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ABSTRACT 

A magnetotelluric line named as AG crossing Isparta Angle 
tectonic zone between Afyon and Antalya was taken to 
define geoelectrical structure.  Two-dimensional (2-D) 
modeling of this profile was used to derive the resistivity 
structure and investigate its implication on possible 
geothermal activity within the crust.   

The magnetotelluric results in the view of the 2-D 
geoelectric structures, with true resistivity values, obtained 
from transverse electric (TE), transverse magnetic (TM) 
data and joint TE-TM inversion was interpreted.  

The 2-D models of geoelectric structures obtained from 
these inversions were clearly displayed the existence of an 
electrically conductive (<50 Ωm) zone (ZONE-1) beneath 
Sandikli Graben (around Afyon) where is the popularly 
known as a geothermal region. Another conductive zone 
(ZONE-2 with ~5-10Ωm) was defined beneath Dinar 
Graben where is seismically active. 

The sharp decreasing of the resistivity to very low values 
probably suggests that both zones ZONE-1 and ZONE-2 are 
highly permeable and saturated with geothermal fluids.  

1. INTRODUCTION 

Electrical resistivity of the rocks in the earth’s crust 
depends on a wide range of petrological and physical 
parameters, e.g., their composition, degree of saturation 
with fluid, porosity and connectivity of pores, conducting 
minerals or enhanced temperatures.  

The electrical resistivity of the fractured rocks, depending 
on metamorphism and fluid-saturation, can decrease to very 
low values of a few ohm-m, while the compact and dry 
geological rocks may be characterized by the high electrical 
resistivity up to 10,000 Ωm (Hyndman and Hyndman, 
1968; Telford et al., 1990; Schwarz, 1990).  

The Tauride zone within southwestern Anatolia 
accommodates the Isparta Angle area that is an important 
segment of the eastern Mediterranean region. Because of its 
key position within the Alpine Mediterranean belt and its 
complex structure a magnetotelluric line named as AG 
crossing Isparta Angle with north east direction was taken 
to define geoelectrical structure along this line in the region 
between Afyon and Antalya.  

 

The region is seismically active associated with many major 
and moderate graben systems as presented by earthquake 
data (Taymaz et al., 1990; Taymaz and Price, 1992). The 
study area where was not far from the well-known 
geothermal field around Afyon and Antalya that has several 
potentially valuable mineral and hot springs.   

The aim of this magnetotelluric survey, covering the period 
range 0.04-500 s, is subsequently to define the structural 
geometries of the Isparta Angle and surrounding 
geotectonic zones by their electrical response. The deep 
electrical resistivity data that distinguish the rocks with 
different nature, down to several tens of kilometers within 
the crust, can be obtained mainly from magnetotelluric 
soundings. 

2. GEOLOGICAL SETTING 

The major neotectonic structures shaping Turkey and 
adjacent areas are the right-lateral North Anatolian Fault 
System (NAFS) (Figure 1), the left-lateral East Anatolian 
and the Dead Sea fault systems and the Hellenic-Cyprus 
active subduction zone (Bozkurt, 2001). 

In addition to these major structures, there are also some 
other second-order fault zones cutting across and dividing 
the Anatolian plate into smaller blocks. One of geologically 
complicated areas comprising the Anatolian plate is the 
Isparta Angle. This is an “acute angle towards south” 
shaped morphotectonic structure about 260 km long, 380 
km wide outlining Antalya Bay in the Eastern 
Mediterranean Sea (Figure 2). 

The origin of the Isparta Angle is still under debate, but it is 
accepted as a palaeotectonic structure resulting from the 
northward curvature of the originally ~E–W-trending 
Tauride orogenic belt due to nappe emplacements and 
related clockwise and anticlockwise rotations in Early 
Palaeocene–early Messinian times (Piper et al. 2002). 

Many horst and graben systems are located within the 
Isparta Angle (Figures 1 and 2). The oblique-slip normal 
faults characterizing an extensional neotectonic regime 
throughout the northeast edge of the outer Isparta Angle 
were occurred (Koçyiğit and Özacar, 2003). 

The Isparta Angle has not experienced a compressional 
tectonic regime after the Early Messinian phase of 
compression, i.e.,the nature of the neotectonic regime 
through the northeast edge of the outer Isparta Angle is 
extensional (Koçyiğit and Özacar, 2003). 
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Figure 1: The faults and main grabens in the middle 
Anatolia and Tauride zone. Grabens: AcG: Acigöl, ÇG: 
Çivril, DG: Dinar, ByG: Beysehir, SkG: Sandikli, DG: 
Burdur, KdG: Kovada, AAG: Afyon. (redrawn from 

Bozkurt, 2001) . 

3. MAGNETOTELLURIC DATA AND RESULTS 

3.1. General 

The magnetotelluric method allows the determination of an 
electrical resistivity structure model from measurements of 
natural variations of the surface electric (E) and magnetic 
(H) fields over a wide frequency range (Kaufmann and 
Keller, 1981), usually from 10-4-103 Hz (in our case 0.04-
500 s period range). The method is based on an inductive 
model of electromagnetic energy penetrating vertically 
downward into the earth, for which the depth of penetration 
is both a function of frequency (inverse of period) and 
ground resistivity.  

The amplitudes of the E and corresponding orthogonal H 
vectors of an electromagnetic field entering a uniform 
conducting half-space decrease by 1/e over a distance called 
the skin depth, δ≈503 (ρT)½ in meters, where ρ is the 
resistivity (inverse of conductivity σ) in Ω meters and T is 
the period in seconds. 

Figure 2: The topographic map of the Isparta Angle 
geotectonic zone and the locations of magnetotelluric 

sites along profile AG. 

3.2. Data acquisition 

The magnetotelluric soundings were performed at 12 sites 
along AG-line crossed the Isparta Angle zone, using 
Geotronics system™. Two induction coils were used to 
record the horizontal magnetic field components (Hx and 
Hy). Cu-CuSO4 electrodes were used as sensors to detect 
the horizontal electric field (Ex and Ey). Dipole lengths are 
always taken about 100 m. Magnetotelluric data were 
obtained within the six overlapping frequency bands over 
the range 0.002-25 Hz (i.e. 0.04-500 s period range). Output 
from the electric and magnetic field sensors was fed 
immediately through high-gain analog amplification and 
band limiting, usually with custom-built electronics. The 
horizontal components of magnetic and electric field, Ex-Hx 
and Ey-Hy, were measured in the north-south and east-west 
directions, respectively. 

The data were processed in the Department of Geophysics, 
Istanbul Technical University (ITÜ). All data were discrete-
Fourier transformed in the frequency domain and corrected 
for the system response function before the application of 
standard processing methods.  

Good quality data having high field coherences (~ 0.9) were 
obtained. The elements of magnetotelluric impedance that 
describe the conductivity structure beneath the measuring 
point are determined as a least square solution in desired 
band of frequency.  
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Following this, to obtain the azimuth of the maximum 
(Figure 4) and minimum resistivity directions we perform 
rotation of the impedance to minimize the diagonal 
elements Zxx and Zyy or to maximize Zxy and Zyx (Zang et 
al., 1987; Bahr, 1988) In this way two magnetotelluric 
apparent resistivity (Figure 5) and phase curves are 
obtained corresponding to the directions parallel (TE mode) 
and perpendicular (TM mode) to the geoelectric strike. 

3.3. Magnetotelluric Two-Dimensional (2-D) modelling 

The data were modelled with two-dimensional (2-D) 
modelling code. Transverse Magnetic (TM) and Transverse 
Electric (TE) modes of magnetotelluric data were inverted 
using the 2-D inversion code of Mackie (Mackie et al., 
1993; 1997).  

Figure 3: The general geology of the Isparta Angle 
geotectonic zone and surrounding region. The 

magnetotelluric measuring stations along the profile AG 
were shown in the figure. 

The inversion program finds regularized solutions to the 
two-dimensional inverse problem for magnetotelluric data 
using Tikhonov method. The Tikhonov’s method defines a  

regularized solution of the inverse problem to be a model m 
that minimizes the objective function  

2

0
1 )())(())(()( mmLmFdRmFdmS dd

T −⋅+−−= − τ  

in which d is observed data vector, F is forward modelling 
operator, m is unknown model vector, Rdd is error 
covariance matrix, L is a linear operator, m0 is apriori model 
and τ is regularization parameter. Each datum di is 
logarithmic amplitude or phase of TE or TM complex 
apparent resistivity at a particular station and frequency. 
The model vector is logarithmic resistivity as a function of 
position i.e. m(x)=log ρ(x).  

The inversion program uses the predicted impedances from 
the forward problem to modify the model parameters such 
that, over a number of iterations, the inversion will find a 
better set of model parameters that minimizes the objective 
function S above. The regularization parameter τ controls 
the trade-off between fitting the data and adhering to the 
model constraint. The value of τ should optimally be 
chosen such that the root mean square (RMS) error for the 
inversion is between 1.0 and 1.5.  

Figure 4: Computed TE Azimuth values from 
magnetotelluric data for AG profile 

The Mackie’s inversion (Mackie et al., 1997) was carried 
out on both TE and TM modes individually and jointly to 
obtain geoelectric models along the line AG. Figure 6 
presents the final models obtained from TE and TM data 
and joint inversion using τ=20, damping factor of 0.001 and 
error (noise) floors of 4.0% for ρa and φ. The comparisons 
between the field data (Figure 5) and the synthetic response 
of these models are presented as calculated apparent 
resistivity pseudosections for all inversion (not given here). 
The data fit was excellent for all models. The 
pseudosections of the observed and calculated data were 
very similar. Hence we can say that the calculated two-
dimensional models fit very well with the experimental 
(observed) data (Figure 5).  

3.2. Two-Dimensional (2-D) Geoelectrical Models 

3.2.1. Characterization of electrical resistivity in the rocks 

It is common for altered volcanic rocks to contain antigenic 
minerals that have resistivities ten times lower than those of 
the surrounding rocks (Nelson and Anderson, 1992). 
Increased temperatures cause higher ionic mobility and 
mineral activation energy, reducing rock resistivities 
significantly. Unaltered, unfractured igneous are normally 
very resistive (typically 1000 Ωm or greater), whereas 
faults will show low resistivity (less than 100 Ωm) when 
they are comprised of rocks fractured enough to have 
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hosted fluid transport and consequent mineralogical 
alteration. Carbonate rocks are moderately to highly 
resistive (hundreds to thousands of Ωm) dependent upon 
their fluid content, porosity, fracturing, and impurities. 
Marine shales, mudstones, and clay-rich alluvium are 
normally very conductive (a few Ωm to tens of Ωm). 
Metamorphic rocks (non-graphitic) are moderately to 
highly resistive (hundreds to thousands of Ωm). Tables of 
electrical resistivity for a variety of rocks, minerals and 
geological environments may be found in Palacky (1987). 

3.2.2. Interpretation of 2-D geoelectrical models 

Figure 5 represents electrical resistivity model calculated 
from the individually and jointly inversion of 
magnetotelluric data using TE and TM data. Between the 
depths about 5-13 km, the 2-D geoelectric models for TM 
modes basically reflect both vertical and horizontal 
resistivity variations. The regions under Hudai geothermal 
field and Sandikli graben (stations AG2-AG3) and the 
region under Dinar graben (ZONE-2; stations AG6-AG8) 
are characterized by relatively low resistivity values for 
various depths in TM model. But the near-surface regions 
(up to ~7 km depth) of the all geoelectrical model between 
AG4-AG9 generally were oppositely characterized by 
relatively high resistivity values. Except conductive ZONE-
1 beneath Dinar Graben, the crustal electrical resistivity 
about between the sites AG5 and AG10 is generally 
moderato to high that could be easily correlated to 
metamorphic basement (U. Cambrien-L. Ordovisien). 
 
The conductive region beneath Sandikli graben (Hudai 
geothermal field; Tezcan, 1995) extends to the deeper 
levels up to 25 km in TE model probably due to strong 
macro-electrical anisotropy such as found in northwestern 
Aegean region (Caglar, 2001).  At greater depths within the 
upper crust the main conductive zones labelled as ZONE-1 
appears in both TE and TE-TM models. This preliminary 
qualitative feature was taken into account during the 2-D 
modelling. The decreasing resistivity with depth throughout 
the deeper regions of Sandikli area also produces synthetic 
responses that are quite close to field data (Figure 5) but its 
extension to deeper levels than 20 km is uncertain. This 
region was relatively deeper in TE mode.  

Figure 5: Apparent electrical resistivity pseudo-sections 
for both TE and TM mode magnetotelluric data along 

the profile AG. 

Another conductive zone with resistivity range (5-10 Ωm) 
was similarly found for depths greater than about 5 km 

beneath AG6-AG8 (Figure 5; ZONE-2). This zone is wider 
in TM mode indicating electrical current channelling in the 
geoelectric structure for present depth trends mostly north 
south over the area.  

Figure 6: Two-dimensional (2-D) geoelectrical models 
calculated from individual and joint inversions using TE 
and TM data. The values are true resistivity in Ωm and 
red shadings show resistive rocks while blue shadings 

show more conductive regions. The electrically 
characteristic zones ZONE-1 and ZONE-2 are shown in 

the figure.  

Although the TM impedance less sensitive to deep 
conductive structures than the TE impedance (Berdichevsky 
et al., 1998), both fairly conductive zones ZONE-1 and 
ZONE-2 are significantly imaged by the 2-D models. The 
origin of these zones needs further to explain. 

4. DISCUSSIONS AND CONCLUSIONS  

The magnetotelluric method is a passive surface 
geophysical technique, which uses the earth’s natural 
electromagnetic fields to investigate the resistivity structure 
of the subsurface. The resistivity of geologic units is largely 
dependent upon their fluid content, porosity, fracturing, 
temperature, and conductive mineral content (Keller and 
Frischknecht, 1966). Saline fluids within the pore spaces 
and fracture openings can reduce resistivities in a resistive 
rock matrix. Also, resistivity can be lowered by the 
presence of conductive clay minerals, graphitic carbon, and 
metallic mineralization. 

On the other hand, the use of geoelectrical and geo-
electromagnetic (e.g. magnetotelluric) methods in 
geothermal exploration is based on the fact that the 
resistivity of hydrothermal ground water in the rocks 
decreases significantly at high temperatures and that 
geothermal activity can produce conductive alteration 
minerals. The resistivity of these rocks observed in 
geothermal areas is lower than in surrounding rocks, 
indicating the presence of a considerable resistivity contrast 
that can be investigated by the magnetotelluric method 
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(Garcia, 1992; Brown, 1994). 
 
The original motivation for this work was to present the 
results of regional deep resistivity structure along AG-line 
to contribute to the understanding of some distinctive 
geotectonic phenomena. Although the geological 
complexity may affect both detect ability and resolution, 
nevertheless in the present circumstance, the final result 
(Figure 6) provides a true two-dimensional geoelectric 
model conforming to the geology. But uncertain points 
about geology in the form a depth-section could be firstly 
explained from the interpretation of this geoelectric model.  
 
The electrical resistivity structures of the both external and 
inner parts of Isparta Angle geotectonic zone depend on 
petrological and physical parameters. The resistivity models 
(Figure 6) show a high crustal resistivity (up to 5000 Ωm) 
beneath the external Taurides, characteristic of igneous 
bodies. The basement of external Taurides trend, a high-
angle, south dipping low resistivity (5-30 Ωm) zone may be 
interpreted as a crustal dimension fault, possibly extending 
to 5 to 8 km depth beneath Aksu basin (Figures 2, 3 and 6). 

Moreover, the geological rocks under AG2-AG4 where 
well-known many hot springs of Hudai geothermal site 
occurred on the surface also seem as the geoelectrically 
characteristic place. The circulations of the hydrothermal 
fluids of these springs from the conducting zone ZONE-1 to 
the surface probably fractured and altered rocks. These 
alterations principally control the bulk resistivity (Hyndman 
and Hyndman, 1968; Telford et al., 1990) and specific 
resistivity values therefore significantly decreased to lower 
values (here below 50 Ωm) than in the case of massive or 
dry rocks. This zone would have to contain hot fluids and 
clay or other minerals produced by the hydrothermal 
alteration therefore also have a role decreasing the specific 
resistivity. On the other hand, similar characteristic place 
were located in Göynük geothermal area (northwest 
Anatolia) by magnetotelluric (Caglar and Isseven).  
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