at the point z=0 there is a heat source. It can be 

show easier that π= 2KQ , where Q is called the 
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strength of source. If Q<0 it is a sink. Any singularities 
induce a heat flow pattern around it. Although singularities 
are simply mathematical convenience, they are great 
practical value in that, when combined with other simple 
heat flow patterns they can reproduce closely many 
complicated natural heat flux patterns. The possibility of 
the superposition stems from the linearity of LAPLACE’s 
equation. If we add together a number of complex 
potentials the sum of these will satisfy LAPLACE’s equation. 

The terrestrial heat flux has the same regional interior. Its 
complex potential can be written as  

zqW ∞=  (18) 

obviously satisfies the LAPLACE’s equation. Combination of 
this potential with the potential of singularities can produce 
practically important heat flux patterns. The real part of the 
potential lines determine the isotherms in the plane. The 
imaginary part of the complex potential obtains the heat 
flux streamlines 

const)y,x(U)WRe( ==  (19) 

const)y,x(V)WIm( ==  (20) 

Finally the derivative the complex potential W is the 
conjugate the heat flux vector. 
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Applying the method of singularities for two-dimensional 
heat conduction problems we can obtain solutions relative 
easily even for complicated boundary conditions. 

The greatest advance of the method of singularities is that it 
can be expanded for three-dimensional axisymmetric case. 
The thermal potential function U satisfies the LAPLACE’s 
equation. It can be written in cylindrical coordinates as 
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For axisymmetric heat flux vector field 
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In this case 
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The LAPLACE equation for this case is  
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Analogously to the two-dimensional case a heat flux stream 
function can be interpreted. The stream surfaces are 
adiabatic boundary surfaces, tangented by the heat flux 
vectors. 

In this case the component of the heat flux are 
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Substituting these to Eq. (6) the stream function satisfies the 
equation 
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This isn’t the LAPLACE’s equation yet, but its structure is 
quite similar, the sign of the third term negative only. Thus 
in three-dimensional case there is no complex potential of 
the heat flow. But the thermal potential exists, its constant 
values determined potential surfaces i.e. isotherms. The 
heat flux components are obtained by a simple 
differentiation. Complicated heat flow patterns can be 
constructed by superimposing elementary thermal potential 
functions. 

The heat flux field around a production well is influenced 
by two effects. The first is the terrestrial heat flux, flowing 
vertically upward with a uniform strength. Its potential can 
be written as  

zqU ∞=  (28) 

The other is the well, heating the surrounding rock mass 
with a radially outward flux. The strength of this flux 
depends on the temperature difference between the 
upflowing water and the surrounding rock. This difference 
is zero at the bottom of the well and has its maximum at the 
wellhead. We may assume approximately, that this 
temperature difference linearly increases from the 
bottomhole to the wellhead. The material thermal 
inhomogeneity can be replaced in the mathematical model 
by a singularity: a line source of varying strength. 

The potential of this line source can be written as  
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in which )(ξσ  is the strength of the line source, 

ξ  is the running point of the integration, 

H is the bottomhole depth of the well. 

Thus the axisymmetric potential heat flow around the well 
can be approximated superimposing the potential of a line 
source of varying strength on that of the uniform terrestrial 
heat flow. The combined thermal potential can be expressed 
in the form. 
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The stream function is obtained from the Eqs. (7) and (26): 
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The strength of the line source can be determined applying 
an approximate assumption. 

The overall heat flux in the rock around the well is actuated 
by the temperature difference between the borehole wall and 
the undisturbed rock mass. The temperature of the borehole 
wall can be hardly determined. Let’s consider Fig.1. The 
temperature of the flowing fluid differs, only a few 
centigrades from the bottomhole temperature. 

HTT 0b γ+=  (32) 

The temperature at the outer radius of the cement sheet of 
the well is closer to Tb, than the fluid temperature. Thus, 

instead of the temperature difference zTT 0w γ−− , the 

difference zTT 0b γ−−  is taken. The overall heat flux 

for a layer of unit thickness is obtained as  
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Since 

zH −=ξ  (34) 

it can be written, that 

 ξ=σ C  (35) 

Thus the strength of the line source is a simple linear 
function which can be integrated easily. It is evident that the 
surface V(r,z) equal to a sequence of constants are all point 
tangent to the heat flux vectors and hence define adiabatic 
surfaces of perfect heat isolation. The stream surface 
determined by the equation V=0 is that adiabatic surface 
which forms the contour of the heated region around the 
well. Thus we got the expression 
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After integration a transcendent equation is obtained 
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The solution of this equation can be possible numerically 
only. A sequence of z values is taken and in each depth the 
equation is solved for r. It was carried out applying the 
method of MATLAB FZERO. To the obtained points a 
polynome was fitted by the method of MATLAB PLOYFIT. 
The curve had been determined by this procedure was 
rotated around the coordinate axis z. This leads to the 
equation of the surface of rotation 

)yx(z)r(z 22 +=  (38) 

 

The obtained surface is shown in Fig.2. It is substantially 
different than the earlier assumed circular cylindrical 
contour. 

4. EXPERIMENTAL RESULTS 

The contour of the heated region can be determined by 
experiments too. It is obtained by RAMEY’s solution that 

zTT
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dT
A 0 γ−−=  (39) 

The coefficient A can be determined knowing the measured 
temperature distribution of given well. It is shown in Fig.3. 
The coefficient Ai can be calculated by finite differences: 
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Expressing the transient heat conduction function from 
Eq.(2) we get 
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For steady heat conduction 
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Thus the radius of the contour of the heated region is 
obtained as 

)z(f
weRR =∞  (43) 

The points of the contour calculated by this procedure are 
compared the ones obtained by the singularity method. This 
can be shown in Fig.4. 

5. SUMMARY 

A new mathematical approach is demonstrated for 
determination of the contour of the heated region developed 
in the adjacent rock mass around a geothermal well. The 
two-dimensional method of thermal singularities is 
expanded for a three-dimensional axisymmetric heat 
conduction problem. Instead of the solution of the 
differential equation of the heat conduction, two basic 
equations are written for the heat flux vector. Its components 
can be obtained from a thermal potential by simple 
derivation. The equpotential surfaces of this potential I.e. the 
isotherms can be determined without integration. The 
orthogonal set of surfaces form a stream function tangenting 
the heat flux vectors. These stream surfaces are adiabatic 
surfaces. There is no heat flux across them. The contour of 
the heated region such an adiabatic stream surface can be 
obtained as an axisymmetric surface of rotation. The validity 
of the model must of course checked by experiments. The 
points of the contour had been calculated from the measured 
temperature distribution of the flowing fluid through the 
well. Calculated and measured data are in rather good 
agreement.  
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Fig.1. The temperature difference actuating the radial heat 
flux 

 

Fig.2. The contour of the heated region 
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Fig.3. Measured temperature distribution 
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Fig.4. Comparison of the calculated contour to experimental 
data 
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