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ABSTRACT 

Modeling fracture-matrix interaction within a multiple-
phase flow system is a key issue for fractured reservoir 
simulation. Commonly used mathematical models for 
dealing with such interactions employ dual- or multiple-
continuum concepts, in which fractures and matrix are 
represented as overlapping, different, but interconnected 
continua, described by parallel sets of conservation 
equations. The conventional single-point upstream 
weighting scheme is most commonly used to estimate flow 
mobility for fracture-matrix flow. However, such a scheme 
may have serious limitations or flaws, which lead to 
unphysical solutions or significant numerical errors. To 
overcome the limitations of the conventional upstream 
weighting scheme, this paper presents a physically based 
modeling approach for estimating physically correct 
relative permeability in calculating multiphase flow 
between fractures and the matrix, using continuity of 
capillary pressure at the fracture-matrix interface. The 
proposed approach has been implemented into two 
multiphase reservoir simulators and verified using 
analytical solutions and laboratory experimental data. The 
new method is demonstrated to be accurate, numerically 
efficient, and easy to implement in dual- or multiple-
continuum reservoir simulators. 

1. INTRODUCTION  

Since the 1960s, significant progress has been made in 
numerical modeling of flow and transport processes in 
fractured rock. Research efforts, driven by the increasing 
need to develop petroleum and geothermal reservoirs, other 
natural underground resources, and to resolve subsurface 
contamination problems, have developed many numerical 
modeling approaches and techniques (Barenblatt et al., 
1960; Warren and Root, 1963; Kazemi, 1969; Pruess and 
Narasimhan, 1985). 

Mathematical modeling approaches in general rely on 
continuum approaches and involve developing conceptual 
models, incorporating the geometrical information of a 
given fracture-matrix system, setting up mass and energy 
conservation equations for fracture-matrix domains, and 
then solving discrete nonlinear algebraic equations. The key 
issue for simulating flow in fractured rock, however, is how 
to handle facture-matrix interaction under different 
conditions (involving multiple phase flow). This is because 
the fracture-matrix interaction distinguishes the flow 
through fractured porous media from the flow through 
heterogeneous single-porosity porous media. 

To model fracture-matrix interaction, researchers have 
developed and applied many different conceptual models 
and modeling approaches (Berkowitz, 2002). Commonly 

used mathematical methods include: (1) an explicit 
discrete-fracture and matrix model (e.g., Snow, 1969; 
Stothoff and Or, 2000), (2) the dual-continuum method, 
including double- and multiporosity, dual-permeability, or 
the more general “multiple interacting continua”' (MINC) 
method (e.g., Barenblatt et al., 1960; Warren and Root, 
1963; Kazemi, 1969; Pruess and Narasimhan, 1985), and 
(3) the effective-continuum method (ECM) (e.g., Wu, 
2000a). 

The explicit discrete-fracture approach is, in principle, a 
rigorous model. However, the actual application of this 
method is currently limited because of the computational 
intensity involved, as well as the lack of detailed knowledge 
of fracture and matrix geometric properties and their 
associated spatial distributions at a given site. On the other 
hand, the dual-continuum method is conceptually simpler 
and computationally much less demanding than the 
discrete-fracture approach, and is able to handle fracture-
matrix interaction more easily than the discrete-fracture 
model.  

Dual-continuum approaches include the classical double-
porosity model (Barenblatt et al., 1960; Warren and Root, 
1963), the dual-permeability concept, and the more rigorous 
dual-continuum generalization of the MINC (Pruess and 
Narasimhan, 1985) for modeling flow in fractured porous 
media. In the double-porosity model, a flow domain is 
composed of matrix blocks with low permeability, 
embedded in a network of interconnected fractures. Global 
flow and transport in the formation occur only through the 
fracture system, conceptualized as an effective continuum. 
This model treats matrix blocks as spatially distributed 
sinks or sources to the fracture system without accounting 
for global matrix-matrix flow. Because of its computational 
efficiency and its ability to match many types of laboratory- 
or field-observed data simultaneously (e.g., Kazemi, 1979; 
Wu et al., 1999), the dual-continuum model has perhaps 
been the most widely used method in petroleum and 
geothermal engineering and groundwater hydrogeology, 
and it has also been implemented in many commercially 
available reservoir simulators.   

In numerical modeling of flow through fractured reservoirs, 
one of the critical issues is how to estimate flow mobility at 
the fracture-matrix interface. In conventional simulation 
practice, especially in petroleum reservoir simulation, the 
fully upstream weighting scheme (or simply upstream 
weighting or upwinding) is routinely used (e.g., Aziz and 
Settari, 1979). As a result, the fracture relative permeability 
is commonly selected in estimating the mobility when local 
flow is towards the matrix. However, this scheme is 
physically incorrect, because of the inherent anisotropy of 
the fracture-matrix medium at this scale. The fracture 
relative permeability functions are properties for flow along 
fractures, determined independently from matrix flow–for 
example, by laboratory studies (e.g., Persoff and Pruess, 
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1995). In general, fracture-matrix flow (or interaction) 
occurs perpendicular to fracture planes, which is controlled 
mainly by matrix flow properties. Therefore, the fracture 
relative permeability, if used in this case, may lead to 
unphysical solutions or significant numerical errors. 

The objective of this study is to develop a physically based 
upstream weighting scheme for determining relative 
permeability functions that can be generally applicable to 
calculating multiphase flow between fractures and the rock 
matrix using a dual-continuum concept. Specifically, the 
proposed mobility-weighting approach has been 
implemented into two multiphase reservoir simulators to 
demonstrate its application. In addition, we attempt to 
verify the proposed weighting scheme by using an 
analytical solution and published laboratory results. The 
new method is shown to be accurate, numerically efficient, 
and easy to implement in existing dual- or multiple-
continuum models in reservoir simulators. 

2. MATHEMATICAL MODEL 

In the dual-continuum approach, multiphase flow processes 
in fractured rock are described separately, using a doublet 
of governing equations for the two fracture and matrix 
continua. This conceptualization results in a set of partial 
differential equations for flow in either continuum, which 
are in the same form as that for a single porous medium. In 
this work, the multiphase flow system, assumed in an 
isothermal, fractured porous formation, consists of three 
phases: gas (air), water, and NAPL (or oil), in which two-
phase flow or the Richards’ equation (1931) is considered 
as a special case. Although each of the three phases 
contains a number of components, they are treated here as a 
single “pseudo-component” with averaged properties of the 
fluids. In addition, the three fluid components (gas, water, 
and NAPL) are assumed to be present only in their 
associated phases. Each phase flows in response to its 
pressure gradients, gravitational forces, and capillary 
forces, according to the multiphase extension of Darcy's 
law.  

In an isothermal system containing three mass components, 
three mass balance equations are needed to describe flow 
and transport in the fracture and matrix blocks. For flow of 
phase β (β =g for gas, β = w for water, and β = o for 
NAPL), 

( ) ( ) βββββ +ρ•−∇=ρφ
∂
∂

qS
t

v   (2-1) 

where the Darcy velocity of phase β is defined by: 

( )DgP
kk r ∇ρ−∇
µ

−= ββ
β

β
βv  (2-2) 

In Equations (2-1) and (2-2), ρβ is the density of phase β 
under reservoir conditions; φ is the effective porosity of the 
medium; µβ is the viscosity of phase β; Sβ is the saturation 
of phase β; Pβ is the pressure of phase β; qβ is the 
sink/source term of phase (component) β per unit volume of 
formation; g is gravitational acceleration; k is the 
absolute/intrinsic permeability of the formation; krβ is 
relative permeability to phase β; and D is depth from a 
datum. 

The governing equation of mass balance for three-phase 
fluids, Equation (2-1), needs to be supplemented with 

constitutive equations, which express all the secondary 
variables and parameters as functions of a set of primary 
variables of interest. In particular, the relationships include 
relative permeability and capillary pressure functions as 
well as other constitutive data. In addition, the initial and 
boundary conditions of the system are also needed to 
complete the description of multiphase flow through 
fractured or porous media. 

3. NUMERICAL FORMULATION 

3.1 Discrete Equations 

Multiphase flow equations, as discussed in Section 2, have 
been implemented into a general-purpose multiphase code 
TOUGH2 (Pruess et al., 1999) and a three-phase reservoir 
simulator MSFLOW (Wu, 2000b). As implemented 
numerically, Equation (2-1) is discretized in space using an 
integral finite-difference or control-volume scheme for a 
porous and/or fractured medium. The time discretization is 
carried out with a backward, first-order, finite-difference 
scheme.  The discrete nonlinear equations for water, NAPL, 
and gas flow at node i are written as follows:   

( ) ( ){ } 1n
i

j

1n
ji,

in
i

1n
i QF

t

V
SS

i

+
β

η∈

+
βββ

+
ββ +=

∆
ρφ−ρφ ∑  (3-1) 

(for β = g, w and o). 

where superscript n denotes the previous time level; n+1 is 
the current time level; Vi is the volume of element i (porous 
or fractured block); ∆t is time step size; ηi contains the set 
of neighboring elements (j) (porous or fractured) to which 

element i is directly connected; ji,Fβ  is the mass flow term 

for phase β between elements i and j; and Qβi is the mass 
sink/source term at element i, of phase β. 

The “flow” term ( ji,Fβ ) in Equation (3-1) for single-phase, 

Richards’, or multiphase flow is described by a discrete 
version of Darcy’s law. This mass flux of fluid phase β 
along the connection is given by  

[ ]ijji2/1ij,ji,F ββ+ββ ψ−ψγλ=  (3-2) 

where λβ,i j+1/2  is the mobility term to phase β, defined as  
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and subscript ij+1/2 denotes a proper averaging or 
weighting of properties at the interface between two 
elements i and j (discussed in the sections below), and krβ is 

the relative permeability to phase β. In Equation  (3-2), ijγ  

is transmissivity and is defined differently for finite-
difference or finite-element discretization. If the integral 
finite-difference scheme (Pruess et al., 1999) is used, the 
transmissivity is calculated as 

ji

2/1jiji
ji dd

kA

+
=γ +  (3-4) 

where ijA  is the common interface area between 

connected blocks or nodes i and j;  di is the distance from 
the center of block i to the interface between blocks i and j; 
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and kij+1/2 is an averaged (such as harmonic weighted) 
absolute permeability along the connection between 
elements i and j,   

The flow potential term in Equation (3-2) is defined as 

i2/1ji,ii DgP +βββ ρ−=ψ  (3-5) 

where Di is the depth to the center of block i from a 
reference datum. 

Discrete Equation (3-1) has the same form regardless of the 
dimensionality of the model domain, i.e., it applies to one-, 
two-, or three-dimensional analyses of flow through 
fractured or porous media. In our numerical model, 
Equation (3-1) is written in a residual form and is solved 
using the Newton/Raphson iteration.  

3.2 Handling Fractured Media 

The technique used in this work for handling multiphase 
flow through fractured rock follows the dual-continuum 
methodology (Warren and Root, 1963; Pruess and 
Narasimhan, 1985). This method treats fracture and matrix 
flow and interactions using a multicontinuum numerical 
approach, including the double- or multiporosity method, 
the dual-permeability method, and the more general MINC 
method (Pruess and Narasimhan, 1985). It can be shown 
that the same continuum concept is also applicable to 
multiphase flow though a discrete fracture network. 

The multiphase flow formulation, Equations (2-1) and (3-
1), is applicable to both single-continuum and 
multicontinuum media. Using the dual-continuum concept, 
Equations (2-1) and (3-1) can be used to describe 
multiphase flow both in fractures and inside matrix blocks, 
as well as fracture-matrix interaction. However, special 
attention needs to be paid to treating fracture-matrix flow. 
The flow between fractures and the matrix is still evaluated 
using Equation (3-2); however, the transmissivity for the 
fracture-matrix flow is given by 

FMl
MFM

ji

kA=γ , (3-6) 

where FMA  is the total interfacial area between fractures 

and the matrix of elements i and j (one of them is a fracture 
and the other a matrix block);  kM is the matrix absolute 
permeability along the fracture-matrix connection; and 

FMl  is a characteristic distance for flow crossing fracture-

matrix interfaces, which can be determined for idealized 1-
D, 2-D and 3-D dimensional rectangular matrix blocks 
when using the double-porosity model (Warren and Root, 
1963).  

3.3 Mobility Weighting Scheme 

The appropriate spatial weighting scheme for averaging 
flow properties, such as the mobility of Equation (3-3) in a 
heterogeneous formation, has been much debated in 
reservoir simulation and groundwater modeling literature 
(Peaceman, 1977; Huyakorn and Pinder, 1983). Single-
point or fully upstream weighting has been the exclusive 
approach for averaging mobility or relative permeability in 
calculating flow terms, using a discrete Darcy’s law for 
multiphase flow in heterogeneous petroleum reservoirs 
(Aziz and Settari, 1979). The reasons behind the early 
application of the conventional upstream weighting scheme 

for relative permeability were based on several physical 
arguments, such as the need for upstream weighting to 
initialize imbibition into completely dry rock. In addition, 
the upstream weighting approach was found to be necessary 
to avoid incorrect solutions in two-phase immiscible 
displacement (hyperbolic) problems (Aziz and Settari, 
1979).  

Recently, several theoretical studies (Forsyth et al., 1995; 
Forsyth and Kropinski, 1997) have shown that the upstream 
weighting scheme, if used with the control-volume 
discretization of the Richards’ equation, will satisfy 
monotonicity conditions regardless of time step or mesh 
size. It will guarantee that converged numerical solutions 
are physically correct, while other weighting schemes, such 
as central weighting, may converge to an incorrect, 
unphysical solution (Forsyth and Kropinski, 1997). 
However, determining flow along fracture-matrix 
connections (i.e., flow across fracture-matrix interfaces in 
the direction perpendicular to fracture planes) is different 
from fracture-fracture flow, and the conventional upstream 
weighting scheme may no longer be applicable. This is 
because fracture relative permeability functions are fracture 
flow properties describing flow along fractures, determined 
independently from matrix flow. Conversely, fracture-
matrix flow or interaction normally occurs along the 
directions perpendicular to fractures, and is largely 
controlled by matrix properties or by flow resistance within 
the matrix block. The physical inconsistency in selecting 
fracture relative permeability for calculating fracture-matrix 
flow may lead to unphysical solutions or significant 
numerical errors. 

To overcome these limitations, this paper presents a 
modified upstream weighting scheme for fracture-matrix 
interaction. This new scheme is based on the principle that 
the capillary pressure is continuous at the fracture-matrix 
interface, and on the assumption that there is instantaneous 
local equilibrium in pressure for each phase on the matrix 
surface within fracture and matrix systems. This should 
hold true for most subsurface fractured reservoirs, because 
fracture aperture is normally very small and fracture lateral 
boundaries are defined by matrix surfaces. Any dynamic 
changes in fractures, such as capillary pressures, could be 
instantaneously equilibrated locally with those at contacted 
matrix surfaces. As a result, the matrix relative permeability 
at the matrix surface can be readily determined as a 
function of fracture capillary pressure or the matrix 
saturation corresponding to that fracture capillary pressure. 
Therefore, the new scheme, when the upstream direction for 
fracture-matrix flow is in the fractures, uses the matrix 
relative permeability function (instead of the fracture 
relative permeability function, as in the conventional 
upstream weighting scheme) to calculate the mobility. 
Physically, this is equivalent to evaluating flow through the 
fracture-matrix interface into the matrix with the effective 
matrix permeability at that interface, obviously a more 
reasonable approach. The proposed weighting scheme is 
still dependent on the upstream fracture condition, and 
therefore does not lose the advantages of upstream 
schemes. In addition, in case fracture-matrix flow is from 
matrix to fractures, such as in a situation of drainage or 
flow between globally connected fractures or along global 
or local matrix-matrix connections, the conventional 
upstream weighting scheme should still be used. We call 
this hybrid scheme capillary pressure-based weighting or 
physically based upstream weighting. 

Within the context of the dual-continuum concept, the 
proposed approach can be applied to different matrix 
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discretizations, such as double-porosity, dual-permeability, 
or MINC grids. We have implemented the proposed 
physical upstream weighting scheme into two 
multidimensional reservoir simulators and conducted a 
series of numerical experiments with all the commonly used 
dual-continuum models. In all test cases, this new 
weighting scheme is found to work efficiently, similarly to 
using the traditional single-point upstream weighting, 
without numerical difficulties. Note that this new scheme 
should be applicable for discrete fracture-network models 
as well. 

4. VALIDATION AND APPLICATION EXAMPLES 

To examine and verify the proposed mobility-weighting 
scheme in this section, we present two validation and 
application examples. The proposed physical upstream 
weighting scheme has been implemented in the two 
reservoir simulators TOUGH2 (Pruess et al., 1999; Wu et 
al., 1996) and MSFLOW (Wu, 2000b), which are used in 
the following application examples. The first example 
compares numerical simulation results with analytical 
solutions for Richards’ equation (Wu and Pan, 2004). The 
second case matches published laboratory experiment 
results of water imbibition and oil displacement conducted 
on fractured cores (Kazemi, 1979). 

4.1 Comparison with the Analytical Solution 

This example attempts to validate the new weighting 
scheme using an analytical solution (Wu and Pan, 2004). 
This solution is based on specially correlated relative 
permeability and capillary functions, and describes the 
transient unsaturated fracture-matrix interaction for radial 
flow through a uniform, radially infinite fractured 
formation, consisting of many cubic matrix blocks and 
fracture sets.  

This verification problem addresses transient flow from a 
fully penetrating injection well into a partially saturated, 10 m 
thick horizontal fractured formation. The fractured formation 
consists of identical 1 × 1 × 1 m3 cubes of matrix blocks, 
surrounded by a uniform, 3-D fracture network. The 
geological model considered is identical to the Warren and 
Root (1963) conceptual model. Initially, both fracture and 
matrix are at dry conditions, with both initial saturations equal 
to their residual values, respectively. A constant saturation of 
SW = 0.279 is imposed at the wellbore as the inner boundary 
condition in the beginning, and then water is sucked into the 
formation from the well immediately.   

In the numerical model, a finite reservoir (re = 100 m) of 10 
m thickness is used, and the disk-type formation is 
discretized into a one-dimensional radially symmetric 
(primary) grid. The radial domain from rw = 0.1 m to 
distance re = 100 m is subdivided into 500 intervals, with ∆r 
= 0.005 m for the first 200 elements; and the rest of the 
domain is subdivided into 300 gridblocks following a 
logarithmic scale. A double-porosity numerical grid is 
generated and is used for simulations with both the 
traditional and new upstream weighting schemes.  

For this problem, fracture-matrix rock and fluid properties 
are given in Table 4-1. Numerical simulations with two 
different weighting schemes are performed using the 
TOUGH2 code. Two numerical simulations were 
completed for this problem using the double-porosity grid 
with two alternative mobility-weighting schemes, i.e., the 
traditional single-point upstream weighting and the physical 
upstream weighting proposed here. 
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Figure 1: Comparison of fracture-matrix mass fluxes 
along the radial distance at 1 day, calculated using the 
analytical solution and numerical simulations using the 
double-porosity model with two different mobility-
weighting schemes. 

Figure 1 presents fracture-matrix flux distributions along 
the radial distance at one day, simulated by the analytical 
and three numerical modeling results. Note that the physical 
process simulated in this example is extremely nonlinear 
and dynamic. The initial liquid saturations are at residual 
values for both fracture and matrix systems. At the 
beginning, the boundary saturation for fractures at the 
wellbore jumps to a constant (= 0.279) (flow rate at the well 
thus becomes infinitely large). Once imbibed into the 
fractures near the well, the liquid will be drawn by two 
forces in two different directions, flowing along fractures 
away from the well, and simultaneously imbibing into dry 
matrix blocks.  

Figure 1 clearly shows that the traditional upstream 
weighting scheme, by selecting a fracture relative 
permeability function to calculate fracture-matrix flow, 
cannot match the analytical results, while the new 
weighting scheme provides a good approximation. 

Figure 2 shows a comparison between cumulative fracture-
matrix mass exchanges from the analytical solution and 
from the two weighting schemes, calculated by integrating 
fracture-matrix fluxes over time. The traditional weighting 
is seen to lead to significant errors, while the new scheme 
agrees well with the analytical solution.  

Many more numerical experiments and comparisons (using 
different parameter sets, and boundary and initial 
conditions) have been carried out. All the tests and 
comparisons, similar to those shown in Figures 1 and 2, 
indicate that the proposed new weighting scheme is able to 
closely match analytical solutions for unsaturated radial 
flow problems, while in general the traditional weighting 
method produces large errors. 

4.2 Comparison with Laboratory Experimental Results 

Kazemi (1979) presented a series of laboratory 
experimental results of water imbibition into fractured 
matrix cores to displace oil. The laboratory tests were 
conducted on three sets of artificial fractured cores using 
cylindrical and rectangular blocks, with one fracture along 
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Figure 2: Comparison of fracture-matrix mass fluxes 
along the radial distance at 1 day, calculated using the 
analytical solution and numerical simulations using the 
double-porosity model with two different mobility-
weighting schemes. 

 

the long axis for each set. The cylindrical and rectangular 
matrix blocks were cut from Berea sandstone. The 
laboratory model we consider here consists of a fractured 
core with two brick-type matrix blocks. Each matrix block 
has a brick shape with dimension of width, height, and 
length (50.8 × 50.8 × 101.6 mm) as shown in Figure 3. The 
fracture formed between the two matrix cores has an 
aperture of 0.30 mm. The experimental data used in this 
study were from Test 38423 (Kazemi, 1979). In the 
experiment, flow channels were left open only at the inlet 
and outlet ends of the fracture (i.e., for water injection and 
for oil and water outflow), and side fracture and matrix 
surfaces were sealed. Initially, the fracture and matrix 
system was fully saturated uniformly with oil (diesel), and 
then water was injected with a constant rate at the inlet 
(Figure 3) to displace the oil. 

Basic model experimental and modeling parameters are 
listed in Table 4-2. The relative permeability and capillary 
pressure curves used are shown in Figures 4 and 5, 
respectively. Note that relative permeability curves for both 
fracture and matrix, shown in Figure 4, were estimated 
using the equations given in Kazemi (1979), and the matrix 
capillary pressure curve was taken from the capillary-
pressure curve on the Berea core of Figure 12 in Kazemi 
(1979). However, several important parameters were not 
provided in Kazemi (1979), including residual water 
saturation, residual oil saturation, and fracture capillary 
pressure curves. Actual values used for these missing 
parameters were determined in this work by model 
calibration, with the final estimates given in Table 4-2 and 
Figures 4 and 5.  
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Figure 3: Schematic of fractured cores used the 
experimental studies (Kazemi, 1979). 
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Figure 4: Relative permeability curves for fractures and 
matrix used in matching laboratory experimental 
results. 
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Figure 5: Capillary pressure curves for fractures and 
matrix used in matching laboratory experiment results. 
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Here, this test is analyzed using a double-porosity approach 
(equivalent to the explicit-fracture model in this case) to 
examine the numerical scheme for handling fracture-matrix 
interaction under multiphase flow conditions. The fracture-
matrix set of Figure 3 is treated as a 2-D system along the 
longitudinal (x) direction (from inlet to outlet). Because of 
the symmetry, only half of the 2-D model domain (one 
matrix block and half the fracture) is discretized into a 
double-porosity grid, using a 1-D parallel fracture concept, 
with one (actually half) fracture element corresponding to 
one matrix element in the transverse direction 
(perpendicular to the fracture plane). Along the x direction, 
a uniform linear grid of 10 elements is generated for both 
the fracture and the matrix block, with a uniform grid 
spacing of ∆x = 10.16 mm.  

We have performed several model calibration analyses to 
estimate the missing model parameters. The final 
simulation results using the proposed physical upstream 
weighting scheme are compared with the laboratory 
experimental data in Figure 6. Figure 6 shows excellent 
agreement between measured and simulated volumetric 
fractional oil recovery versus pore volume of water 
injected. This result indicates that the proposed new 
upstream mobility-weighting scheme is able to capture the 
main factors that control fracture-matrix interaction during 
the oil-water displacement for this test problem. 
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Figure 6: Comparison of simulation results with 
experimental data (Kazemi, 1979) 

5. SUMMARY 

We have presented a physically based upstream weighting 
scheme for modeling multiphase fracture-matrix flow and 
interaction. This new approach is based on continuity of 
capillary pressure at the fracture-matrix interface in 
estimating physically correct relative permeability for 
multiphase flow between fractures and the matrix. This new 
conceptual model overcomes a serious flaw that exists in 
most current simulation practice when estimating flow 
mobility for fracture-matrix flow terms using the 
conventional upstream weighting method. Numerically, the 
new scheme uses exactly the same dual-continuum grids as 
the traditional modeling approaches, without requiring an 
additional computational burden or using refined grids, to 
achieve not only accurate but also physically correct results 
for fracture-matrix interaction. 

To verify the proposed mobility-weighting scheme, we first 
used the new mobility-weighting method to simulate 
unsaturated flow in a radially fractured formation with fully 

transient fracture-matrix interaction. In this case, the 
proposed physical upstream weighting scheme is found to 
provide accurate simulation results when compared with 
analytical solutions. It is also found that the conventional 
weighting scheme will result in significant errors in 
estimating fracture-matrix flow in modeling the same 
physical processes. In the second case, we sought to match 
published laboratory results for oil-water displacement 
through a fractured core. Our proposed approach proved 
able to match these laboratory experimental results. 

In this work, we have demonstrated that the proposed 
physical upstream weighting method is accurate, 
numerically efficient, and easy to implement into existing 
dual- or multiple-continuum reservoir simulators. Although 
the test cases reported here involved isothermal flow only, 
application of the method to nonisothermal flow with or 
without phase change is straightforward. 

ACKNOWLEDGMENTS 

The authors would like to thank Keni Zhang and Dan 
Hawkes for their review of the manuscript. This work was 
supported in part by the Assistant Secretary for Energy 
Efficiency and Renewable Energy, Office of Geothermal 
Technologies of the U.S. Department of Energy under 
Contract No. DE-AC03-76SF00098.  

REFERENCES 

Aziz, K. and Settari A., 1979. Petroleum Reservoir 
Simulation, Applied Science Publishers LTD, London.  

Barenblatt, G.I., Zheltov I.P., and Kochina I.N., 1960. Basic 
concepts in the theory of seepage of homogeneous 
liquids in fissured rocks, PMM, Sov. Appl.  Math. 
Mech., 24(5), 852-864.  

Berkowitz, B., 2002.Characterizing flow and transport in 
fractured geological media: A Review, Advance in 
Water Resources,25, 861-884.  

Brooks, R.H. and Corey A.T., 1964. Hydraulic properties of 
porous media, Hydrology Papers, No. 3, Colorado State 
University, Ft. Collins, Colo.  

Forsyth, P.A. and Kropinski M.C. 1997. Monotonicisy 
considerations for saturated-unsaturated subsurface 
flow, SIAM. J. Sci. Comput., 18(5), 1328-1354.  

Forsyth, P.A., Wu, Y.S., and Pruess, K. 1995. Robust 
numerical methods for saturated-unsaturated flow with 
dry initial conditions in heterogeneous media, Advance 
in Water Resources, 18, 25-38.  

Huyakorn, P. S. and Pinder G. F., 1983, Computational 
Methods in Subsurface Flow, Academic Press, Inc., 
New York. 

Kazemi, H., 1979. Numerical simulation of water 
imbibition in fractured cores, Soc.  Pet. Eng. J. 323-
330.  

Kazemi, H., 1969. Pressure transient analysis of naturally 
fractured reservoirs with uniform fracture distribution. 
Soc.  Pet. Eng. J., 451-62. Trans., AIME, 246.   

Lai, C.H., Bodvarsson G.S., Tsang C.F., and Witherspoon 
P.A., 1983. A new model for well test data analysis for 
naturally fractured reservoirs, SPE-11688, Presented at 
the 1983 California Regional Meeting, Ventura, 
California, March. 

Peaceman, D. W., 1977, Fundamentals of Numerical 
Reservoir Simulation, Developments in Petroleum 



Wu and Pruess 

 7 

Sciences, 6, Elsevier Scientific Publishing Company, 
Amsterdam-Oxford-New York. 

Persoff, P. and Pruess K., 1995. Two-phase flow 
visualization and relative permeability measurements 
in natural rough-walled rock fractures, Water 
Resources Research, 31(5), 1175-1186.  

Pruess K., Oldenburg, C., and Moridis, G., 1999. TOUGH2 
User’s Guide, Version 2.0, Report LBNL-43134, 
Berkeley, California: Lawrence Berkeley National 
Laboratory.  

Pruess, K., and Narasimhan, T.N., 1985. A practical method 
for modeling fluid and heat flow in fractured porous 
media, Soc. Pet. Eng. J., 25, 14-26.  

Pruess, K., 1983. GMINC - A mesh generator for flow 
simulations in fractured reservoirs, Report LBL-
15227, Berkeley, California: Lawrence Berkeley 
National Laboratory. 

Richards, L. A., 1931. Capillary conduction of liquids 
though porous medium, Physics, 1, 318-333. 

Snow, D.T., 1965. A parallel plate model of fractured 
permeable media, Ph.D. Dissertation, 331. pp., 
University of California, Berkeley.  

Stothoff, S. and Or D., 2000.A discrete-fracture boundary 
integral approach to simulating coupled energy and 
moisture transport in a fractured porous medium, 
“Dynamics of Fluids in Fractured Rocks, Concepts and 
Recent Advances”, Edited by B. Faybishenko, P. A. 
Witherspoon and S. M. Benson, AGU Geophysical 
Monograph 122, American Geophysical Union, 
Washington, DC, 269–279.  

van Genuchten, M. Th.,   1980. A closed-form equation for 
predicting the hydraulic conductivity of unsaturated 
soils, Soil Sci. Soc. Amer. J, 44(5), 892-898.  

Warren, J.E., and Root P.J., 1963. The behavior of naturally 
fractured reservoirs, Soc. Pet. Eng. J., pp. 245-255, 
Trans., AIME, 228.  

 

Wu, Y.S. and Pan L., 2004. Analytical solutions for 
transient flow through unsaturated fractured porous 
media, Proceedings of the Second International 
Symposium on Dynamics of Fluids in Fractured 
Rocks, Edited by B. Faybishenko and P. A. 
Witherspoon, Lawrence Berkeley National laboratory, 
University of Californian, Berkeley, Californian, USA, 
360-366, February 10-12.  

Wu, Y.S. and Pan L., 2003. Special relative permeability 
functions with analytical solutions for transient flow 
into unsaturated rock matrix, Water Resources 

Research, 39 (4) 3-1–3-9. 
Wu, Y.S., 2000a. On the effective continuum method for 

modeling multiphase flow, multicomponent transport 
and heat transfer in fractured rock, “Dynamics of 
Fluids in Fractured Rocks, Concepts and Recent 
Advances”, Edited by B. Faybishenko, P. A. 
Witherspoon and S. M. Benson, AGU Geophysical 
Monograph 122, American Geophysical Union, 
Washington, DC, 299–312. 

Wu, Y. S., 2000b. A virtual node method for handling 
wellbore boundary conditions in modeling multiphase 
flow in porous and fractured media, Water Resources 
Research, 36 (3), 807-814.  

Wu, Y.S. and Pruess K., 2000. Numerical simulation of 
non-isothermal multiphase tracer transport in 
heterogeneous fractured porous media, Advance in 
Water Resources, 23, 699-723. 

Wu, Y. S, Haukwa C., and Bodvarsson G. S., 1999. A Site-
Scale Model for Fluid and Heat Flow in the 
Unsaturated Zone of Yucca Mountain, Nevada. 
Journal of Contaminant Hydrology. 38 (1-3), 185-217. 

Wu, Y.S., Ahlers C.F., Fraser P., Simmons A., and Pruess 
K., 1996. Software qualification of selected TOUGH2 
modules, Report LBNL-39490, Lawrence Berkeley 
National Laboratory, Berkeley, CA. 

 

 



Wu and Pruess 

 8 

 

Table 4-1: Parameters for the comparison problem with radial unsaturated flow  

Parameter Matrix Fracture UNIT 

Matrix dimension B = 1  m 

Porosity φM = 0.30 φF= 0.001  

Permeability kM = 1.0 × 10-15 kF = 1.0 × 10-12 m2 

Residual/initial saturation SMr = 0.2 SFr = 0.2  

Coefficient of 1 relative permeability CkM = 1.0 CkF = 0.2  

Coefficient of 2 capillary pressure CpM = 1.0× 104 CpF = 1.0 × 103 Pa 

Saturation at well S0= 0.279  

Fluid viscosity µw = 1.0 × 10-3 Pa•s 

Fluid density ρw = 1,000 kg/m3 

Wellbore radius rw = 0.1 m 
1, 2 Note that coefficients for relative permeability and capillary pressure 

are constants for the specially correlated functions (Wu and Pan, 2003) 

 

Table 4-2: Parameters used in the comparison with laboratory testing results (Kazemi, 1979) 

Parameter Value Unit 

Fracture aperture b = 0.0003 m 

Fracture porosity φF  = 1.0  

Matrix porosity φM = 0.21  

Absolute fracture permeability kF = 1 × 10-11 m2 

Absolute matrix permeability kM = 4,23 × 10-13 m2 

Water density ρw = 1,000 kg/m3 

Water viscosity µw = 1 × 10-3 Pa • s 

Oil (diesel) density ρw = 828 kg/m3 

Oil (diesel)  viscosity µw = 4.6 × 10-3 Pa • s 

Residual fracture water saturation Swr,F = 0.10  

Residual matrix water saturation Swr,M = 0.20  

Residual fracture oil saturation Sor,F = 0.0001  

Initial fracture water saturation Swi,F = 0.00  

Initial matrix water saturation Swi,M = 0.00  

Water injection rate q = 2.568 × 10-5 m3/d 

 


