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ABSTRACT 

The transport of minerals in hot water reservoirs has 
received considerable attention because of its importance in 
geothermal resources development. In the past, numerical 
techniques have been employed to obtain solutions to silica 
transport and deposition problems. A fully implicit 
numerical model, which describes the permeability 
decrease caused by the silica deposition in porous medium, 
has been formulated and applied to simulate the laboratory 
experiments and filed data. A finite difference method is 
used to discretize the mass of water, silica reaction, and 
energy balance equations. As an expression for silica 
deposition rate, we used models of Ramstidt and Barnes.  

The numerical model of the rate of silica deposition was 
applied to the experimental results obtained by Itoi et al. 
The experiments involved an isothermal flow through 
packed columns. The rate constant of Ramstidt and Barnes 
was used in this calculation. A good agreement in the 
changes of flow rate, permeability, specific deposit, and 
pressure was achieved. 

1. INTRODUCTION 

The transport of chemical in the hot water reservoirs has 
received considerable attention because of its importance in 
geothermal resources development. One of the problems 
associated with using hot water from the reservoirs is the 
inevitable deposition of chemical as exploitation proceeds. 
Deposition or scaling occurs not only in the surface 
equipment but also in the immediate vicinity of the well 
bore. Scale composed of silica, calcite or anhydrite is 
encountered in exploited reservoirs throughout the world.  

Amorphous silica heads the list of the precipitates 
associated with the injection of wastewater. Deposition of 
silica around the wellbore causes reduction in formation 
permeability and subsequently the injectivity of the well 
(Itoi et al. 1987, 1989). 

The primary objectives of this work are to develop a fully 
implicit numerical model, which describes the porosity and 
permeability decrease caused by the silica deposition in 
porous medium, and to apply the model to the laboratory 
experiments data.  

A finite difference method is used to discretize the mass of 
water, silica reaction, and energy balance equations. Time 
is discretized as fully implicit, to ensure the numerical 
stability. The model employs upstream weighting to 
calculate the interface of water enthalpy and silica 
concentration, harmonic weighting for intrinsic 
permeability, and an arithmetic average for the mass 
density and viscosity. The nonlinear balance equations are 
linearized using a residual-based Newton-Raphson iterative 
technique. We used models of Ramstidt and Barnes (1980) 
for silica deposition rate. 

2. SILICA DISSOLUTION/PRECIPITATION 

2.1 Silica Solubility 

Silica occurs in a number of different forms including 
quartz, cristobalite, tridymite and amorphous silica. All of 
these various polymorphs are known to occur in the nature. 
In study of hydrothermal system, quartz and amorphous 
silica are the two polymorphs most commonly encountered.  

It is generally accepted that silica water reaction is a simple 
surface reaction given by 

SiO2(s) + 2H2O ⇔ Si(OH)4(aq)  (1) 

Recently, Rimstidt (1997) published new quartz solubility 
measurements in pure water that approached equilibrium 
from undersaturation at 21, 50, 74, and 96 oC. He showed a 
solubility function correlated for temperature range 0 to 300 
oC: 

0254.0/12.1107log −−= KTm                (2) 

where m is the molal solubility of quartz and TK is 
temperature in Kelvins. 

2.2 Kinetics of Silica Reaction 

As the geothermal is extracted and steam is separated, the 
remaining water fraction becomes highly supersaturated 
with respect to amorphous silica. Amorphous silica 
deposition may then occur, at a rate which appears to be 
governed by several factors such as degree of 
supersaturation, temperature, pH, presence of dissolved 
salts and foreign ions, availability of nucleating species, and 
fluid regime. Deposition is known to occur by direct 
deposition on solid surfaces (heterogeneous nucleation) or 
by polymerization followed by colloidal deposition 
(homogenous nucleation). 

There are number of experimental studies made on the 
kinetics of amorphous silica polymerization which have 
mostly measured the disappearance of monomer silica 
during the course of the reaction (Rimstidt and Barnes, 
1980; Bolmann et al., 1980; Carroll et al., 1998; Tester et 
al., 1997). The kinetics of polymerization are so complex 
that the studies yielded various estimates of the order of 
reaction. The following discussion covers the important 
kinetics models of silica deposition, which will be used in 
this work in modeling silica transport in geothermal 
reservoirs. 

Rimstidt and Barnes (1980) performed their experiments in 
salt-free water and derived the kinetics of silica dissolution 
precipitation at temperatures 0 to 300 oC. Their rate 
equation can be expressed as  

( )sc CCkR −−=    (3) 
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where  
M

A
kk −=  

Here, k– is the dissolution constant, A/M is the ratio of the 
relative surface area to the relative mass of water in the 
system. C is the silicic acid concentration (mg/kg), and Cs is 
the saturation concentration of the silica phase present. The 
Surface area A is a function of the shape of particles and the 
degree of fracturing. They also concluded that the rate 
constant for precipitation of all silica phases is the same and 
can be expressed as  

KT
k

2598
707.0log −−=−       (4) 

where TK is temperature in Kelvins. 

Bohlmann et al. (1980) studied molecular deposition from 
controlled synthetic solution. They monitored the 
deposition of monosilicid acid flowing through a column 
packed with granular amorphous silica and other similar 
forms. They found that after the substrate was coated fully 
with amorphous silica, the nature of the substrate had no 
effect on the deposition rate of silica but an increase in salt 
concentration to 4.0 molal increases the deposition rate by 
more that an order of magnitude. Fleming (1986) studied 
silica polymerization (without nucleation) in an attempt to 
resolve conflicting results on the reaction order. His 
experiments were performed at 25-50 oC, 0-1 molal NaCl 
and pH from 4 to 8 in unbuffered solutions. Based on the 
results of his differential rate data plus other experimental 
results (Bohlmann et al., 1980), he suggested two kinetics 
regimes for silica polymerization.  

In general form (Steefel and Lasaga, 1994), the rate of 
growth or dissolution of a mineral in water solution can be 
expressed as  

⎟
⎠
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⎝
⎛ −= 1
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Q
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where, k25 is the reaction rate constant at 25 oC (4.30 × 10-14 
moles m-2 s-1), Ea is the activation energy  (75.0 kJ/mol), 
A/V is the area over which the reaction occurs per unit 
volume of fluid (m2/m3), TK is the temperature in oK, R is 
the gas constant (8.31456 J/mol K), Q is the activity of 
aqueous SiO2, and K is the equilibrium constant for 
dissolution of quartz reaction. 

Dove (1994) developed a new general expression for the 
dissolution kinetics of quartz from a compilation of 
published rate measurements and new hydrotermal data. 
The equation was based upon a surface reaction model that 
correlates changes in modeled surface complexes with 
quartz reactivity in aqueous solutions. The model was fitted 
to 271 independent measurements dissolution rate and 
quantifies reaction kinetics with temperature range from 25 
to 300 oC for solution pH of 2 to 12 and 0 to 0.3 molal 
sodium. Tester et al., (1994) performed their experiments 
for quartz dissolution kinetics in pure water at temperature 
25 to 625 oC from five different experimental apparatuses. 
Renders et al. (1997) carried out experiments to measure 
the rate of dissolution and precipitation for cristobalite (xtb) 
at temperature 150 to 300 oC. They derived the kinetics 

equations in a manner similar to that described by Ramstidt 
and Barnes (1980).  

Carroll et al. (1998) investigated amorphous silica 
precipitation behavior in simple laboratory experiments and 
more complex filed experiments in the Wairaki, New 
Zealand, geothermal area. They found, in simple laboratory 
solution supersaturated with the absence of chemical 
impurities, the precipitation rate have a first-order 
dependence on f(∆Gr ). 

Itoi et al. (1984) performed an experimental study involving 
near-isothermal flow of hot water sampled from the Otake 
geothermal field with supersaturated silica through a porous 
medium column. Their experimental results show that the 
silica scale is deposited mainly in the region near entry of 
the column, resulting in drastic permeability reduction. 
Based on the experimental results they obtained, Itoi at al. 
(1985) developed a one-dimensional mathematical model to 
represent silica deposition. The deposition model they 
considered takes into account the possible effect of 
aluminum on silica deposition. They also used the Kozeny-
Stain equation to model the permeability reduction in the 
column. They were able to model the observed changes in 
flow-rate, specific deposit and permeability by using a very 
small inlet silica concentration. Itoi et al. (1986) extended 
the one-dimension model they used earlier to radial flow 
coordinates in order to predict changes in permeability and 
injectivity around a well. They assumed the reservoir is 
porous and radially symmetric with a homogenous 
thickness. In this model, the effect of trace metals 
(aluminum) on the silica deposition was neglected because 
rock fragments were used in their experiments instead of 
the aluminum beads. The equations used were also 
modified to represent the rapid decrease in permeability of 
column at early stages of their experiments. More recently, 
Itoi et al. (1987) modeled the decrease in injectivity of 
some wells in the Otake geothermal field. They used the 
radial flow model (Itoi et al., 1986a) but simplified the rate 
equation for silica deposition. A very small inlet silica 
concentration was also used in the model. 

 

Fig. 1 Schematic view of the experimental tower (Itoi et 
al., 1984, 1986) 

Itoi et al. (1984, 1986) studied the deposition of amorphous 
silica in porous column (50 cm long and 5 cm in diameter). 
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The schematic experiment is shown in Fig. 1, and the 
experiment conditions are given in Table 1. In their 
experiments a sample of hot water from the Otake 
geothermal field was introduced at a constant temperature 
90 – 92 oC, into a column packed with aluminum beads. 
The column was operated at a constant pressure drop and 
changes in flow rate (due to deposition) were monitored. 
The amount of silica deposited in the column was then 
determined after drying the beads. They found that the most 
of silica scale was deposited within the first 10 cm of the 
porous medium. Their analysis showed that the 
permeability of the uppermost part of the porous column 
decreased by an order of two compared with its initial 
value, whereas in the deeper portions its change was 
insignificant. The amount of the silica deposit decreased 
rapidly with depth and progressively increased when the 
flow rate was increased.  

Table 1 Summary of experimental conditions 

Run No. Total 
Hydraulic 
Potential 

(cm) 

Initial 
Flow rate 
(cm3/s) 

Porosity Filling 
Material 

Silica 
Conc. 
(ppm) 

RUN-1 52.4 63.9 0.40 BEAD  

RUN-2 24.0 38.8 0.39 BEAD  

RUN-3 15.4 29.0 0.40 BEAD  

RUN-4 31.9 45.6 0.40 BEAD 522 

RUN-5 23.7 40.4 0.40 BEAD 522 

RUN-6 19.3 34.3 0.39 BEAD 522 

RUN-30 32.2 45.5 0.38 BEAD 493 

RUN-31 30.7 50.4 0.48 ROCK 493 

RUN-32 44.4 58.3 0.49 ROCK 493 

RUN-33 39.1 54.1 0.39 BEAD 493 

RUN-37 30.7 48.3 0.37 BEAD 475 

RUN-38 30.7 44.8 0.49 ROCK 475 

RUN-39 21.2 41.8 0.52 ROCK 475 

RUN-40 39.8 62.9 0.48 ROCK 475 

 

2.3 Mathematical Model of Silica Deposition 

In the past, numerical techniques have employed to obtain 
solutions to silica transport and deposition problem (Lai et 
al., 1985; Itoi at al., 1985, 1986a, 1986b, 1987; Verma and 
Pruess, 1988; Wells and Ghiorso, 1991; Malate and 
O’Sullivan, 1992, 1992a, 1993; Lowell et al., 1993; Steefel 
and Lasaga, 1994; Canals and Meunier, 1995; White, 1995, 
1997; Bolton et al., 1996, 1997; Martin and Lowell, 1997; 
Takeno et al., 1998, 1998a). 

Lai et al. (1985) solved the full mass, energy and silica 
mass balance equations by a combination of explicit 
monotonised upwind central difference method and the 
operator splitting technique. The numerical scheme was 
implemented for one-dimensional problems while for two-
dimensional problems, they have also used the first order 
rate equation of Rimstidt and Barnes (1980) for the reaction 
term. Their numerical model was used for theoretical 
studies of silica deposition in a single fracture. They also 
applied their model to study the temperature and pressure 
behavior as well as the silica transients in the Ellidaar 
geothermal field in Iceland. 

Itoi et al. (1985, 1986, 1986a, 1987) studied the isothermal 
one dimension and radial transport of silica in porous 
medium. They solved the silica conservation equation using 
a finite difference method. They represented the deposition 
rate by several alternative kinetic models. 

Verma and Pruess (1988) used a numerical model to study 
the dissolution and precipitation of quartz silica near a high-
level nuclear waste emplaced in liquid-saturated 
hydrothermal system. They employed a modified version of 
the MULKOM simulator, which included the rate equation 
of Ramstidt and Barnes (1980). They have studied both the 
canister problem and the repository-wide thermal 
convection problem and compared the results of thermo-
hydrological conditions with and without inclusion of silica 
redistribution effects. They found that silica redistribution 
in water saturated condition does not have a sizable effect 
on host rocks canister temperature, pressure or flow 
velocities. 

Wells and Ghiorso (1991) have calculated the rate of 
decrease in porosity and permeability in a porous medium 
as fluid flowed at constant rate against a uniform 
geothermal gradient. They solved one-dimension rate 
equation using a finite difference method, and applied to 
problems of silica mass transfer in mid ocean ridge 
hydrothermal systems. To represent the deposition of 
quartz, they used the general kinetics rate equation of 
Lasaga (1984).  

Malate and O’Sullivan (1992) presented a mathematical 
model to describe silica transport and deposition in porous 
medium. In particular, they derived analytical solutions for 
the idealized problem of isothermal constant rate and 
variable rate injection into a packed column or a one-
dimensional channel. They used several forms of kinetic 
models of silica deposition and solved the problem using 
the method of characteristics. The changes in porosity and 
permeability resulting from deposition were included in 
their models. 

Malate and O’Sullivan (1992a) performed the problem of 
transport and deposition of silica in non-isothermal flow, 
either in porous medium or single fracture. Same as the 
previous work, they obtained analytic solutions for both the 
one-dimensional problem of constant rate injection into 
channel or packed column and radially symmetric problem 
of the flow away from a reinjection well. They represented 
silica deposition by a rate equation of Rimstidt and Barnes 
(1980). The model was applied to some field data from the 
Otake geothermal field, Japan. 

Malate and O’Sullivan (1993) extended to analyze silica 
deposition effects into a uniform layer from a well that 
produces radially symmetric flow. The mathematical model 
developed also uses the standard chemical transport-
reaction term representing the deposition of silica. The first 
order rate equation of Rimstidt and Barnes (1980) was used 
to present silica deposition. The model derived was applied 
to simulate the changes in injectivity of some reinjection 
wells in the Tongonan geothermal field in Philippines. 

Lowell et al. (1993) performed similar calculations with 
Wells and Ghiorso (1991) but considered flow in discrete 
fractures and accounted for heat transfer between up-
welling fluid and adjacent rock as well as the effect of 
pressure on silica solubility. They showed that decrease in 
permeability resulting from silica precipitation occurred 
about an order of magnitude more slowly than for thermal 
expansion. 
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Steefel and Lasaga (1994) developed a numerical model for 
computing coupled multi-component chemical reactions, 
multi-species chemical transport, hydrodynamics flow, and 
heat transfer. The model was solved simultaneously using a 
finite difference method for multi-component reaction and 
solute transport in one and two dimensions. They 
questioned the validity of maintaining equilibrium between 
dissolved silica, and quartz on the fracture walls as assumed 
by Lowell et al. (1993). Steefel and Lasaga showed, in fact 
that the flow rate is an important parameter in controlling 
the amount of super-saturation of dissolved silica, and 
argued that silica reaction kinetics need to be considered in 
order to correctly model permeability reduction by silica 
precipitation. Steefel and Lasaga (1994) also considered 
thermal convection in an initially homogeneous, porous box 
heated from below in which permeability was affected by 
kinetically controlled silica precipitation/dissolution. They 
showed that the reduction in permeability by precipitation 
caused the flow to be more diffusive, whereas mineral 
dissolution caused the flow to be more focused. 

White (1995) presented an algorithm for the transport of 
reacting chemical species in multi-phase fluid systems such 
as those found in geothermal reservoirs. This algorithm has 
been incorporated into the geothermal simulator TOUGH2 
(Pruess, 1991). He applied it to several example problems 
of geothermal reservoirs and considered similar problems 
that presented by Steefel and Lasaga (1994). 

In recent work on effect of thermoelasticity, Martin and 
Lowell (1997) developed a numerical model for the 
evolution of fracture permeability resulting from combined 
effects of thermoelastic stresses and precipitation of silica 
as high-temperature, reactive fluid traverses temperature 
and pressure gradient. They validated the model by 
comparing the results with those from Moore et al. (1983), 
on cylindrical granite cores. They obtained that the model 
results show a rapid initial decrease in permeability 
resulting from thermoelastic stresses, followed by a further 
decrease resulting from silica precipitation. They suggested 
that disagreement between the model and laboratory data 
caused complication such as reaction kinetics, precipitation 
of other minerals and nonhomogenous crack distributions. 

3. MODEL FORMULATION 

In order to gain a better quantitative understanding of the 
silica deposition in porous medium, and to aid analysis of 
future wastewater injection effort, a numerical simulator 
has been developed, that can model the evolution of 
permeability and porosity.  

In this section, details of mathematical and numerical 
formulation of the simulator are given. The results of 
simulation of several laboratory scale experiments will be 
presented in Section 4. 

3.1 Assumptions 

The numerical simulator has been developed for the 
purpose of modeling single-phase two-components (water 
and silica) flow in a geothermal system. This code is based 
on the general finite difference method. 

In the present formulation, the system is assumed to be 
composed of two mass components, water and silica. Each 
component flows responding to pressure and gravitational 
forces according to the Darcy’s law. As transport of two 
mass components occurs by advection, it is assumed that 
water and silica are in a local chemical and thermal 
equilibrium.  

3.2 Governing Equation 

In a non-isothermal system, two mass balance equations 
and one energy conservation equation are needed for fully 
describing the system. The following summarizes the 
governing transport equations. The mass continuity 
equation of water can be expressed as 

( ) www
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 (6) 

where φ is the porosity, ρw is the water density, wq is the 

injection rate of water per unit volume of rock. The left-
hand side is the flux term, where k is the absolute 
permeability, µw is the water dynamic viscosity, p is the 
pressure, and g is the gravitational acceleration.  

The equation for conservation of silica in porous media can 
be expressed as: 
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where C is the silica concentration, D is the diffusion 
coefficient, cq is the injection rate of silica per unit rock 

volume, and Rc is the rate of silica reaction.  

The equation for conservation of energy is given by 
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where hw is the water specific enthalpy, KT is the thermal 
conductivity, Uw is the specific internal energy, ρr is the 
rock density, cr is the heat capacity of the rock, T is the 
temperature, and hq  is the injection rate of heat per unit 

rock volume. 

3.3 Numerical Solution Method 

The finite difference method is used to discretize the flow 
domain into rectangular grid system. Eq. (6) may be 
rewritten as: 
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where the water mobility λw is given as: 
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The flow term for z direction in Eq. (11) is discretized as 
follows: 
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Multiplying Eq. (12) by the grid block volume 
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For the gravity term of Eq. (11): 
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Multiplying Eq. (12) by the grid block volume 
)( kkb AZV ∆= , 

( )
)(

)(

12/1.2/1.

12/1.2/1.

−−−

+++

−−
−=∇∆

kkkwkw

kkkwkwwwzZb

ZZgTZ

ZZgTZZgV

ρ
ρρλ

  (15) 

Then, a discretized expression for the flux term given by 
Eq. (11) is obtained by the first order finite difference 
approximation in space and multiplication of the bulk 
volume Vb. 
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where kjiwTX ,,2/1. ± is the interblock transmissibilities of 

water.  

The discretized form of the flow term in Eq. (7) becomes: 
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where kjicTX ,,2/1. ± is the interblock transmissibilities of 

silica.  

The discretized form of the flow term in Eq. (8) becomes: 
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where kjihTX ,,2/1. ± is the interblock transmissibilities of heat.  

The discretized form of the thermal conductivity term in 
Eq. (9) becomes: 
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where kjitTX ,,2/1. ±  is the interblock transmissibilities of the 

thermal conductivity. 

The discretized form of the right hand side in Eq. (6) can be 
expressed as: 

[ ] w
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+ )()()( 1 φρφρφρ    (20) 

The discretized form of the right hand side in Eq. (7) can be 
expressed as: 
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The discretized form of the right hand side in Eq. (8) can be 
expressed as: 
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Time is discretized as fully implicit first-order finite 
difference. This ensures the numerical stability necessary 
for efficient simulation of multicomponent flow. The mass 
and energy balance equations given by Eqs. (6) through (8) 
may be written in a discretized form in term of the residual 
of each component in each grid block: 
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For a flow region discretized into N-grid blocks, the 
equations above represent a system of 3N coupled nonlinear 
algebraic equations. The unknowns in these equations are 
the 3N primary variables at the time level t +∆t . 

The nonlinear balance equations given by Eqs. (23) − (25) 
are linearized using a residual-based Newton-Raphson 
iterative technique. The Newton-Raphson technique is very 
powerful technique, which has been widely used for 
solution of a set of non-linear equations. Denoting the 
vector of primary variable in each grid block as X, Eqs. (23) 
− (25) may be written as: 

0)( =XF   (26) 

where F is the 3N vector of the component residuals. 
Performing a Taylor series expansion of Eq. (26) about an 
assumed solution, X(v+1), and neglecting the higher-order 
terms results in 
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   (27) 

where ν is iteration level. From the requirement that the 
residuals at the iteration index ν+1 must vanish, Eq. (27) 
leads to a system of linearized matrix equation as 
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Eq. (28) represents a linear system of 3N simultaneous 
equation. These equations may be written in a more 
expanded matrix form as 
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 (29) 

where [J ] is the Jacobian matrix, [∆X ] is the vector of 
unknown changes in the primary variables in each grid 
block from previous iteration, and [– F ] is the vector of 
residuals of each component in each grid block. 

Each of Jacobian matrix elements, Ji,j is actually a three-by-
three submatrix. The Ji,j represent the partial derivatives of 
the residuals in a grid block with respect to primary 
variables (p, T, and C) in the element, the submatrix Ji,j is 
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,   (30) 

The partial derivatives in Eq. (30) are calculated 
numerically by successively incrementing each of the 
primary variables. As each primary variable is incremented, 
all of the second variables are calculated. These are used in 
conjunction with the incremented primary variable to 
calculate a new value of F. The partial derivative is 
calculated by subtracting the original value of F from the 
incremented value, and dividing by the amount of the 
primary variable increment. All of the partial derivatives in 
Eq. (30) are evaluated at iteration level v. 
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The vector of unknown changes in the primary variables in 
Eq. (29) consists of N groups of three-component vectors. 
For each grid block the primary variables are p, T, and C is 
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The vector of residuals in Eq. (29) also consists of N groups 
of three-component vectors, F in Eq. (29) is 
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In Eq. (32), each of the residuals is evaluated at iteration 
level v. 

At the beginning time step, the converged values of X from 
the previous time step are used as the initial solution for the 
first iteration. The system of simultaneous equations is 
solved with a general elimination without pivoting, which 
uses sparse storage techniques and only stores the nonzero 
member of the Jacobian matrix. Iteration is continued until 
all residuals are reduced to a small fraction of the 
accumulation terms (ε ). 

ε≤+ )( )1(vXF    (33) 

The model employs upstream weighting to calculate the 
interface fluid enthalpy and concentration, harmonic 
weighting for intrinsic permeability, and an arithmetic 
average for the mass density and viscosity. For example, 
upstream weighting is defined by 

1toflowif2/1 +=+ iiCC ii   (34) 

iiCC ii to1flowif12/1 += ++   (35) 

The sign of [ ]Zgpp wii ∆−−+ ρ)( 1  gives the direction of 

flow. Flow is from i to i+1 if this quantity is less than zero 
and vice versa. 

3.5 Porosity-Permeability Changes 

The specific deposit is calculated using the formula 
suggested by Itoi el al. (1985) as  
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where φs is the porosity of quartz, and ρs is the density of 
quartz (kg/m3). The porosity of rock that decreases as silica 
deposits is expressed as 

s
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∆+   (37) 

where ρs is the molar density of quartz. The change is 
permeability as a result of deposition/precipitation is 
calculated using the model derived by Weir and White 
(1996).  The permeability is given by 
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where k0 is the initial permeability, φ0 and  φc are the initial 
porosity and a critical value of porosity at which the 
permeability reduces to zero, respectively.  

3.6 Computational Algorithm 

To begin the calculation, the grid block and rock properties 
should be defined. The initial and boundary conditions are 
then initialized. At this point, the program begins checking 
the flow direction and stepping time. On the first iteration, 
it is assumed that the primary variables, porosity and 
permeability are the same as the previous time step. 
Calculations of the fluxes, accumulation, sink/source, and 
reaction term follow. At this point a Newton-Raphson 
iteration is required in order to solve primary variable at a 
new time step. Each Newton-Raphson iteration consists of 
calculating the residual of mass and energy balance 
equation, and the partial derivatives of these equations with 
respect to the primary variable (the Jacobian matrix). This 
is repeated until convergence is achieved. If convergence of 
the Newton-Raphson iteration is achieved, the permeability 
and porosity of rock are updated. Then calculations 
continue to the next time step. 

4 SIMULATION RESULTS AND DISCUSSION 

The numerical model of the rate of silica deposition was 
applied to the experimental results obtained by Itoi et al. 
(1984, 1986). The experiments of an isothermal flow 
through packed columns (Fig. 1) were discussed in Section 
2. Simulation by the model was conducted only on Run #05 
and Run #38. 

The model parameters used in matching the changes in flow 
rate, permeability, specific deposit, and pressure are listed 
in Tables 1 and 2. A constant discretization of 40 grids were 
employed in z direction (Fig. 2), and the rate constant of 
Ramstidt and Barnes (1980) was used in this calculation 
(Eq. (3)). The boundary conditions as constant pressure at 
inner and outer grid block were used. With these boundary 
condition, the inlet and outlet rates are 

( )1pp
L

kA
q in

w

w
i −=

µ
ρ

  (39) 

( )outN
w

w
o pp

L

kA
q −=

µ
ρ

  (40) 

where pin is the injection pressure, p1 is the pressure at first 
grid block, pN is the pressure at the end of grid block, pout is 
the pressure at outlet, A is the column cross-sectional area, 
and L is the distance form the center of the outermost/ 
innermost grid block to the outer/inner boundary (= ∆z/2).  

Table 2 Data used to match Itoi’s experiment 

Parameter Value 
Column temperature, oC 90 
Density of rock, kg/m3 3620 
Density of deposited silica, kg/m3 2040 
Length of the column, cm 50 
Diameter of the column, cm 5 
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Itoi et al. (1984) did not establish the initial permeability. 
Here, it was determined by trial and error. The flow rate at 
initial stage of the experiment is controlled by the initial 
permeability. Therefore the initial permeability can be 
determined when the calculated flow rate fits to the 
measured one at this stage. The initial reaction surface area, 
A, need not be very accurate since the whole rate constant, 
k, (see Eq. (3)) is varied in order to match the calculation 
results to the experimental data. Itoi et al. (1985) found that 
the way to match the flow rate, permeability, specific 
deposit, and pressure was to use an artificially small inlet 
saturation of silica. They justify this by claiming only some 
of the silica is available for deposition. In this calculation 
we have adopted a value of the rate constant similar to their 
value.  

pin= hydraulic potential + 1 

Pout= 1 bar  

Fig. 2 Grid model of the column porous medium 

4.1 Run #05 

The parameters used to match in this calculation were 
permeability 1.464 × 10-9 m2, rate constant k = 1.265, and 
porosity of silica φs = 0.932. The results of simulation are 
shown in Figs. 3(A), 3(B), 3(C), 4, 5, 6, and 7 for 
permeability, specific deposit, porosity, flow rate versus 
time, pressure versus distance, history of permeability 
versus distance, and permeability versus time, respectively.  
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Fig. 3 Dimensionless permeability versus distance (A), 
specific deposit versus distance (B), and porosity versus 

distance (C) for Itoi’s Run #05. 

A good agreement found only at the distance near the inlet 
(Fig. 3). Figs. 5 and 6 represent the distributions of 
measured and calculated pressures and permeability for 
different time, respectively. At time = 0 minutes, the 
pressure curve shows linear distribution along the porous 
medium, since there is no silica deposition. As is expected 
from the permeability distribution in Fig. 6, pressure 
decreases with time. In particular, total decrease is mainly 
at place from 0 to 10 cm in the distance. The calculated 
permeability curve (Fig. 6) for time = 3940 minutes shows 
slightly higher values than the experimental data.  
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Fig. 4 Flow rate versus time for Itoi’s Run #05 
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Fig. 5 Potential versus distance for Itoi’s Run #05 
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Fig. 6 History of dimensionless permeability versus 
distance for Itoi’s Run #05 

Fig. 7 compares the calculated results and the experimental 
permeability versus time for different distances. At early 
times, there is a very rapid reduction in the calculated 
permeability. A good match between the calculated 
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permeability and measured data is found at a late time for 
distance less than 10 cm from inlet. While at distance of 30 
cm the calculated curve shows values higher than the 
experimental data. As seen in Fig. 4, at early time the 
calculated flow rate also shows lower values than measured 
data and higher values at late time. 
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Fig. 7 Dimensionless permeability versus time for Itoi’ 
Run #05 

4.2 Run #38 

The best fit to the measured data of Run #38 was achieved 
with a permeability 1.279 × 10-9 m2, rate constant k = 0.590, 
and porosity of silica φs = 0.923. The calculated results for 
distributions of permeability, specific deposit, and porosity 
are presented in Figs. 8(A), 8(B), and 8(C), respectively. 
The flow rate changes and pressure distribution are also 
shown in Figs. 9 and 10, respectively.  
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Fig. 8 Dimensionless permeability versus distance (A), 
specific deposit versus distance (B), and porosity versus 

distance (C) for Itoi’s Run #38. 

Same as the results of the other runs, Run #38 also shows 
that permeability reduction and silica deposition occurred 
mainly near the inlet of the column (see Figs. 8). A good 
agreement between the experimental and model results is 

seen only near the injection inlet. Fig. 9 presents the 
comparison of calculated and measured flow rate. The 
reasonable agreement between the calculation of changes in 
injection flow rate and the data is observed. The calculated 
pressure distribution matches very well with the measured 
pressure (Fig. 10).  

0

5

10

15

20

25

30

35

40

45

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Time (min)

Data RUN #38

Calculated

 

Fig. 9 Flow rate versus time for Itoi’s Run #38 
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Fig. 10 Potential versus distance for Itoi’s Run #38 

5 CONCLUSIONS 

A fully implicit numerical model, which describes the 
porosity and permeability decrease caused by the silica 
deposition in porous medium, has been used to simulate the 
experiments of silica deposition in geothermal reservoirs. 

The numerical model of the rate silica deposition was 
applied to the experiments of isothermal flow through 
packed columns. The rate constant of Ramstidt and Barnes 
(1980) and an artificially small inlet saturation of silica 
were used to match the flow rate, permeability, specific 
deposit, and pressure. The poor agreement between the 
experimental and model results was seen far away from the 
inlet, for permeability and specific deposit. Silica 
deposition and associated permeability–porosity reduction 
occur mainly near the inlet. 

The relationship of reaction surface area with porosity is 
important and should be included when modeling 
deposition.  
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