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ABSTRACT
   The Sumikawa geothermal power plant is located at the
Hachimantai volcanic region in Akita Prefecture, Northeastern
Japan. The 50 MWe unit has been operating since March 1995.
From the environmental viewpoint, thermal water and steam
condensate are reinjected into each reinjection well.
   In these five years, many reinjection wells have
encountered some problems. For example, the wellhead
pressure of SD-1 was kept constant condition, while the
amount of the thermal water decreased. To improve such state,
we reinjected to the mixture of thermal water and steam
condensate in order to recover reinjection capacity. Then the
reinjection capacity of thermal water was recovered.
　　　Decrease of steam production is also observed in some
production wells, which is strongly observed in the production
wells S-4 and SC-1.The temperature decrease of production
zone is presumed that the reinjected water may return into the
production zone. Because of decrease of silica geothermometer
and/or increasing Cl- concentration are observed in their brine.
  Tracer tests were conducted in order to reveal the influence
of reinjected water on production zone in 1991 and 1999. In
the case of 1999, the tracers, KI and KBr were introduced into
the well SE-2 used for reinjection of steam condensate and the
well SD-4 is for the thermal water. Iodine was detected most of
the production wells which occur thermal water, except SC-2,
and KBr was detected all of such kind of wells.
   Bromine was concentrated in the wells S-4 and SC-1
strongly. For example, the well S-4 is most affected by
reinjection waters, 23% of discharged fluids (steam and
thermal water) are reinjected water.
   To avoid reservoir temperature decrease, the most effective
way to keep reinjection capacity higher is to drill new
additional reinjection well far from production zone. Moreover,
suitable utilization of reinjection wells is also needed.
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1. INTRODUCTION
   The Sumikawa geothermal area is located at the
Hachimanatai volcanic region in Akita prefecture, northeastern
Japan (Figure 1). In this area, Tohoku Electric Power
Corporation has started a 50MWe generation since 1995, steam
is provided by Mitsubishi Materials Corporation (MMC).
  After a start of commercial operation of the Sumikawa
geothermal power plant, we met some troubles on producing
steam. We met serious reinjection problems such as ones

indicated by Sanyal and Menzies (1995); they are (a) cooling
of the produced fluid, (b) excessive injection pressure, and (c)
loss of productivity of steam wells.
   Returning of reinjected water to production zone causes
above-mentioned problems. In addition, decline of steam
production is observed in some production wells. We are
investigating suitable reinjection method to avoid such
problems by conducting a field test.

2. GENERAL OUTLOOK OF THE SUMIKAWA AREA
   The Sumikawa geothermal area is located in northern part
of Mt. Yakeyama, in Hachimantai volcanic region, and its
geology is composed of Quaternary volcanic rocks and
Neogene formations. The Sumikawa area lies within a north-
south trending geological graben structure, which extends
many kilometers (Garg et. al., 1997).
   Subsurface temperature is over 250 deg. C at sea level.
This high-temperature zone is located in the south of the
Sumikawa area. Subsurface temperature decreases toward
north. Isothermal contours at sea level are shown in Figure 2
(Bamba et al., 1995). Permeability of rocks tends to show low
permeability toward north. On the contrary, distribution of
high-permeability rock zone is south of the Sumikawa area.
   Arrangement of wells and drilling directions are planned
based on subsurface thermal gradient and permeability.
Production wells are drilled to the south of Sumikawa region
(with high temperature and permeability), and reinjection wells
are toward north (with low temperature and permeability).

3. REINJECTION PROBLEMS
3.1 Present state of the reinjection
   The fluid from production wells is separated into thermal
water and steam in separator at 5 kgf/cm2 (absolute) in order to
prevent the transmitting pipes from silica scaling. The
transmission system of thermal water is shown in Figure 3. It
tells that, for example, reinjected water in the D base comes
from C base, and that reinjected water is the mixed thermal
water from SC-1 and SC-2 production wells.
   In figure 4, the present reinjection capacity is represented
by each size of circle at each base. Total amount of the thermal
water increases year by year against the steam flow rate. In
these years, the problem that reinjection capacity became equal
to the amount of reinjected thermal water, nevertheless a new
reinjection well was added. This indicates the capacity of each
reinjection well is decreasing.
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3.2 Problems caused by reinjection
Decrease of reinjection capacity
   There are several causes may bring out decrease of
reinjection capacity. They are scaling in the casing pipe, scaling
in the fractures around the well, corruption of the wall rock,
casing pipe breakdown, excessive injection pressure, and so on.
In the Sumikawa area, many reinjection wells have met with
these problems. Most of them are thought to be the excessive
injection pressure and scaling in fractures.
   Problem caused by excessive injection pressure was
observed right after reinjection just has been started. At the
beginning, wellhead pressure is low and the amount of
reinjection water is large. Then the wellhead pressure suddenly
increases and the reinjection amount is getting lesser. However,
when reinjection is stopped, the capacity becomes as before.
Figure 5 shows the pressure change of the well SD-1 since
reinjection has started. While the wellhead pressure of the
reinjection well was kept constant, the amount of the thermal
water decreased. From the above-mentioned situation, we
reinjected to the mixture of thermal water and steam
condensate in order to recover reinjection capacity. This
method was taken intermittently within one or two weeks.
Then the reinjection capacity of thermal water was recovered.
   It is supposed that the injection pressure was released by
stopping high temperature reinjection and reinjection of low
temperature water. Ariki and Hatakeyama (1997) indicates that
water temperature affects, one of which is the injection flow
rate, due to the changes in fracture aperture and reservoir
pressure around the injection well. It was demonstrated by
injecting high-temperature thermal water and mixture of that
and low-temperature thermal water.
  Scaling of rock fracture lets the reinjection capacity lesser
from year to year. This may be indicated by that the reinjection
capacity did not recover to its former state. Figure 6 shows the
reinjection capacity of the well SD-3. The capacity decreases
year by year, though the wellhead pressure keeps almost
maximum state. In 1999, when we swept out well SD-3, large
amount of silica scale was sampled. The silica scale was from
inside the reinjection-casing pipe; then, it considered to be
deposited to the fracture outside the well SD-3 as well.

Influences on steam production
   Since the beginning of the plant commercial operation, the
amount of steam is getting fewer (Figure 7). One reason of the
steam declining may be that the reservoir pressure becomes
lower than heat of the initial state. However, it may not be a
serious problem except if it keeps declining. The temperature
of the production reservoir may also be decreased, which is
serous.
   In the Sumikawa area, we found that reservoir temperature
of each production zone, represented by silica geothermometry,
have been becoming lesser (Figure 8). Cl- concentration is
increasing year by year as shown in Figure 9. That is clearly
observed in the production wells S-4 and SC-1. The decrease
of temperature and increase of Cl- concentration are presumed
that the reinjected water may return into the production zone as
indicated by Malate and O’Sullivan (1991).

   Phenomenon of the reinjection water return is found not
only in hydrothermal water, but also in steam condensate.
Seasonal change of Cl- concentration in thermal water
discharged from the well SB-1 is the one. The amount of steam
condensate increases in winter because of temperature fall
down, and it decreases in summer. The Cl- concentration shows
different behavior against flow rate of steam condensate. That
is, thermal water which contain less Cl- are found in winter
because of diluted by much amount of steam condensate, on
the contrary, more Cl- are found in summer because of small
amount of steam condensate (Figure 10).

3.3 Analysis of flow path of reinjected water
   Tracer tests were conducted in order to reveal the influence
of reinjected water on production zone. That is an appropriate
way to analyze flow path of reinjected water, and carried out in
1991 and 1999. In the case of 1991, KI was selected, as a tracer
because of concentration of iodine was low and stable in the
reservoir.
   In 1999, KI and KBr were introduced. Condition of the test
is listed in Table 1. KI and KBr were introduced into the wells
SE-2 and SD-4, respectively. The well SE-2 is used for steam
condensate and the well SD-4 is for the thermal water. Iodine
was detected from most of the production wells that produce
thermal water, except well SC-2. KBr was detected from all
such of wells.
   Iodine was detected only in three days highly concentration
in the thermal water from the wells S-4 and SB-1 and, its
concentration decreased fast day by day. Another well, for
example, the well SC-1 moderately increases and decreases.
   The wells S-4 and SC-1 responded immediately and
strongly, after bromine was introduced. In addition, they show
similar patterns as those of iodine in wells S-4 and SB-1.
   Accordingly, major paths from well SE-2 to wells SB-1
and S-4, and from wellSD-4 to wells S-4 and SC-1 are
assumed. It is also revealed that the steam condensate has come
into production zone within three days. Both of the tracers
come to almost all of the production wells. On the other hand,
in some production wells, iodine was detected 10 days after the
introduction and its concentration changed little by little. Same
situations were recognized on Bromine. Such patterns may
indicate transfer of iodine and bromine by diffusion. The result
of the test is shown in Table 2.

This indicates that the Sumikawa geothermal area may be
divided into some hydrogeologic blocks. In the border of each
block, there assumed to be the fault. Direct response of the
fluid may be occurred almost in this block.
   Tracer recovery ratio was calculated. 61% of the amount of
iodine and 55% of the amount of bromine have recovered five
months after they had been introduced. Their mixing ratio in
thermal water is also calculated. For example, the well S-4 is
most mixed with reinjection waters, 23% of discharged fluids
(steam and thermal water) are reinjected water.

4. MEASURES TO THE PROBLEMS
   To improve the above-mentioned situation, the followings
are generally considered
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Sidetracking of reinjection well
   In general, sidetracking of the reinjection well is effective
against the scaling on the rock fracture near reinjection well. It
is expected that reinjection capacity to come back as it be.

Additional well drilling
   The most effective way to keep reinjection capacity higher
is to drill new additional reinjection well. However, present
state is that the cool fluids return directly into the production
zone and is restored there. To avoid this, reinjected feed zone
should be opened deeper than the production zone is set. As a
matter of course, an ideal convection is that the cool fluids
must be reheated and returned to the production zone. That is,
we must drill to the deeper area for the reinjection wells. Then,
reinjected water will be reheated in deeper area thoroughly and
will be return above there after that.
   Another way to avoid direct return, we need to drill farther
area because the reinjection area may not damage to the
production zone.

Suitable utilization of reinjection wells
   It is the most economical way to exchange the reinjection
water flow rate among reinjection wells. It costs for only
constructing new transmitting system or merely addition
several valves. In such a case, enough numbers of reinjection
wells must be possessed.

5. CONCLUSIONS
(a) Next problems were encountered during the Sumikawa
geothermal power plant operation
   (i) Decline of the reinjection capacity
   (ii) Return of the reinjection water may causes the
temperature decrease of the reservoir.

(b) Tracer test revealed the connection between reinjection
wells and the production wells.
   (i) The Sumikawa Geothermal area may be divided into
some geological blocks from a view of fluid transmissivity, but
they have a little relation each other.

(c) Measures to the reinjection problems
Return of reinjection water to the production wells makes
reservoir temperature lower, accordingly the reinjection
capacity also come down. Then the ways for avoiding return of
reinjection water are considered as follows, from a view of
fluid transmissibility and subsurface temperature gradient.
   (i) Additional reinjection wells are needed especially far
from production zone.
   (ii) Deeper reinjection wells may avoid return of cool fluid.
   (iii) Suitable utiliziation of reinjection wells.
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Table 1. Tracer testing results
Iodine (SE-2) Bromine (SD-4)

Initial
Return
 time

Peak Time
Maximum

concentration
(mg/liter)

Initial
Return
Time

Peak Time
Maximum

concentration
(mg/liter)

SA-1 221 hrs
(9 days)

989 hrs
(41 days) 0.69 604 hrs

(25 days)
2860 hrs

(119 days) 2.3

SA-3 127 hrs
(5 days)

869 hrs
(43 days) 1.24 412 hrs

(17 days)
3196 hrs

(133 days) 2.6

SA-4 ND ND ND ND ND ND

S-4 47 hrs
(2 days)

188 hrs
(8 days) 1.82 121 hrs

(5 days)
268 hrs

(11 days) 4.4

SB-1 47 hrs
(2 days)

176 hrs
(7 days) 5.7 677 hrs

(28 days)
3196 hrs

(133 days) 2.8

SC-1 140 hrs
(6 days)

677 hrs
(28 days) 0.33 220 hrs

(9 days)
293 hrs

(12 days) 3.6

SC-2 Not
changed - - 1373 hrs

(57 days)
2525 hrs

(105 days) 1.8

Figure 1. Location map of the Sumikawa Geothermal Field.

Figure 2. Map Showing Isothermal Contours at Sea Level and Permeability (after Bamba et al., 1995).
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Figure 3. Schematic Gathering System at the Sumikawa Geothermal Field.

Figure 4. Map of Current Production and Injection Rates at Sumikawa.
Circle size represents reinjection capacity and amount of discharged water.
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Figure 5. Wellhead Pressure History of  Injection Well SD-1.

Figure 6. Graph of Reinjection Flow Rate vs Wellhead
Pressure for Well  SD-3.

Figure 7. Graph of Total Mass Flow Rate and Steam Flow Rate
vs Time at Sumikawa.

Figure 8. Silica Geothermometer Temperatures From Wells
SC-1 and S-4.

Figure 9. Chloride Concentration in Wells SC-1 and S-4 versus
Time.

Figure 10. Graph of Chloride Concentration from Well SB-1
and Steam Condensate Injection Rates.
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