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ABSTRACT 
Solid and liquid particulate materials that are ejected by 
hydrothermal or volcanic eruptions are subsequently 
dispersed by atmospheric wind currents while falling under 
gravity to the Earth's surface.  Particle sizes are not uniform 
and may indeed change during flight owing to coalescence 
and/or fragmentation.  Wind conditions (speed, direction 
and turbulence) may also change with elevation (and with 
time). 

In an attempt to determine the most important physical 
factors, a quantitative model that reflects the above 
influences on particle dispersal is outlined.  Analytic 
solutions to the mathematical model are sought wherever 
possible, since an analysis of the sensitivity of the predicted 
distributions to the numerous parameters involved is then 
more readily undertaken.  Numerical simulations have also 
been made.  Some example calculation results are 
compared with measured eruption deposit patterns 
published in the geological literature; these comparisons 
indicate that the proposed model reflects various 
characteristics of the measured data well. 

1.  INTRODUCTION 

The deposit of ash from volcanic eruptions, pollen 
distribution by the wind, seabed contamination by dumping, 
and environmental pollution through airborne contaminants 
(solid or gaseous) are all able to be described by physical 
and mathematical models which combine advection and 
dispersion. 

Measurements of neutrally-buoyant components as time-
dependent concentrations, or of heavier-than-fluid 
components as spatially-distributed deposits, may be used 
to deduce the origin and release rates or total releases.  
These measurements may also give information about fluid 
flow conditions throughout the transport processes. 

Recent work (Kathirgamanathan et al., 2001, 2003, 2004) 
has been done on devising methods that use inverse models 
for gas releases into the atmosphere.  Data from real-time 
concentration measurements made at several downstream 
locations on the ground can be used to deduce the location 
and release rate of a pollutant.  Such information may allow 
calculation of total release and the prediction of 
atmospheric concentration as time continues to pass. 

At present, the accuracy of the predictions are restricted by 
simplifying assumptions about the wind velocity and 
dispersion coefficients which represent the air turbulence.  
In practice, the precision will also be constrained by the 
inherent variability between similar releases due to 
turbulent dispersion. 

The mathematical methods required, even for such 
simplified models, include both linear and non-linear 

optimization processes as well as some regularization 
techniques.  However, comparison of calculated results 
with field data shows some success with the method 
(Kathirgamanathan et al., 2004). 

This paper deals with heavier-than-fluid releases.  It 
includes discussion of sample results calculated from an 
advection-dispersion model which takes account of lateral 
drift caused by the wind, settling of the released solid 
particles and their dispersion by air turbulence. 

Previous versions of the model (McKibbin, 2003) have 
been enhanced: account is now taken of variation with 
elevation of wind speed and direction, particle settling 
speed and turbulent dispersion through a model atmosphere 
comprising layers.  The description that follows is set in the 
context of a specific example, that of volcanically-erupted 
ash (small rock particles), but the analysis is the same for 
various other air-borne or water-transported particles. 

Needless to say, the actual physical processes for 
distribution of eruption material are very complicated.  
Some of the main features captured by the model are as 
follows: 

• The atmosphere is modelled as a layered system; within 
each layer, the wind is uniform in speed and direction, the 
settling speed for any given particle is constant and the 
turbulence length scales are uniform. 

• The ground or bed surface is approximately horizontal – it 
is assumed that the fluid flow is parallel to the surface and 
that variation of topography is not severe enough to 
influence the average transport mechanisms. 

• The eruption material is ejected to a certain height, where 
it is released into the wind – each particle quickly takes up a 
velocity which corresponds to the wind speed laterally and 
the particle's terminal speed (the "settling speed") vertically 
downwards; a similar fast transition occurs as particles pass 
from one layer to another. 

• The turbulence within the air flow is modelled as having a 
certain characteristic length – since turbulence has a variety 
of scales, the length is a typical mean value for the flow. 

2.  AN ADVECTION–DISPERSION MODEL 

A Cartesian coordinate system (x, y, z) is used, with the 
coordinates (x, y) measuring position on the ground relative 
to a fixed origin, and with z measuring vertical height above 
the ground surface.  A cohort of particles of a certain size, 
with a total mass Q, is supposed to be released at time t = 0 
at a point (x0, y0, H) which is at a height H above the point 
(x0, y0) on the ground.  The particles are blown by a wind 

u(z) = (U(z), V(z), 0) with speed W (z) = U 2 +V 2 , while 
falling (settling) in the negative z-direction; they are 
simultaneously dispersed by the turbulent motion of the 
atmosphere. 
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If the concentration of the particles (mass per unit volume 
of air) at time t > 0 is denoted by C(x, y, z, t), then mass 
conservation requires that 

∂C

∂t
= −∇ ⋅ q            (1) 

where  q is the solid particle mass flux per unit area, given 
by 

q   =   C u  –  D ⊗ ∇C  –  C S k        (2) 

Here, the first term Cu represents the mass advection by the 
wind, D(z) is a dispersion tensor and the last term is the flux 
due to falling under gravity, with S(z) being the settling 
speed, or terminal speed, of a particle of the given size.  
The vector k is a unit vector in the positive z-direction 
(upwards). 

The settling speed S of a particle which has density ρr and 

radius R falling in air with density ρa may be calculated 
from a balance of weight and drag forces in still air, given 
approximately by the correlation for spherical particles 
which are much denser than the fluid (ρr >> ρa): 

ρr ( 
4

3
π R3 ) g   =   

1

2
Cs ρa ( π R2) S2  (3) 

where g is the gravitational constant and Cs is the drag 
constant (Perry et al., 1984).  This gives the settling speed: 

S   =   
8

3

ρr

ρa

g

Cs
R   (4) 

which is proportional to the square root of the particle 
radius.  The dispersion tensor is assumed to be of the form 
D(z) = |u| L where L(z) is a dispersion mixing-length tensor 
reflecting the mean size of turbulence.  Then, from 
Equation (2), the components in the (x, y, z) directions of 
the specific mass flux q = (qx, qy, qz) are 

q = UC − D1
∂C

∂x
,VC − D2

∂C

∂y
,−SC − D3

∂C

∂z

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟          (5) 

Attainment of settling speed 

One issue that is of concern is the assumption that the 
particles have attained terminal velocity.  This is embodied 
in the assumption that the average particle velocity (the 
terminal velocity) is the resultant of that of wind u and that 
of the settling velocity –Sk [where S is given by Equation 
(4)].  A particle released from rest or projected into the air 
will be accelerated by the combination of air resistance and 
gravity.  We need to be assured that the particle reaches 
terminal velocity within a time and distance that are both 
small compared with typical large-scale values. 

Some calculations reveal that, typically, rock particles with 
a diameter of 2 mm reach 99% of their settling speed (S ≈ 9 
m/s) within a time of 3 seconds while falling a distance of 
less than 20 m.  For particles with a diameter of 2 cm, the 
time is 8 seconds and distance is 160 m, while for a 
diameter of 20 cm, the time and distance are 25 seconds and 
1600 m. 

These calculations show that for eruptions where particles 
are ejected several thousands of metres in to the air, the 
particles of size no greater than 2 cm diameter reach settling 
speed within a relatively short distance after release.  The 
assumption made in the current model for smaller-sized 

particles therefore appears justified, but would not apply to 
very large rock particles. 

3.  UNIFORM ATMOSPHERE 

If it is assumed that U and V are constants, i.e. the mean 
wind does not vary significantly with height, then, with 
each of the Di constant, substitution of the expression for q 
from Equation (5) into (1) gives 

∂C

∂t
+U

∂C

∂x
+V

∂C

∂y
− S

∂C

∂z
= D1

∂ 2C

∂x 2
+ D2

∂ 2C

∂y 2
+ D3

∂ 2C

∂z2
  

+  Qδ( t )δ( x − x0 )δ( y − y0 )δ( z − H )    (6) 

This advection-dispersion equation incorporates the initial 
condition, represented in terms of the Dirac delta function, 
of zero concentration everywhere at t = 0 except at the point 
(x0, y0, H), where a mass Q of particles is released.  The 
far-field boundary conditions are of the form: 

C → 0   as   x, y → ± ∞,  z → + ∞       (7) 

On the ground surface, z = 0, the vertical diffusive mass 
flux must be zero, which gives 

∂C

∂z
= 0   on   z = 0   (8) 

and the vertical mass flux onto the ground is 

– qz(x, y, 0, t)  =  S C(x, y, 0, t)   

An alternative boundary condition instead of (8) is 

C → 0   as  z → – ∞  (8)' 

which, while not ensuring that the diffusive flux at z = 0 is 
exactly zero, does not greatly change the overall dispersion 
pattern and allows a simpler solution of the advection-
diffusion equation (6). 

Comparison of the solutions found using the two different 
boundary conditions (8) and (8)' indicates that the total 
mass deposited on the ground is the same (= Q) in both 
cases, with only a small difference in the predicted lateral 
distribution.  The simpler solution using the boundary 
conditions (7) and (8)' will be presented here.  [The solution 
using boundary conditions (7) and (8) is also available, but 
is mathematically more complicated to write down.] 

Solution 

The analytic solution to Equation (6) with boundary 
conditions (7) and (8)' is (Kevorkian, 1993; Logan, 1998): 

C(x, y, z, t) = 

A

t3 / 2
exp −

( x − x0 −Ut )2

4D1t
−

( y − y0 −Vt )2

4D2t
−

( z − H + St )2

4D3t

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 

(9) 

where 

A   =   
Q

8π 3 / 2 D1D2D3

  (10) 

The downward flux at the ground (z = 0) is, for boundary 
condition (8)', 
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– qz(x, y, 0, t)  =   SC + D3
∂C

∂z

⎡ 
⎣ ⎢ 

⎤ 
⎦ ⎥ z= 0   

 

 = 
A

2

H

t 5 / 2 +
S

t 3/ 2
⎧ ⎨ 
⎩ 

⎫ ⎬ 
⎭ 

 ×           

× exp −
( x − x0 −Ut )2

4D1t
−

( y − y0 −Vt )2

4D2t
−

(−H + St )2

4D3t

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
     

(11) 

which gives the mass deposition rate per unit area, 
assuming no bouncing or rolling.  The total deposition 
(mass per unit area) f(x, y) at point (x, y) on the ground is 
given by 

f(x, y)   =   −qz ( x,

0

∞

∫ y,0, t )  dt  (12) 

which may be found, after some calculation, to be 

f(x, y)  =  
Q

32π D1D2D3

   
(2αβ +1)H + 2α 2S

α 3
 ×  

× exp
U( x − x0 )

2D1
+

V ( y − y0 )

2D2
+

HS

2D3
− 2αβ

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥   (13) 

where α(x, y) and β are parameters, both positive and 
defined by 

α = 
1

2

( x − x0 )2

D1
+

( y − y0 )2

D2
+

H 2

D3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

 

β  = 
1

2

U 2

D1
+

V 2

D2
+

S 2

D3

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 

1
2

 

 
An example calculation 

To provide an example calculation, the data in Table 1 are 
used. 

Here 1000 tonnes of rock particles of diameter 2 mm are 
assumed to be released at an altitude of 5 kilometres above 
the origin into a 20 m/s (72 km/hr) wind with a mean 
turbulence length scale of 100 m.  The settling speed S of 
the particles is calculated from Equation (4) to be 
approximately 8.9 m/s. 

Figure 1 shows the 10% contours of the ground distribution 
of the fallout.  The point where particles which were not 
subject to dispersion would land is marked by a star (*), a 
distance x* from the point (o) directly beneath the release 
point.  The time taken to fall to the ground for such a 
particle is 

t*  =  
x*

U
  =  

H

S
   ≈   9.4 minutes 

and 

x*  =  
U

S
 H  =  

20

8.9
 ×  5,000   ≈   11,200 m 

 

Table 1: Data for example calculation of fallout distribution  
from a release of particles. 

parameter SI units value 

Q tonne = 103 kg 1 000 

ρr kg/m3 1 500 

ρa kg/m3 1.3 

Cs – 0.38 

g m/s2 9.8 

U m/s 20 

V m/s 0 

W = |u| m/s 20 

L1 m 100 

L2 m 100 

L3 m 100 

D1 = |u| L1 m2/s 2000 

D2 = |u| L2 m2/s 2000 

D3 = |u| L3 m2/s 2000 

x0 m 0 

y0 m 0 

H m 5 000 

R m 0.001 

S 
[calculated] 

m/s 8.9 

 

As can be seen from Figure 1, the maximum fallout 
concentration is at a point on y = 0 where x < x*.  This is a 
characteristic of the dispersion mechanism, which moves 
some of the particles at a faster rate towards the ground, as 
well as some upwards, sideways, etc.  The longer tail 
downwind is due to those particles that move higher into 
the air and are carried further before falling on the ground. 

Such a profile of historic ashfall deposits is common (see 
examples in Sparks, 1997), and reflects a uniform wind 
pattern for the duration of an eruption.  Generally, of 
course, the mass is "emplaced" in the atmosphere at 
different heights, and the particles are of various sizes. 

 

Figure 1: 10% contours of mass distribution on the ground 
after the release of particles; the various parameters are given 

in Table 1.   

Particle size distributions 

In general, releases are composed of a range of different-
sized particles.  It is clear from the above calculation that 
the fallout distribution of particles with large settling speeds 
will be closer to the release point.  So, the overall particle 
size distribution at a point on the ground depends on its 
position.  Points far from the source release will have a 
predominance of smaller lighter particles, while the regions 
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near the release point will be rich in larger particles.  An 
example calculation was demonstrated in McKibbin (2003). 

The distribution concentrations are measured in kg/m2 in SI 
units.  This mass distribution may also be interpreted as a 
"depth of deposit" if information on the packing of the 
material after deposit is known.  In general, the deposit has 
some average porosity φ, which reduces the effective 
volumetric density of the rock material (intrinsic density ρr) 

to a smaller value (1 – φ) ρr. 

Particle agglomeration 

Such a model as outlined above should also be able to take 
account of agglomeration of particles within the atmosphere 
as they move along.  If atmospheric conditions within some 
zone produce condensation within humid air, the resulting 
water droplets may contact particles that then coalesce, 
linked by so-called "liquid bridges".  Further agglomeration 
may then occur between these wet clusters.  This increases 
the mass of a "particle" which is now a cluster of smaller 
particles.  The average particle cross-sectional area 
increases and Equation (4) shows that the settling speed 
increases. 

The next section demonstrates how the model is extended 
to take account of such a phenomenon occurring in one 
region of the atmosphere, and the consequential change in 
fallout distribution on the ground. 

4.  A LAYERED ATMOSPHERE MODEL 

To deal with the phenomena mentioned above – variation 
of the wind velocity and turbulence characteristics with 
elevation, and also the agglomeration (and possible 
fragmentation) of particles during their flight – the model is 
structured as a horizontally-layered system.  The 
atmosphere is modelled as a system of layers, within each 
of which the wind velocity, turbulence length scales and the 
particle settling speeds are uniformly constant.  The number 
of layers is decided based on the degree of accuracy 
required to match the actual measured wind profile. 

In this work, the layers are numbered from top (Layer 1) to 
bottom (Layer N).  To simplify matters a little for the 
illustrations given here, it is supposed that the particles are 
released into the topmost layer (Layer 1).  Within Layer j, 
which lies in the region Z j < z < Z j−1, the mass 

concentration C satisfies Equation (6), but with the 
parameters appropriate to that layer: 

∂C

∂t
+U j

∂C

∂x
+V j

∂C

∂y
− S j

∂C

∂z

                    = D1 j
∂ 2C

∂x2
+ D2 j

∂ 2C

∂y2
+ D3 j

∂ 2C

∂z2

   

+  Qδ( t )δ( x − x0 )δ( y − y0 )δ( z − H )    (14) 

Since the point (x0, y0, H) is contained in Layer 1, the last 
(source) term has effect only in that layer.  At the horizontal 
layer boundaries, there is a requirement that the mass 
density (concentration) of the solid particles and the 
downwards mass flux be continuous.  Otherwise, boundary 
conditions similar to those given in (7) and (8) apply.  The 
result is a system of N partial differential equations with the 
appropriate corresponding initial and boundary conditions; 
the problem is mathematically well-posed. 

To further simplify the model, it is supposed that the 
vertical component of turbulent dispersion is negligible.  
This has been noted by several authors [e.g. Carey (1996) 
states that above an elevation of 500 m the vertical 
diffusion coefficient is approximately zero].  Putting D3j = 
0 in the N Equations (14) reduces each to first-order in z, 
and thereby reduces the number of boundary conditions 
needed in that direction.  The requirement for continuity of 
C is therefore dropped. 

The resulting distribution of a mass released at t = 0 may be 
conceived as a horizontal "sheet" of particles which is 
falling at the local settling speed while moving with the 
local wind and dispersing with the local turbulent activity.  
The particles all arrive at a layer interface simultaneously, 
and then fall through to the next layer, and so on until they 
reach the ground. 

The solution is formally given by: 

C(x, y, z, t)  = 

= 
Q

4π D1wD2w

exp −
( x − Xw )2

4D1w
−

( y −Yw )2

4D2w

⎡ 

⎣ 
⎢ 
⎢ 

⎤ 

⎦ 
⎥ 
⎥ 
 δ( z − Z w )   

(15) 

for t j−1 < t < t j   where t j  is the mean time taken for a 

particle to fall to the layer interface at Z j; these times are 
given by 

t0 = 0,   t1 =
H − Z1

S1
,   t j = t j−1 +

Z j−1 − Z j

S j
 for j ≥ 2. 

The other parameters in Equation (15) are all functions of 
time, derived from the separate layer parameters that are 
weighted by the time spent in traversing them.  They are the 
mean horizontal displacement components Xw(t), Yw(t); the 
downwards vertical displacement Zw(t); and the weighted 
dispersion coefficients D1w(t) and D2w(t) in the x- and y-
directions respectively.  For t j−1 < t < t j , when the 

particles are in Layer j ( j = 1, …, N) these parameters are 
given by: 

Xw = x0 +U1( t1 − t0 ) +U 2( t2 − t1 ) +  … +U j ( t − t j−1 )

Yw = y0 +V1( t1 − t0 ) +V2( t2 − t1 ) +  … +V j ( t − t j−1 )

Z w = H − S1( t1 − t0 )− S2( t2 − t1 )−  … − S j ( t − t j−1 )

D1w = D11( t1 − t0 ) + D12( t2 − t1 ) +  … + D1 j ( t − t j−1 )

D2w = D21( t1 − t0 ) + D22( t2 − t1 ) +  … + D2 j ( t − t j−1 )  

The distributions of such a release when it arrives at the 
layer interfaces and the ground are shown in Figure 2.  Here 
a mass Q = 1000 tonnes of uniformly-sized particles is 
released 2000 m above the ground.  The interfaces at 1200 
and 500 m above the surface separate Layers 1 and 2, and 
Layers 2 and 3 respectively.  The wind velocity vectors in 
Layers 1, 2 and 3 are (2, 1), (–2, 4) and (–10, –8) m/s in the 
(x, y) directions respectively, and the particle settling speed 
is S = 3 m/s.  The horizontal turbulence length scales are all 
100 m.  The wind vectors are shown as arrows within each 
layer.  Note that these parameters are deliberately not taken 
from actual measured data, but are used for illustration 
only. 

It can be seen how the particle mass concentration flattens 
out as it spreads, and how the different wind directions 
move the particles in different directions.  (Note that the 
vertical scale of the distributions is exaggerated for clarity.) 
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Figure 2. Distributions at layer interfaces and the surface 
deposit of a mass of particles released 2000 m above the ground 
– the vertical scale of the concentration profiles is exaggerated.   

 

Agglomeration of particles while in flight  

The above analysis is able to be modified to allow for the 
situation where particles in a particular region of the 
atmosphere undergo a change in settling speed due to water 
condensation or adherence during cooling, which cause 
agglomeration.  Mathematically, a particular section of 
particles is removed from the distribution at a layer 
interface, and added back with a different settling speed.  
The analysis requires some mathematical integration and 
the use of the original solution given by Equation (15).  For 
brevity, the mathematical details are not given here, but an 
illustrative example using calculations from the analytical 
solution is shown in Figure 3. 

Here a mass Q = 1000 tonnes of uniformly-sized particles is 
released 2000 m above the ground.  An interface is at 1200 
m above the surface.  The wind velocity is in the x-direction 
with speeds in Layers 1 and 2 being 2 and 6 m/s 
respectively.  The settling speed of the particles when 
released is 3 m/s.  The horizontal turbulent length scales are 
200 and 20 m in the downwind and cross-wind directions 
respectively. 

At the interface between Layers 1 and 2, the particles which 
arrive from above into the rectangular region described by 
100 ≤ x ≤ 300 m, –100 ≤ y ≤ 100 m have their settling 
speeds increased to 23 m/s.  The remaining particles 
continue falling and dispersing with the same settling speed 
as in Layer 1.  The resulting mass distributions at the 
interface between Layers 1 and 2 and on the ground are 
shown in Figure 3(a).  Note that now the ground deposit 
contours contain two maxima; one is due to the bulk of the 
particles, while the maximum closer to the release point is 
due to the faster-falling cohort.  A contour plot of the 
ground deposit in Figure 3(b) demonstrates this more 
clearly. 

This example shows the characteristics of ashfall contours 
from the Mount St Helens eruption of 18 May 1980 (see, 
for example, Figure 1 of Carey, 1996), which show two 
deposit thickness maxima.  While such a deposit profile 
might easily be described by a model which has two distinct 
particles sizes in the release, the above analysis shows how 
agglomeration after release of a cohort of uniformly-sized 
particles can produce the same effect. 

 

 

Figure 3: Initial release of particles modified by agglomeration 
in the rectangular region 100 ≤ x ≤ 300 m, –100 ≤ y ≤ 100 m  

at the layer interface.  See text for discussion.  
(a) Distribution at layer interface and of ground deposit.  

(b) Contour plot of ground deposit. 

 

Because the current model is analytic in form, simple 
adjustment of parameters could allow more complicated 
deposit profiles to be modelled without repetition of time-
consuming full numerical simulations. 

5.  CONCLUSION 

Some example calculations of the distribution of deposits of 
solid particles released into a fluid flow have been made 
using a simplified advection-dispersion model.  The method 
treats the system as a sequence of layers, with flow 
parameters uniform within each layer but varying from 
layer to layer.  Thereby, a non-uniform flow profile may be 
approximated, as well as allowing for particle 
characteristics to change as they pass from one layer to 
another. 

The model is able to take into account both the variation in 
particle sizes within an eruption release and the change in 
particle size due to agglomeration or fragmentation in 
particular zones in the atmosphere during the flight.  The 
main distribution mechanisms of wind-induced drift, 
gravitational settling and turbulent dispersion are included. 

It should also be noted that the method can also be used for 
cases where the particles fall through the atmosphere and 
then into water, or when the release is made directly into 
water.  Settling speeds in fluids other than air are readily 
calculated using Equation (4) with a different fluid density. 

Extensions to the model are currently being made, 
especially with respect to calculating releases made at 
different heights, and at different times, and where the 
discharge is continuous. 
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