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ABSTRACT

The transport of minerals in hot water reservoirs has
received considerable attention because of itsimportance in
geothermal resources development. In the past, numerical
techniques have been employed to obtain solutions to silica
transport and deposition problems. A fully implicit
numerical model, which describes the permesbility
decrease caused by the silica deposition in porous medium,
has been formulated and applied to simulate the laboratory
experiments and filed data. A finite difference method is
used to discretize the mass of water, silica reaction, and
energy balance equations. As an expression for silica
deposition rate, we used models of Ramstidt and Barnes.

The numerical model of the rate of silica deposition was
applied to the experimental results obtained by Itoi et al.
The experiments involved an isothermal flow through
packed columns. The rate constant of Ramstidt and Barnes
was used in this caculation. A good agreement in the
changes of flow rate, permeability, specific deposit, and
pressure was achieved.

1. INTRODUCTION

The transport of chemica in the hot water reservoirs has
received considerable attention because of itsimportance in
geothermal resources development. One of the problems
associated with using hot water from the reservoirs is the
inevitable deposition of chemica as exploitation proceeds.
Deposition or scaling occurs not only in the surface
equipment but aso in the immediate vicinity of the well
bore. Scale composed of silica, calcite or anhydrite is
encountered in exploited reservoirs throughout the world.

Amorphous silica heads the list of the precipitates
associated with the injection of wastewater. Deposition of
silica around the wellbore causes reduction in formation
permeability and subsequently the injectivity of the well
(Itoi et al. 1987, 1989).

The primary objectives of this work are to develop a fully
implicit numerical model, which describes the porosity and
permeability decrease caused by the silica deposition in
porous medium, and to apply the model to the laboratory
experiments data.

A finite difference method is used to discretize the mass of
water, silica reaction, and energy balance equations. Time
is discretized as fully implicit, to ensure the numerica
stability. The model employs upstream weighting to
caculate the interface of water enthalpy and silica
concentration, harmonic  weighting for  intrinsic
permeability, and an arithmetic average for the mass
density and viscosity. The nonlinear balance equations are
linearized using a residual-based Newton-Raphson iterative
technique. We used models of Ramstidt and Barnes (1980)
for silica deposition rate.

2. SILICA DISSOLUTION/PRECIPITATION

2.1 Silica Solubility

Silica occurs in a number of different forms including
quartz, cristobalite, tridymite and amorphous silica. All of
these various polymorphs are known to occur in the nature.
In study of hydrotherma system, quartz and amorphous
silicaare the two polymorphs most commonly encountered.

It is generally accepted that silica water reaction isasimple
surface reaction given by
SiOz(S) + 2H20 =4 Si(OH)4(aq) (1)

Recently, Rimstidt (1997) published new quartz solubility
measurements in pure water that approached equilibrium
from undersaturation at 21, 50, 74, and 96 °C. He showed a
solubility function correlated for temperature range 0 to 300
°C:

log m=-1107.12/T, —0.0254 %))
where m is the mola solubility of quartz and Ty is
temperature in Kelvins.

2.2 Kinetics of Silica Reaction

As the geothermad is extracted and steam is separated, the
remaining water fraction becomes highly supersaturated
with respect to amorphous silica Amorphous silica
deposition may then occur, at a rate which appears to be
governed by severad factors such as degree of
supersaturation, temperature, pH, presence of dissolved
salts and foreign ions, availability of nucleating species, and
fluid regime. Deposition is known to occur by direct
deposition on solid surfaces (heterogeneous nucleation) or
by polymerization followed by colloida deposition
(homogenous nucleation).

There are number of experimenta studies made on the
kinetics of amorphous silica polymerization which have
mostly measured the disappearance of monomer silica
during the course of the reaction (Rimstidt and Barnes,
1980; Bolmann et al., 1980; Carroll et a., 1998; Tester et
al., 1997). The kinetics of polymerization are so complex
that the studies yielded various estimates of the order of
reaction. The following discusson covers the important
kinetics models of silica deposition, which will be used in
this work in modeling silica transport in geothermal
reservoirs.

Rimstidt and Barnes (1980) performed their experiments in
sdt-free water and derived the kinetics of silica dissolution
precipitation at temperatures 0 to 300 °C. Their rate
equation can be expressed as

R.=-k(C-C,) @)
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where k = k’i

Here, K is the dissolution constant, A/M is the ratio of the
relative surface area to the relative mass of water in the
system. C isthesilicic acid concentration (mg/kg), and Cgis
the saturation concentration of the silica phase present. The
Surface area A is afunction of the shape of particles and the
degree of fracturing. They also concluded that the rate
constant for precipitation of all silica phasesis the same and
can be expressed as

2598

K

logk™ =-0.707 - 4)

where Ty is temperature in Kelvins.

Bohlmann et a. (1980) studied molecular deposition from
controlled synthetic solution. They monitored the
deposition of monosilicid acid flowing through a column
packed with granular amorphous silica and other similar
forms. They found that after the substrate was coated fully
with amorphous silica, the nature of the substrate had no
effect on the deposition rate of silica but an increase in salt
concentration to 4.0 molal increases the deposition rate by
more that an order of magnitude. Fleming (1986) studied
silica polymerization (without nucleation) in an attempt to
resolve conflicting results on the reaction order. His
experiments were performed at 25-50 °C, 0-1 molal NaCl
and pH from 4 to 8 in unbuffered solutions. Based on the
results of his differential rate data plus other experimental
results (Bohimann et al., 1980), he suggested two kinetics
regimes for silica polymerization.

In general form (Steefdl and Lasaga, 1994), the rate of
growth or dissolution of a mineral in water solution can be
expressed as

A
R =Vk[——1] (5)

and, k = kys exp) “Bf1_ 1
R |T, 29815

where, kys is the reaction rate constant at 25 °C (4.30 x 104
moles m? s%), E, is the activation energy (75.0 kJmol),
AV is the area over which the reaction occurs per unit
volume of fluid (m?m®), T is the temperature in °K, Ris
the gas constant (8.31456 Jmol K), Q is the activity of
agueous SIO,, and K is the equilibrium constant for
dissolution of quartz reaction.

Dove (1994) developed a new genera expression for the
dissolution kinetics of quartz from a compilation of
published rate measurements and new hydrotermal data.
The equation was based upon a surface reaction model that
correlates changes in modeled surface complexes with
quartz reactivity in agueous solutions. The model was fitted
to 271 independent measurements dissolution rate and
quantifies reaction kinetics with temperature range from 25
to 300 °C for solution pH of 2 to 12 and 0 to 0.3 molal
sodium. Tester et a., (1994) performed their experiments
for quartz dissolution kinetics in pure water at temperature
25 to 625 °C from five different experimental apparatuses.
Renders et a. (1997) carried out experiments to measure
the rate of dissolution and precipitation for cristobalite (xtb)
at temperature 150 to 300 °C. They derived the kinetics

equations in a manner similar to that described by Ramstidt
and Barnes (1980).

Caroll et da. (1998) investigated amorphous silica
precipitation behavior in simple laboratory experiments and
more complex filed experiments in the Wairaki, New
Zedland, geothermal area. They found, in simple laboratory
solution supersaturated with the absence of chemica
impurities, the precipitation rate have a first-order
dependence on f(AG; ).

Itoi et al. (1984) performed an experimental study involving
near-isothermal flow of hot water sampled from the Otake
geothermal field with supersaturated silica through a porous
medium column. Their experimenta results show that the
silica scale is deposited mainly in the region near entry of
the column, resulting in drastic permesbility reduction.
Based on the experimental results they obtained, Itoi at al.
(1985) developed a one-dimensional mathematical model to
represent silica deposition. The deposition model they
considered takes into account the possible effect of
aluminum on silica deposition. They also used the Kozeny-
Stain equation to model the permeability reduction in the
column. They were able to model the observed changes in
flow-rate, specific deposit and permeability by using a very
small inlet silica concentration. Itoi et al. (1986) extended
the one-dimension model they used earlier to radia flow
coordinates in order to predict changes in permeability and
injectivity around a well. They assumed the reservoir is
porous and radialy symmetric with a homogenous
thickness. In this model, the effect of trace metals
(aluminum) on the silica deposition was neglected because
rock fragments were used in their experiments instead of
the auminum beads. The equations used were aso
modified to represent the rapid decrease in permeability of
column at early stages of their experiments. More recently,
Itoi et a. (1987) modeled the decrease in injectivity of
some wells in the Otake geothermal field. They used the
radia flow model (Itoi et al., 1986a) but simplified the rate
equation for silica deposition. A very smal inlet silica
concentration was also used in the model.

Fig. 1 Schematic view of the experimental tower (Itoi et
al., 1984, 1986)

Itoi et al. (1984, 1986) studied the deposition of amorphous
silicain porous column (50 cm long and 5 cm in diameter).



The schematic experiment is shown in Fig. 1, and the
experiment conditions are given in Table 1. In their
experiments a sample of hot water from the Otake
geothermal field was introduced at a constant temperature
90 — 92 °C, into a column packed with aluminum beads.
The column was operated at a constant pressure drop and
changes in flow rate (due to deposition) were monitored.
The amount of silica deposited in the column was then
determined after drying the beads. They found that the most
of silica scale was deposited within the first 10 cm of the
porous medium. Their analysis showed that the
permeability of the uppermost part of the porous column
decreased by an order of two compared with its initial
value, whereas in the deeper portions its change was
insignificant. The amount of the silica deposit decreased
rapidly with depth and progressively increased when the
flow rate was increased.

Table 1 Summary of experimental conditions

Run No. Total Initial | Porosity | Filling | Silica
Hydraulic |Flow rate Material | Conc.
Potential | (cm®/s) (ppm)
(cm)
RUN-1 52.4 63.9 0.40 BEAD
RUN-2 24.0 38.8 0.39 BEAD
RUN-3 154 29.0 0.40 BEAD
RUN-4 319 45.6 0.40 BEAD 522
RUN-5 237 40.4 0.40 BEAD 522
RUN-6 19.3 343 0.39 BEAD | 522
RUN-30 322 455 0.38 BEAD | 493
RUN-31 30.7 50.4 0.48 ROCK | 493
RUN-32 44.4 58.3 0.49 ROCK | 493
RUN-33 39.1 54.1 0.39 BEAD 493
RUN-37 30.7 48.3 0.37 BEAD 475
RUN-38 30.7 448 0.49 ROCK 475
RUN-39 212 418 0.52 ROCK 475
RUN-40 39.8 62.9 0.48 ROCK | 475

2.3 Mathematical M odel of Silica Deposition

In the past, numerical techniques have employed to obtain
solutions to silica transport and deposition problem (Lai et
al., 1985; Itoi at a., 1985, 1986a, 1986b, 1987; Verma and
Pruess, 1988, Wells and Ghiorso, 1991; Malate and
O’ Sullivan, 1992, 1992a, 1993; Lowell et al., 1993; Steefel
and Lasaga, 1994; Canals and Meunier, 1995; White, 1995,
1997; Bolton et a., 1996, 1997; Martin and Lowell, 1997,
Takeno et d., 1998, 19983).

La et al. (1985) solved the full mass, energy and silica
mass balance equations by a combination of explicit
monotonised upwind central difference method and the
operator splitting technique. The numerical scheme was
implemented for one-dimensiond problems while for two-
dimensional problems, they have aso used the first order
rate equation of Rimstidt and Barnes (1980) for the reaction
term. Their numerica model was used for theoretical
studies of silica deposition in a single fracture. They aso
applied their model to study the temperature and pressure
behavior as well as the silica transients in the Ellidaar
geothermal field in Iceland.
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Itoi et al. (1985, 1986, 1986a, 1987) studied the isothermal
one dimension and radia transport of silica in porous
medium. They solved the silica conservation eguation using
a finite difference method. They represented the deposition
rate by several alternative kinetic models.

Verma and Pruess (1988) used a humerical model to study
the dissolution and precipitation of quartz silicanear a high-
level nucler waste emplaced in liquid-saturated
hydrothermal system. They employed a modified version of
the MULKOM simulator, which included the rate equation
of Ramstidt and Barnes (1980). They have studied both the
canister problem and the repository-wide thermal
convection problem and compared the results of thermo-
hydrological conditions with and without inclusion of silica
redistribution effects. They found that silica redistribution
in water saturated condition does not have a sizable effect
on host rocks canister temperature, pressure or flow
velocities.

Wells and Ghiorso (1991) have caculated the rate of
decrease in porosity and permeability in a porous medium
as fluid flowed a constant rate against a uniform
geothermal gradient. They solved one-dimension rate
equation using a finite difference method, and applied to
problems of silica mass transfer in mid ocean ridge
hydrothermal systems. To represent the deposition of
quartz, they used the general kinetics rate equation of
Lasaga (1984).

Malate and O'Sullivan (1992) presented a mathematical
model to describe silica transport and deposition in porous
medium. In particular, they derived analytical solutions for
the idealized problem of isothermal constant rate and
variable rate injection into a packed column or a one-
dimensional channel. They used severa forms of kinetic
models of silica deposition and solved the problem using
the method of characteristics. The changes in porosity and
permeability resulting from deposition were included in
their models.

Malate and O’ Sullivan (1992a) performed the problem of
transport and deposition of silica in non-isothermal flow,
either in porous medium or single fracture. Same as the
previous work, they obtained analytic solutions for both the
one-dimensional problem of constant rate injection into
channel or packed column and radialy symmetric problem
of the flow away from a reinjection well. They represented
silica deposition by a rate equation of Rimstidt and Barnes
(1980). The model was applied to some field data from the
Otake geothermal field, Japan.

Malate and O’ Sullivan (1993) extended to analyze silica
deposition effects into a uniform layer from a well that
produces radially symmetric flow. The mathematical model
developed also uses the standard chemical transport-
reaction term representing the deposition of silica. The first
order rate equation of Rimstidt and Barnes (1980) was used
to present silica deposition. The model derived was applied
to simulate the changes in injectivity of some reinjection
wells in the Tongonan geothermal field in Philippines.

Lowell et a. (1993) performed similar calculations with
Wells and Ghiorso (1991) but considered flow in discrete
fractures and accounted for heat transfer between up-
welling fluid and adjacent rock as well as the effect of
pressure on silica solubility. They showed that decrease in
permeability resulting from silica precipitation occurred
about an order of magnitude more slowly than for thermal
expansion.
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Steefel and Lasaga (1994) developed a numerical model for
computing coupled multi-component chemica reactions,
multi-species chemical transport, hydrodynamics flow, and
heat transfer. The model was solved simultaneously using a
finite difference method for multi-component reaction and
solute transport in one and two dimensions. They
questioned the validity of maintaining equilibrium between
dissolved silica, and quartz on the fracture walls as assumed
by Lowell et a. (1993). Steefel and Lasaga showed, in fact
that the flow rate is an important parameter in controlling
the amount of super-saturation of dissolved silica, and
argued that silica reaction kinetics need to be considered in
order to correctly model permeability reduction by silica
precipitation. Steefel and Lasaga (1994) also considered
thermal convection in an initially homogeneous, porous box
heated from below in which permesability was affected by
kinetically controlled silica precipitation/dissolution. They
showed that the reduction in permeability by precipitation
caused the flow to be more diffusive, whereas mineral
dissolution caused the flow to be more focused.

White (1995) presented an agorithm for the transport of
reacting chemical species in multi-phase fluid systems such
as those found in geothermal reservoirs. This algorithm has
been incorporated into the geothermal simulator TOUGH?2
(Pruess, 1991). He applied it to severa example problems
of geotherma reservoirs and considered similar problems
that presented by Steefel and Lasaga (1994).

In recent work on effect of thermoelasticity, Martin and
Lowell (1997) developed a numerical model for the
evolution of fracture permeability resulting from combined
effects of thermoelastic stresses and precipitation of silica
as high-temperature, reactive fluid traverses temperature
and pressure gradient. They vaidated the model by
comparing the results with those from Moore et al. (1983),
on cylindrical granite cores. They obtained that the model
results show a rapid initid decrease in permeability
resulting from thermoelastic stresses, followed by a further
decrease resulting from silica precipitation. They suggested
that disagreement between the model and laboratory data
caused complication such as reaction kinetics, precipitation
of other minerals and nonhomogenous crack distributions.

3. MODEL FORMULATION

In order to gain a better quantitative understanding of the
silica deposition in porous medium, and to aid analysis of
future wastewater injection effort, a numerical simulator
has been developed, that can model the evolution of
permeability and porosity.

In this section, details of mathematical and numerica
formulation of the simulator are given. The results of
simulation of severa laboratory scale experiments will be
presented in Section 4.

3.1 Assumptions

The numerica simulator has been developed for the
purpose of modeling single-phase two-components (water
and silica) flow in a geothermal system. This code is based
on the generd finite difference method.

In the present formulation, the system is assumed to be
composed of two mass components, water and silica. Each
component flows responding to pressure and gravitational
forces according to the Darcy’s law. As transport of two
mass components occurs by advection, it is assumed that
water and silica are in a loca chemica and thermal
equilibrium.

3.2 Governing Equation

In a non-isothermal system, two mass balance equations
and one energy conservation equation are needed for fully
describing the system. The following summarizes the
governing transport eguations. The mass continuity
equation of water can be expressed as

V.{ﬂ(Vp—prVZ)}:i(¢pw)+qw (6)
P a

w

where ¢ is the porosity, p, is the water density, g, is the

injection rate of water per unit volume of rock. The left-
hand side is the flux term, where k is the absolute
permeability, w4, is the water dynamic viscosity, p is the
pressure, and g isthe gravitational acceleration.

The equation for conservation of silicain porous media can
be expressed as:

V.| uc(vp-p,gvz)|-V-(p,DVC) -
Hy 7
%@pWC) +3,-Rg

where C is the silica concentration, D is the diffusion
coefficient, g, is the injection rate of silica per unit rock

volume, and R; istherate of silicareaction.

The eguation for conservation of energy is given by

V.| ¥up (vp-p,gvz) |-V (K VT) =
Hy (8

J _

E(QDWUW + (1_ ¢)prCrT) +0y
where h,, is the water specific enthapy, Ky is the thermal
conductivity, Uy, is the specific internal energy, p; is the

rock density, ¢ is the heat capacity of the rock, T is the
temperature, and @, is the injection rate of heat per unit

rock volume.

3.3 Numerical Solution Method

The finite difference method is used to discretize the flow
domain into rectangular grid system. Eq. (6) may be
rewritten as:

V- [4(Vp-pgV2)]= 2 90,) 43, ©

where the water mobility A, isgiven as:

A, = ["PJJ (10)
Hyy

Then

V'[ﬂw(VD—PWgVZ)]zi(ﬂwx%}%[ﬂw%]
(11)

2| 2l - pu 520

The flow term for z direction in Eq. (11) is discretized as
follows:
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E(ﬂm % =482 (A2 P) (12)
where A, p= Puia = Px _ Pk = Pra

AZ k+1/2 AZ k-1/2

Multiplying Eq. (12) by the grid block volume
Vo (=AZ A ),

Vo7 (A A7 P) = Ay (AZ Ay A7 P)
= é[(Azk Az Prrs2 — (AZ A Az p)k—llz] (13)
K
=TZ, k172 Prss = Pe) = TZyge1s2( Py = Pya)

where

17 _ A2 Ae [ Kpw A
wki/2 = 7o = A7
k+1/2 Hy k+1/2

k+1/2

For the gravity term of Eq. (11):
2 A 27]=-a (ApePw0A,2Z) (14)
& pwgo—)z 4 pwg z

Multiplying Eq. (12) by the grid block volume
Vo (=AZ A ),

Vil z (ﬂWZprVZ) =TZ 1411 2Pwks1129(Zicer — Zi)

(15)
=TZy k1 2Pun-129(Z¢ = Zy 1)

Then, a discretized expression for the flux term given by
Eqg. (11) is obtained by the first order finite difference
approximation in space and multiplication of the bulk
volume V.

Vpx V- [4,(Vp- p,gVZ)]

=A,[TX,A,P] +Ay[TYWAyp]
+A,[TZ,A,p-TZ,p,0A,Z]

=TX i 1/2,jkPisjk
= (MXwicwz, ik + TR wisw2, k) Pk
FTX w2,k Pk + TV j—12k B otk
= (Mo jrvzk + i jsar26) P jk
T w2k B ik + TZwi jk-12Pr okt
=(TZyi i 12 F T2y j k12 Bk
+TZyi i k2P j ket
+TZyi ko1 2Pwi i k129 jk = Zi j k)
=TZyi i ki1 2Pwij k1129 ke = Zijx)

(16)

where TX,,ik iS the interblock transmissibilities of
water.

The discretized form of the flow term in Eq. (7) becomes:
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Vo xV - [Ty(Vp- p,0VZ)]

= A [TX APl +ATYA, p]
+A[TZA,p-TZ.p,0A7,Z]

=TXciv2,jk Pk
—(MXeicyz i+ TXeivwz, ) Pijk
+TXciw2,i kP k
+TYei 2k P joak
= (Meijevzk + TYei jw24) Prjk
+TYG jra/2k P ok
+TZe k2P j ks
~(TZ¢ k12 + T sm2) Pk
+TZ i a12P ket
+TZg; i kv2Vwi jk-v2(Zijx = Zijxe1)

_TZc.i,j,k+1/2yw.i,j,k+1/2(zi,j,k+1 - Zi,j,k)

(17)

where TX;i,/,x IS the interblock transmissibilities of
silica
The discretized form of the flow termin Eq. (8) becomes:

V, XV [T,(VP - p,,aVZ)]
=A[TX,A,P]+ Ay[TYhAyP]
+A[TZ,A,P-TZ,p,0A,Z]
=TXh.i—112,j,kR—lj,k
~(MXnicvzjk + Xnisw2,00R,
+TXpisw2,j kB k
+ TV j—v2kP -1k
= (i ivz2k + TVhi s 20 Rk

+TVhi j+1r2.k P 1k

(18)

+TZy; i k-12R jka

=(TZp; i kw2t TZnji jcsw2) Bk

+TZpj kw2 ke

+ T2y kew2Pwij k12923 x = Zij k1)
_TZhAi,j,k+1l2pw.i,j,k+1lzg(zi,j,k+1 - Zi,j,k)

where TX;i14/5 j « iS the interblock transmissibilities of heat.

The discretized form of the thermal conductivity term in
Eq. (9) becomes:
VXV [T(VT)]
=A[TXA,T]+ Ay[TYtAyT] +A,[TZ,A,T]
:Txt.i—llz,j,kTi—l,j,k
= (MXiicwz TRz, 100 Tk
+TX w2, kT
+ TV w2k T j-ak (19)
= (MY jewzk + TV 260 T
+ TV w2k ek
+TZ4 i kw2l j k-1
=(TZy; k-2 + T2 ks 2) Tk

+TZy kw2l j ke
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where TX;4/, « IS the interblock transmissibilities of the
thermal conductivity.

The discretized form of the right hand side in Eqg. (6) can be
expressed as:

V _ ¥ n+ n
5 (0p) +Vothy = 00" - @) |+ a @)

The discretized form of the right hand side in Eq. (7) can be
expressed as;

b (09,0) + %, ~VoR 9=
@

V,
“2lgp.0r - Gp.0) | a-VR

The discretized form of the right hand side in Eq. (8) can be
expressed as;

\ _
A_?:At (9o +(1=0)p.CT) +ViTy

—bligou, + a-pe™ (22)
(U + (- A)peT) |+ a

Time is discretized as fully implicit first-order finite
difference. This ensures the numerical stability necessary
for efficient simulation of multicomponent flow. The mass
and energy balance equations given by Egs. (6) through (8)
may be written in a discretized form in term of the residual
of each component in each grid block:

Fvvi,j,k = A)<[TXWA)< p]Ple + Ay[TYwAy p]|n-]—1k
+ AZ[TZWAZ p _TzwpngzZ] |nJ]r1k

VbAi,j,k n+l n
—T[(¢ W)= (00,) ],j,k

_(qw)i,j,k =0

(23)

F, e = AdTXCAPIT+ A ITYA, PIT
+ATZA, P=TZopuOA 211}k
o (24)
_%[(WWC)””— (¢pWC)"]i,j,k

()i jx +VbAi,j,k[Rc¢]irT}—ilk =0

Fh jk =AJTX A, p]m,lk +A[TYA, p]m,lk
+A[TZ,A,p-TZ,p, 97,211
= AJTXA T + A TY,A T

+ AZ[TZKAZT] |nJJrlk (25)

V.. .
Sve (600, +A-0)prc, )™

_(¢pwuw+(1—¢)prCrT)"],j,k
—(0)ijx =0

For a flow region discretized into N-grid blocks, the
equations above represent a system of 3N coupled nonlinear
algebraic equations. The unknowns in these equations are
the 3N primary variables at thetime level t +At .

The nonlinear balance equations given by Egs. (23) — (25)
are linearized using a residua-based Newton-Raphson
iterative technique. The Newton-Raphson technique is very
powerful technique, which has been widely used for
solution of a set of non-linear equations. Denoting the
vector of primary variable in each grid block as X, Egs. (23)
— (25) may be written as:

F(X)=0 (26)

where F is the 3N vector of the component residuals.
Performing a Taylor series expansion of Eq. (26) about an
assumed solution, X*?, and neglecting the higher-order
terms resultsin

F(X (v+1)): F(X (v))_'_(d;((x)](v)(x (v+1) X(v)) @7)

where v is iteration level. From the requirement that the
residuals at the iteration index v+1 must vanish, Eq. (27)
leads to a system of linearized matrix eguation as

(09 o] e

X

Eqg. (28) represents a linear system of 3N simultaneous
equation. These equations may be written in a more
expanded matrix form as

J1,1 J1,2 *]13 ‘]lN Axl - F1
Jo1 Jop Joz o Jon AX, -F
Ja1 Jao 33 Jan x| AX; |=| —F5 | (29)
Ing Inz Ins o I AXy -Fy

where [J ] is the Jacobian matrix, [AX ] is the vector of
unknown changes in the primary variables in each grid
block from previous iteration, and [- F ] is the vector of
residuals of each component in each grid block.

Each of Jacobian matrix elements, J;; is actually athree-by-
three submatrix. The J;; represent the partial derivatives of
the residuals in a grid block with respect to primary
variables (p, T, and C) in the element, the submatrix J;; is

Fu Fw Fw
b KL o
5 o Fe Fe e -
I
oh Fh Fh
d K T

The partid derivatives in Eq. (30) are caculated
numerically by successively incrementing each of the
primary variables. As each primary variable is incremented,
all of the second variables are calculated. These are used in
conjunction with the incremented primary variable to
caculate a new value of F. The partia derivative is
calculated by subtracting the origina value of F from the
incremented value, and dividing by the amount of the
primary variable increment. All of the partial derivativesin
Eq. (30) are evaluated at iteration level v.



The vector of unknown changes in the primary variables in
Eq. (29) consists of N groups of three-component vectors.
For each grid block the primary variablesarep, T, and Cis

p(V+1) _ p(V)

AX =|ctD _cW (31)
T (v+D) _ T (v)

The vector of residualsin Eq. (29) aso consists of N groups
of three-component vectors, F in Eq. (29) is

- FW(X(V))
—F=|-F,(X") (32)
-Fu(X¥)

In Eq. (32), each of the residuals is evaluated at iteration
level v.

At the beginning time step, the converged values of X from
the previous time step are used as the initial solution for the
first iteration. The system of simultaneous equations is
solved with a general elimination without pivoting, which
uses sparse storage techniques and only stores the nonzero
member of the Jacobian matrix. Iteration is continued until
al residuads are reduced to a smal fraction of the
accumulation terms (g).

|F (XD )| <e (33)

The model employs upstream weighting to calculate the
interface fluid enthalpy and concentration, harmonic
weighting for intrinsic permeability, and an arithmetic
average for the mass density and viscosity. For example,
upstream weighting is defined by

C12=C ifflow itoi+1 39
Ci12=Cy,, if flow i+1toi (35)

The sign of [(p,;— p)—-p,9AZ] gives the direction of

flow. Flow isfromi to i+1 if this quantity is less than zero
and vice versa

3.5 Por osity-Per meability Changes

The gpecific deposit is calculated using the formula
suggested by Itoi e al. (1985) as

+ + 1_¢ 1%
St — (g, — gt s | Ps 36
60 )x[—l_ %]p, (36)

where ¢ is the porosity of quartz, and ps is the density of
quartz (kg/m®). The porosity of rock that decreases as silica
depositsis expressed as

t+At X At

¢t+At =¢t + RC (37)
Ps

where ps is the molar density of quartz. The change is
permeability as a result of deposition/precipitation is
calculated using the model derived by Weir and White
(1996). The permeability is given by
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. 158 0.460
KA K| 1— [l— [ ¢t¢ A‘_—¢¢c ] } (39)
0 c

where kg is the initial permeability, ¢ and ¢, are the initial
porosity and a critical value of porosity a which the
permeability reduces to zero, respectively.

3.6 Computational Algorithm

To begin the calculation, the grid block and rock properties
should be defined. The initial and boundary conditions are
then initialized. At this point, the program begins checking
the flow direction and stepping time. On the first iteration,
it is assumed that the primary variables, porosity and
permeability are the same as the previous time step.
Calculations of the fluxes, accumulation, sink/source, and
reaction term follow. At this point a Newton-Raphson
iteration is required in order to solve primary variable at a
new time step. Each Newton-Raphson iteration consists of
caculating the residual of mass and energy balance
equation, and the partial derivatives of these equations with
respect to the primary variable (the Jacobian matrix). This
is repeated until convergence is achieved. If convergence of
the Newton-Raphson iteration is achieved, the permeability
and porosity of rock are updated. Then calculations
continue to the next time step.

4 SIMULATION RESULTSAND DISCUSSION

The numerical model of the rate of silica deposition was
applied to the experimenta results obtained by Itoi et a.
(1984, 1986). The experiments of an isotherma flow
through packed columns (Fig. 1) were discussed in Section
2. Simulation by the model was conducted only on Run #05
and Run #38.

The model parameters used in matching the changesin flow
rate, permesability, specific deposit, and pressure are listed
in Tables1 and 2. A constant discretization of 40 grids were
employed in z direction (Fig. 2), and the rate constant of
Ramstidt and Barnes (1980) was used in this calculation
(Eq. (3)). The boundary conditions as constant pressure at
inner and outer grid block were used. With these boundary
condition, theinlet and outlet rates are

G =—"(pi,— 1) (39)
Myl

Qo = - (pN - pout) (40)
Myl

where p;, is the injection pressure, p; is the pressure at first
grid block, py is the pressure at the end of grid block, poy is
the pressure at outlet, A is the column cross-sectional area,
and L is the distance form the center of the outermost/
innermost grid block to the outer/inner boundary (= AZ/2).

Table 2 Data used to match Itoi’s experiment

Parameter Value
Column temperature, °C 90
Density of rock, kg/m® 3620
Density of deposited silica, kg/m® 2040
Length of the column, cm 50
Diameter of the column, cm 5




Sutopo

Itoi et al. (1984) did not establish the initia permeability.
Here, it was determined by trial and error. The flow rate at
initial stage of the experiment is controlled by the initia
permeability. Therefore the initial permeability can be
determined when the caculated flow rate fits to the
measured one at this stage. The initia reaction surface area,
A, need not be very accurate since the whole rate constant,
k, (see Eq. (3)) is varied in order to match the caculation
results to the experimental data. Itoi et al. (1985) found that
the way to match the flow rate, permesbility, specific
deposit, and pressure was to use an artificially small inlet
saturation of silica. They justify this by claiming only some
of the silica is available for deposition. In this calculation
we have adopted a value of the rate constant similar to their
value.

pir=hydraulic potential + 1

Pou=1bar

Fig. 2 Grid model of the column porous medium

4.1 Run #05

The parameters used to match in this calculation were
permeability 1.464 x 10° m? rate constant k = 1.265, and
porosity of silica ¢ = 0.932. The results of simulation are
shown in Figs. 3(A), 3(B), 3(C), 4, 5 6, and 7 for
permeability, specific deposit, porosity, flow rate versus
time, pressure versus distance, history of permeability
versus distance, and permeability versus time, respectively.
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804 © Data RUN #05
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‘@ 0.2
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50.0
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0.0 0.1 0.2 0.3 0.4 0.5

Distance (m)

Fig. 3 Dimensionless per meability versus distance (A),
specific deposit versus distance (B), and porosity versus
distance (C) for Itoi’s Run #05.

A good agreement found only at the distance near the inlet
(Fig. 3). Figs. 5 and 6 represent the distributions of
measured and calculated pressures and permeability for
different time, respectively. At time = 0 minutes, the
pressure curve shows linear distribution along the porous
medium, since there is no silica deposition. As is expected
from the permeability distribution in Fig. 6, pressure
decreases with time. In particular, total decrease is mainly
at place from 0 to 10 cm in the distance. The calculated
permeability curve (Fig. 6) for time = 3940 minutes shows
slightly higher values than the experimental data.
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Fig. 4 Flow rate versustimefor Itoi’s Run #05
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Fig. 6 History of dimensionless per meability ver sus
distancefor 1toi’s Run #05

Fig. 7 compares the calculated results and the experimental
permeability versus time for different distances. At early
times, there is a very rapid reduction in the calculated
permeability. A good match between the calculated



permeability and measured data is found at a late time for
distance less than 10 cm from inlet. While at distance of 30
cm the calculated curve shows vaues higher than the
experimental data. As seen in Fig. 4, a early time the
calculated flow rate also shows lower values than measured
data and higher values at late time.
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Fig. 7 Dimensionless per meability versustimefor Itoi’
Run #05

4.2 Run #38

The best fit to the measured data of Run #38 was achieved
with a permeability 1.279 x 10°° n?, rate constant k = 0.590,
and porosity of silica ¢ = 0.923. The calculated results for
distributions of permesability, specific deposit, and porosity
are presented in Figs. 8(A), 8(B), and 8(C), respectively.
The flow rate changes and pressure distribution are also
shown in Figs. 9 and 10, respectively.
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Fig. 8 Dimensionless per meability versus distance (A),
specific deposit versus distance (B), and porosity versus
distance (C) for Itoi’s Run #38.

Same as the results of the other runs, Run #38 also shows
that permesbility reduction and silica deposition occurred
mainly near the inlet of the column (see Figs. 8). A good
agreement between the experimental and model results is
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seen only near the injection inlet. Fig. 9 presents the
comparison of caculated and measured flow rate. The
reasonabl e agreement between the calculation of changesin
injection flow rate and the data is observed. The calculated
pressure distribution matches very well with the measured
pressure (Fig. 10).
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Fig. 9 Flow rate versustimefor Itoi’s Run #38
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Fig. 10 Potential versusdistancefor Itoi’s Run #38

5 CONCLUSIONS

A fully implicit numerical model, which describes the
porosity and permeability decrease caused by the silica
deposition in porous medium, has been used to simulate the
experiments of silica deposition in geothermal reservoirs.

The numerical model of the rate silica deposition was
applied to the experiments of isothermal flow through
packed columns. The rate constant of Ramstidt and Barnes
(1980) and an artificialy small inlet saturation of silica
were used to match the flow rate, permeability, specific
deposit, and pressure. The poor agreement between the
experimental and model results was seen far away from the
inlet, for permesbility and specific deposit. Silica
deposition and associated permeability—porosity reduction
occur mainly near theinlet.

The relationship of reaction surface area with porosity is
important and should be included when modeling
deposition.
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