

Geochemical Study of Mongolian Hot Springs

Oyun-Erdene Gendenjamts

Institute Chemistry and Chemical Technology of MAS, Mongolia

g_oyunerdene@mol.mn

Key Words: Hot springs, scaling tendency, Khangai area, Mongolia

ABSTRACT

In this paper presents data analyses seven hot spring samples from northern Khangai area, central Mongolia. The chemical composition of these waters was analyzed by standard methods and subsequently classified by the use of the $\text{Cl}-\text{SO}_4-\text{HCO}_3$ triangular diagram. The other basic diagram, Na-K-Mg, was used to classify waters according to the state of equilibrium at given temperatures. The geothermal water types are sulphate-sodium and bicarbonate-sodium. Chemical geothermometer were used on geothermal waters to indicate reservoir temperatures. Values for chalcedony geothermometer and Na/K geothermometer values are used to define the source temperature of the geothermal water component. The results could be an evidence of mixing with cold waters in all the fields which were studied. The Ryznar Stability Index (RSI) and WATCH program were used to interpret the equilibrium state of the reservoirs and to predict scaling tendencies. Calcite scaling occurs at the high calcite Saturation Index values and low RSI values. Hence these indices show geothermal waters of the Khangai area no scaling tendency.

1. INTRODUCTION

Mongolia is located in the northern part of central Asia, far from the oceans, on a high plateau surrounded by mountain ridges and covers a vast territory of over 1.5 million km^2 and has a population of 2.7 million. Mongolia has 43 hot springs, with measured surface temperatures ranging from 20 to 92°C and flow rate ranging from 1.2 to 50 l/s, mainly distributed in the central and western provinces. At that time, intense tectonic development gave the Mongolian mountains their present appearance. A geophysical survey on the crystal structure has established that accumulative thermal sources (magma lumps) are located near the surface under the Khangai, Khentii area. Geothermal resources in Mongolia are mainly distributed in Khangai, Khentii, around the Khubsugul, Mongol Altai plate forms. The Khangai geothermal area has attracted the interest of researchers and its location is favourable with regard to social and economic conditions. From 21 hot springs of the Khangai area, seven were selected (Tsenkher, Tsagaan sum, Shivert, Chuluut, Khuremt, Khujirt, Noyonkhangai). This area of hot springs has relatively highly developed infrastructure with access of central electric network and a highway located nearby. Furthermore, the area is rich with historical places, making it more attractive for tourism development.

In this report, chemical analyses selected hot springs from the northern Khangai area in central Mongolia, were used to evaluate the probable existing chemical equilibrium and to estimate subsurface temperatures in the geothermal systems. The mixing processes in the up-flow zones were assessed using two mixing models. The subsurface

temperatures predicted by various geothermometers are evaluated by comparison with measured (downhole) temperatures. Most calculations were performed with the SOLVEQ and WATCH programs. Finally, the WATCH program and Ryznar Stability Index (RSI) are used to evaluate calcium carbonate scaling tendency in the hot springs in Mongolia.

2. CHARACTERIZATION OF GEOTHERMAL FLUIDS

The samples were collected from hot springs with artesian flow rate in the range 1.2-16 l/s. The temperatures measured during collection of the sample ranged from 37°C to 86.5°C . The pH is generally slightly alkalinity (8.5-9.45). The TDS of the samples is in the range 200-342 ppm. All analytical results are presented in Table 1. Ionic balance calculated by the WATCH program (Arnórsson et al., 1983a; Bjarnason, 1994) gives information regarding the quality of the analysis. For the selected samples the values were ranging from -11.03 to 32.87. These are relatively high but the samples nevertheless have been used for interpretation.

Figure 1 shows the $\text{Cl}-\text{SO}_4-\text{HCO}_3$ ternary diagram and the Na-K-Mg ternary diagram for the samples from the Khangai geothermal area. Most samples plot in the peripheral waters region. Samples number 5, 6 and 7 (1977-0302, 2000-0303 and 2002-0304) from the Shivert hot spring are though in steam heated waters region. As seen from the Na-K- Mg diagram, all plots are located between the boundaries immature and fully equilibrated waters. The Na-K-Mg ternary diagram yields a reservoir temperature range of 120-180°C for all the hot springs.

Subsurface temperatures in the study areas have been estimated by chemical geothermometry. As has been discussed, for various reasons different geothermometers may give different results. Table 2 shows the results for different solute geothermometers.

The WATCH and SOLVEQ programs were used to calculate the calcite saturation index. The SOLVEQ program was used to calculate saturation indices of 47 minerals. Five main minerals were selected, calcite, cristobalite, diopside, magnesioferrite and quartz. The results obtained are shown in Figure 2 with the broken line indicating measured temperature.

Two mixing models were applied to the water in this study; the silica-enthalpy and the silica-carbonate mixing models. Figure 3 depicts the silica-enthalpy and silica carbonate mixing models. The cold water point (A point) is assumed to represent the cold ground water ($T=6^\circ\text{C}$, and $\text{SiO}_2=12\text{ppm}$) in the study area.

In order to study possible changes with time, available chemical analysis were entered into the WATCH program and the results were used to compute the saturation index. After that, the Ryznar Stability index was calculated using

equation. The results are listed in Table 3. According to the WATCH program the saturation index boundary between calcite scaling and no scaling in the selected hot springs is 0.36-0.5. Figure 4 shows the relation between saturation index and temperature for selected hot springs. Results from the SOLVEQ program were used. The Ryznar stability index gives a qualitative estimate of the calcium carbonate scaling tendency of fluid and can be used in the temperatures range from 37 to 86.5°C. The results are shown in Figure 4. It shows that the RSI increases with a decrease in the calcite calcite saturation index. Calcite scaling occurs at low RSI values and high SI values. The results from the WATCH program confirm the results from the Ryznar Stability Index.

3. CONCLUSIONS

For the Khangai hot springs in Mongolia, the results of the geochemical studies can be summarized as follows:

- The water in the Shivert hot spring are sulfate-sodium type, but in other hot springs waters of the bicarbonate-sodium type.
- Considering the major anions, the Shivert hot spring is classified as steam heated water, but that of the other hot springs as peripheral water.
- With reference to the major cations, the geothermal fluids are classified as partially equilibrated, with geothermal fluids of selected hot springs lying between Giggenbach's (1988) line for fully equilibrated waters and Arnórsson's (1991) line.
- The chalcedony, quartz, Na-K, and Na-K-Ca geothermometer temperatures were calculated. The Na-K geothermometer gives very high and sometimes unrealistic temperatures for all hot springs, whereas results for the Na-K-Ca geothermometer indicate that this empirical geothermometer appears to be applicable to low-temperature waters. Quartz geothermometer temperatures are realistic for hot springs in this area compared to estimated mineral-equilibrium temperatures. But the chalcedony geothermometer provides the most reliable temperatures for these fields, with predicted temperature values ranging from 69 to 123°C.
- The silica-enthalpy warm spring mixing model handles non-boiled and boiled mixed waters separately with mixing occurring after boiling, and the boiling hot spring waters indicate enthalpies from 908 to 1142 kJ/kg for the hot water component (212-261°C).

The calcite saturation index and the Ryznar stability index of hot springs of the Khangai area show that there is no scaling tendency. The values for hot spring water vary, but fall in the 'no calcite scaling' range.

REFERENCES

Arnórsson. S., Geochemistry and geothermal resources in Iceland, In: D'Amore, F. (co-ordinator), *Applications of geochemistry in geothermal reservoir development*. UNITAR/UNDP publication, Rome, p.145-196., 1991

Arnórsson. S., Mixing processes in upflow zones and mixing models, *Isotopic and chemical techniques in geothermal exploration, development and use*, IAEA, Vienna, p.200-202., 2000

Bjarnason. J.Ö., *The speciation program WATCH*, version 2.1, Orkustofnun, Reykjavik, 7 pp., 1994

Carrier, *Handbook of Air Conditioning System Design*. Carrier Corp., Syracuse, New York, 586 pp., 1965

Fournier. R.O., Chemical geothermometers and mixing models for geothermal systems, *Geothermics* 5, p.41-50., 1977

Fournier. R.O., and Truesdell. A.H., An empirical Na-K-Ca geothermometer for natural waters. *Geochim. Cosmochim. Acta*, 37, p.515-525., 1973

Geotherm, sub-programme of the Mineral resource programme, Mongolia, Ministry of Agriculture and Industry of Mongolia., Ulaanbaatar, Mongolia, 25 pp., 1999

Giggenbach. W. F., Chemical techniques in geothermal exploration, In: D'Amore, F. (co-ordinator), *Applications of geochemistry in geothermal reservoir development*. UNITAR/UNDP publication, Rome, p.119-145., 1991

Mongolian National Standard, Spring's methods of analysis and inspect . *MNS 3652.0-84-MNS 3652.23-84*, The national committee of price and standard of Mongolia, Ulaanbaatar, Mongolia, 97 pp. 1984

Namnandorj. O., Tseren. Sh., and Nyamdorj. U., *Springs of the Mongolian People's Republic*, State press agency, Ulaanbaatar, Mongolia, 450 pp., 1960

Pisarskii. B.I., *Geochemistry of underground water of Mongolia*. Irkutsk press agency, Irkutsk, Russia, 245 pp., 1986

Popov. V.N. and Marinov. N.A., Mongolian hydrogeology, *Moscow state scientific press of the oil and mining fuel literature*, Russia, Moscow, 209 pp., 1963

Reed. M., and Spycher. N., Calculation of pH and mineral equilibria in hydrothermal waters with application to geothermometry and studies of boiling and dilution, *Geochim.Cosmochim.Acta*, Vol.48, p.1479-1492., 1984

Reed. M.N., and Spycher. N.F., *SOLVEQ-a computer program for computing aqueous-mineral-gas equilibria*, 35 pp., 2000

Shimada. K., Chemistry of scale deposition. №11 textbook of the 18th IGTCGE, Kyushi, Japan, p. 315-326, 1987

Table 1: Chemical composition of hot springs in the Khangai geothermal area, Mongolia (in ppm)

Nº	Sample number	T (°C)	pH	SiO ₂	Na	K	Ca	Mg	Fe	NH ₃	CO ₂	SO ₄	Cl	F	H ₂ S	TDS
Tsenkher hot spring																
1 2	1977-0102 2002-0103	86.5 84.3	8.8 8.9	133.13 113.75	106.9 82.4	4.18 2.92	2.12 2.4	0.48 0.36	- 0.2	0.92 0.15	61.64 9.27	49.0 38.7	17.0 17.0	24.5 25.5	15.89 10.19	338 283
Tsagaan sum hot spring																
3 4	1977-0202 2002-0203	69 69.1	8.85 9.3	106.25 83.13	97.2 72.2	3.16 1.88	2.0 3.21	0.31 0.24	- 0.2	1.0 0.77	58.93 49.77	47.6 28.8	7.5 2.48	19.0 23.5	16.21 11.65	284 216
Shivert hot spring																
5 6 7	1977-0302 2000-0303 2002-0304	48 57.3 57.3	8.8 9.45 9.1	106.25 86.88 74.56	123.2 96.3 104.5	6.03 4.08 3.86	2.4 3.21 4.01	0.07 1.22 1.2	- 0.2 1.0	0.23 0.77 0.61	51.93 48.4 43.13	72.7 77.4 78.3	15.8 19.9 21.9	15.5 17.5 -	8.75 9.1 -	342 307 290
Chuluut hot spring																
8 9	1977-0402 2002-0404	45 44	8.7 9.3	91.87 64.94	105.4 89.39	3.9 3.3	1.87 4.0	0.06 1.22	- -	0.77 1.38	68.24 55.61	51.1 55.73	12.1 18.7	17.0 -	10.68 -	284 239
Khuremt hot spring																
10 11	1977-0503 2002-0504	56 54	8.7 9.45	98.13 83.12	92.5 80.6	2.23 1.5	1.3 1.0	0.8 0.61	- 0.8	0.54 0.08	80.93 65.57	43.4 32.9	8.48 5.5	8.5 6.2	12.97 10.1	256 212
Khujirt hot spring																
12 13 14	1973-0603 1977-0604 2002-0605	54.5 55 48.5	8.5 8.7 9.35	79.38 103.75 104.38	117 97.9 82.4	5.0 3.9 2.81	2.0 1.6 2.0	0.1 0.1 0.24	- - 0.2	0.77 0.31 0.08	64.85 72.13 54.17	31.1 32.1 33.3	14.7 7.17 15.2	17.0 13.5 16.1	12.47 11.55 7.86	267 260 257
Noyonkhangai hot spring																
15	2002-0702	37	8.8	56.56	60.78	2.1	5.1	2.32	-	0.19	48.08	50.99	11.2	10.5	3.0	200

Table 2: Results of different geothermometers for samples from hot springs in the Khangai geothermal area, Mongolia

Hot spring	Number	T _{meas}	T _{qtz} ¹	T _{qtz} ²	T _{qtz} ³	T _{chal} ⁴	T _{chal} ⁵	T _{NaK} ⁶	T _{NaK} ⁷	T _{NaK} ⁸	T _{NaK} ⁹	T _{NaKCa} ¹⁰
Tsenkher	1977-0102 2002-0103	86.5 84.3	1491 39	154 145	142 132	123 112	126 116	115 108	105 98	15414 8	167 161	145 135
Tsagaan sum	1977-0202 2002-0203	69 69.1	136 116	141 127	128 114	108 87	112 99	102 88	92 77	143 130	156 144	135 118
Shivert	1977-0302 2000-0303 2002-0304	48 57.3 57.3	136 114 100	141 129 121	128 117 108	109 85 69	112 101 93	132 121 111	122 111 101	170 160 151	181 172 164	156 144 137
Chuluut	1977-0402 2002-0404	45 44	128 104	133 114	120 101	101 73	104 86	111 111	101 101	151 151	164 164	143 135
Khuremt	1977-0503 2002-0504	56 54	132 111	136 127	124 114	104 81	108 99	83 69	73 58	125 111	140 126	125 114
Khujirt	1973-0603 1977-0604 2002-0605	54.5 55 48.5	122 135 126	125 139 140	112 127 127	93 108 98	96 111 111	122 116 105	111 106 95	160 156 146	172 168 159	151 146 135
Noyon-khangai	2002-0702	37	104	108	94	74	79	106	96	147	160	125

1) Fournier and Potter (1982);

5) Fournier (1979);

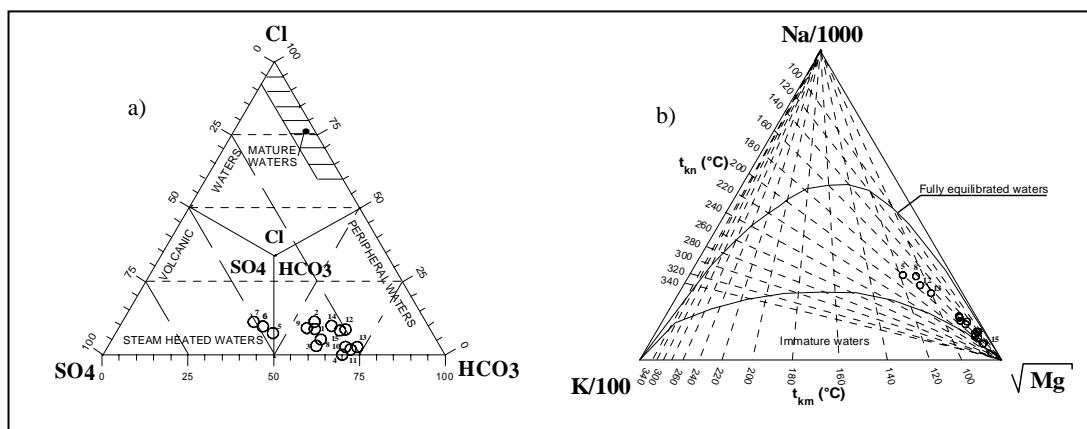
9) Giggenbach (1988);

2) Fournier (1977);

6) Truesdell (1976);

10) Fournier and Truesdell (1973);

3) Arnorsson et al. (1983b);


7) Arnorsson et al. (1983);

4) Fournier (1977)

8) Fournier (1979);

Table 3: Calcite calculation and Ryznar Stability Index of selected hot springs

Name of hot spring	Sample №	Ionic balance (%)	LogK	LogQ	SI (Log(Q/K))	RSI
Tsenkher	1977-0102	1.69	-9.858	-9.925	-0.067	7.19
	2002-0103	-11.03	-9.652	-9.744	-0.092	7.24
Tsagaansum	1977-0202	6.24	-9.586	-9.773	-0.187	7.79
	2002-0203	-10.84	-9.223	-9.002	0.221	7.05
Shivert	1977-0302	25.35	-9.589	-9.795	-0.206	8.53
	2000-0302	-9.41	-9.188	-8.903	0.285	7.35
	2002-0304	24.2	-8.962	-8.52	0.442	7.6
Chuluut	1977-0402	11.7	-9.449	-9.745	-0.296	8.7
	2002-0404	26.45	-9.02	-8.731	0.289	7.64
Khuremt	1977-0503	7.18	-9.509	-9.823	-0.314	8.47
	2002-0504	3.67	-9.13	-9.175	-0.045	8.16
Khujirt	1973-0603	32.87	-9.325	-9.769	-0.444	8.54
	1977-0604	18.83	-9.57	-9.81	-0.24	8.42
	2002-0605	-4.77	-9.408	-9.251	0.157	8.06
Noyonkhangai	2002-0702	-2.13	-9.023	-9.088	-0.065	8.29

Figure 1. Ternary diagrams of a) Cl-SO₄-HCO₃ and b) Na-K-Mg

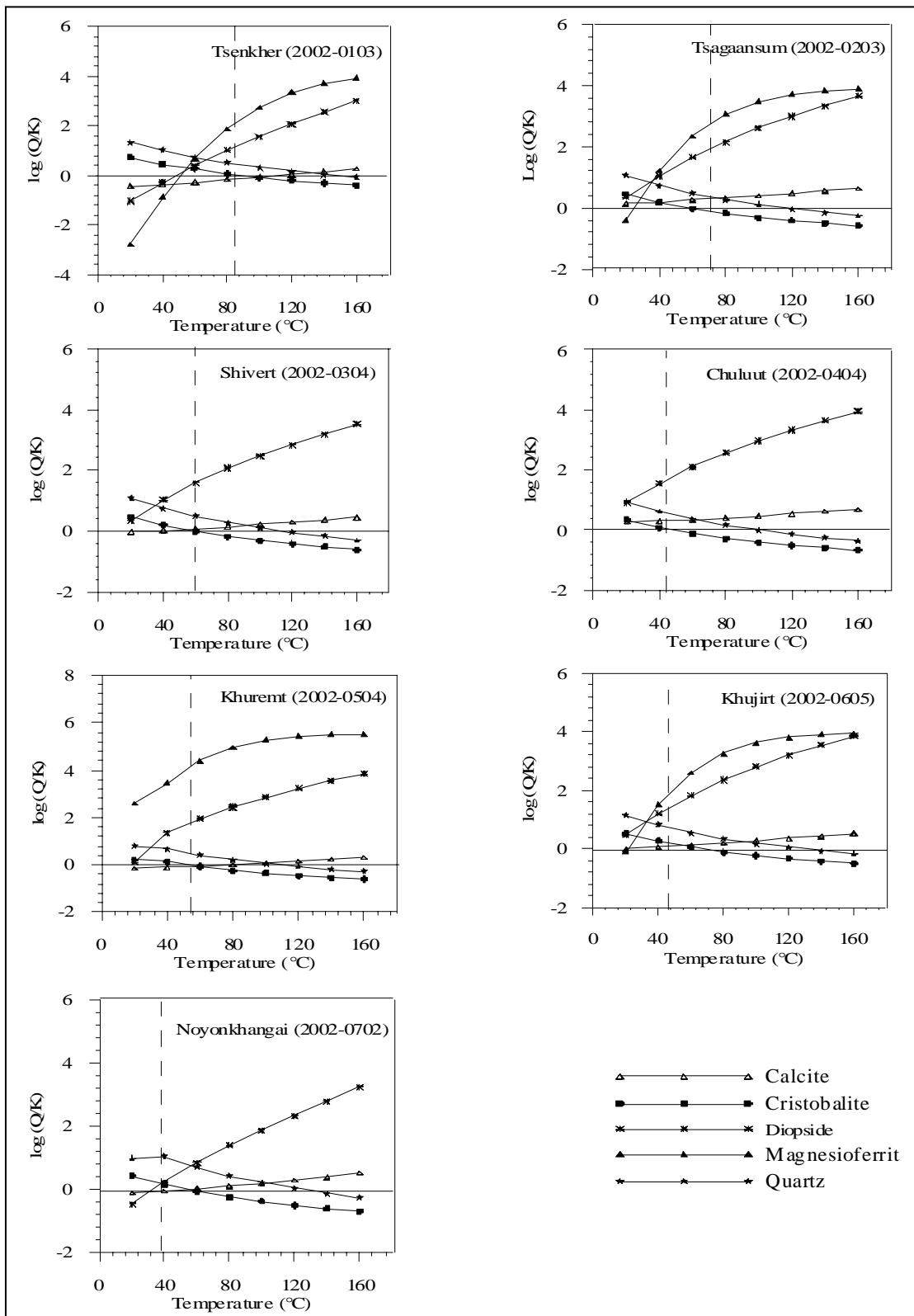


Figure 2: Mineral equilibrium diagrams for hot springs in the Khangai area, Mongolia

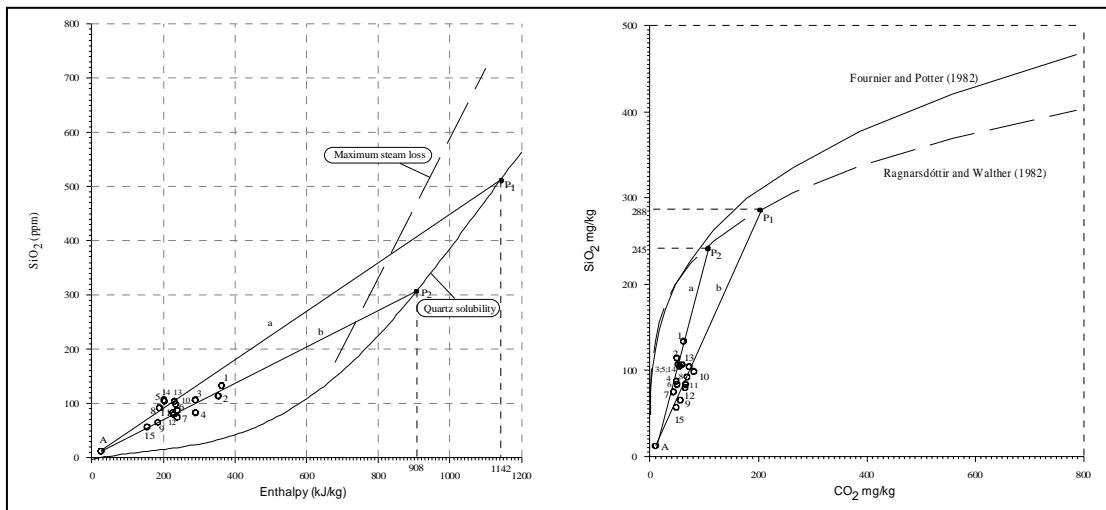


Figure 3. Mixing models of a) silica-enthalphy and b) carbonate-silica.

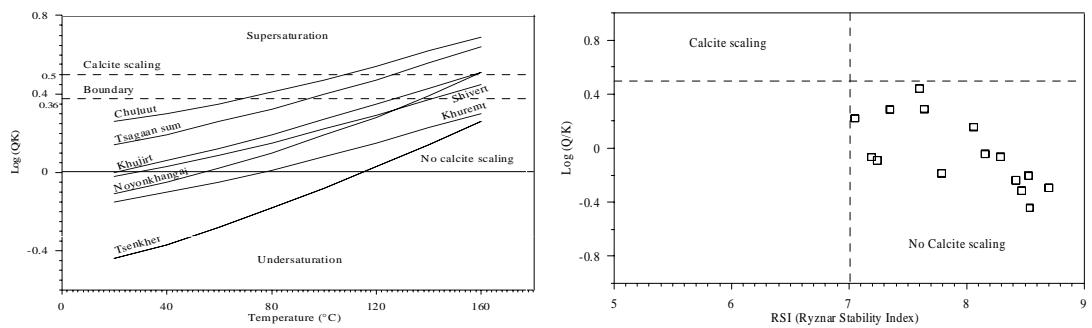


Figure 4. Calcite saturation index vs. temperature and Ryznar stability index.