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ABSTRACT

This paper focuses on the application of two math-
ematical techniques, dimensional analysis and lin-
ear stability theory, to modelling the evolution of
geothermal systems at geological time scales. Di-
mensional analysis is used to verify conceptual
models and to identify key physical processes that
lead to the development of various steady states.
Linear stability theory is applied to explain how
one steady state transforms into another. We dis-
cuss three most significant non-dimensional num-
bers for geothermal modelling: the Reynolds num-
ber, the Rayleigh number and dimensionless heat
flux. The Reynolds and Rayleigh numbers are im-
portant for all sub-surface water flow problems,
whereas dimensionless heat flux is particularly use-
ful for modelling two-phase water-steam systems.
The whole approach is based on appreciation of the
time-varying nature of a geothermal system. A nu-
merical example is presented.

1. INTRODUCTION

Modelling geothermal history is important for un-
derstanding maturation, migration and accumula-
tion of petroleum and ore deposits. Many world
ore deposits, for instance the Australian gold de-
posits, are located at the sites of ancient geothermal
systems. The past time groundwater temperatures
and pressures governed ore deposition. The mat-
uration and migration of petroleum is also related
to the past geothermal activities. With the help of
mathematical modelling it is possible to look at a
distant past of a geothermal system. It is also possi-
ble to predict the system response to various natural
and industrial processes. The latter is important for
sustainable exploitation of geothermal resources.

The purpose of mathematical modelling is to de-
velop a computer model that reflects essential fea-
tures of the phenomenon considered. As the fi-
nal product of the modelling process, a computer
model includes all simplifications and assumptions
made at the previous steps, particularly at the start-
ing step when empirical data is conceptualised.
Sinc there is always uncertainty in empirical data,
conceptual models may become a major source of
errors. Dimensional analysis has proven efficient
for validating conceptual models and for identify-
ing key physical processes.

A geothermal system is never at steady-state but
is undergoing various physical processes. Most of
these processes, even relatively fast processes such
as hydrothermal eruptions, fall into the category of
slow processes as defined in Pestov (1998). If a
real geothermal process is slow, it can be approx-
imated by a quasi-static path. The evolution of a
real system can then be modelled as a succession
of equilibrium states, i.e. steady states. How one
steady state transforms into another can be deter-
mined from linearised stability studies.

What follows is an illustration of how dimensional
analysis and linear stability theory can be used in
geothermal modelling.

2. DIMENSIONAL ANALYSIS

Dimensional analysis is particularly useful for
modelling natural systems with large numbers
of parameters. The dimensional analysis pro-
cedure consists of several steps: scaling, non-
dimensionalisation, estimating orders of magnitude
and, finally, selecting dominant and deleting non-
dominant effects/processes. This can be applied
when the governing equations are already known,
which is the case for a geothermal system.
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First, for each independent and dependent vari-
able a characteristic quantity (scale) must be intro-
duced. Next, all variables in the governing equa-
tions and boundary conditions must be replaced by
the dimensionless ratios between variables and cor-
responding scales. The obtained non-dimensional
equations will include non-dimensional groupings
of the system parameters in front of each term.
These non-dimensional numbers determine the im-
portance of each term in the governing equations.

We shall discuss three most significant non-
dimensional numbers for geothermal modelling:
the Reynolds number , the Rayleigh number
and dimensionless heat flux .

2.1 The Reynolds Number

The Reynolds number is the most important non-
dimensional number for fluid flow problems. By
definition, the Reynolds number is

where and are fluid density and dynamic viscos-
ity respectively, is fluid velocity and is charac-
teristic length.

The Reynolds number determines a flow regime
and, hence, a choice of the momentum equation.
When Darcy’s law can be used to describe
the fluid flow through permeable rocks (Nield
Bejan, 1992). When , other forms of the
momentum equation must be used.

Most geothermal reservoir simulators solve the mo-
mentum equation in the form of Darcy’s law. Let us
calculate the Reynolds number for flow in a reser-
voir. Typically, fluid density , dy-
namic viscosity and velocity in
the absence of production . (Here
and in the following symbol “ ” stands for “is of
the order of”.) If the pore/fracture dimension
does not exceed , then formula (1) gives
much less than . Therefore, Darcy’s law is appli-
cable to the fluid flow in a reservoir under natural
conditions.

Let us consider flow near a deep geothermal well.
According to Ikeuchi et al. (1997), fluid veloci-
ties at the well bottom can be to . Then

for the fracture cross-sectional dimension
formula (1) gives Reynolds numbers up

to . At such large Reynolds numbers turbulent
boundary layer equations must be used to simulate
flow from a fracture to a well. An attempt to use
the Darcy’s law based reservoir simulators will give
non-convergent numerical iterations.

2.2 The Rayleigh Number

The Rayleigh number is used to determine driving
mechanism for the fluid flow. In practical terms, it
can help to differentiate between groundwater and
geothermal systems and to make the right choice of
numerical software for reservoir simulations.

In a homogeneous porous medium the Rayleigh
number is defined as follows:

where is gravitational acceleration, is thermal
expansion coefficient for water, is rock perme-
ability, is thermal diffusivity of the saturated rock,
and is the temperature difference over a dis-
tance . When , thermal con-
vection starts in the system and temperature gra-
dients become the main driving force for the fluid
flow (Nield Bejan, 1992).

The applicability of the above criterion is limited to
the most idealised case of a homogeneous isotropic
reservoir. In more realistic cases laboratory or com-
puter experiments are required. However, as a pre-
liminary step it is always useful to calculate the
Rayleigh number given by equation (2). The lat-
ter will help to identify geothermal sites within the
system. Geothermal reservoir simulators should be
applied to parts of the system with .

Similar non-dimensional criteria have been devel-
oped for the onset of two-phase water-steam con-
vection (boiling) in porous media (Nield Bejan,
1992).

2.3 Dimensionless Heat Flux

Dimensionless heat flux is the main governing
parameter for two-phase water-steam convective
flows. This type of convective flows is partic-
ularly important for geothermal modelling since
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many geothermal systems contain two-phase con-
vective regions. Examples include Wairakei in New
Zealand, The Geysers in California, Larderello in
Italy and Kawah Kamojang in Indonesia. The fluid
flow in the two-phase regions of these systems ex-
ists in the form of the two-phase convection: the
lighter phase (vapour) flows up as it is displaced by
the heavier phase (liquid). Two-phase convection
can be vapour or liquid-dominated with vapour or
liquid being the most mobile phase respectively.

Pestov (1997) gives the following definition of di-
mensionless heat flux:

where is vertical heat flux at the base of the sys-
tem, is latent heat and subscripts and stand for
liquid and vapour phases respectively. In formula
(3) the phase densities, and , are calculated at
the upper reservoir boundary.

According to formula (3), is proportional to the
ratio between vertical heat flux and reservoir
permeability . The importance of the ratio be-
tween and has been pointed out by many mod-
ellers (cf. McGuinness, 1996). As shown theoret-
ically (Pestov, 1997) and confirmed in numerous
computer experiments (McGuinness, 1996; Pestov,
1999), the phase distribution within the two-phase
region depends on . In the vapour-dominated
case, the liquid phase saturation is an increasing
function of , that is a decrease in produces a
drier two-phase zone. In the liquid-dominated case,
the liquid phase saturation in a decreasing function
of . Hence, a decrease in leads to higher liq-
uid phase saturations within the two-phase zone. If
the total amount of water in the reservoir remains
constant (which is the case in many practical situ-
ations), changes in could produce a single-phase
layer of either water or steam in the system.

After examining formula (3), the following key
geothermal processes can be identified:

increase/decrease in conductive heating at the
base of the system (i.e. changing );

deposition/dissolution of chemicals in the rock
matrix (i.e. changing ).

Indeed, the above processes change trough
and and, hence, the phase distribution in the
two-phase zone leading to the development of new
steady states.

3. LINEAR STABILITY THEORY

How one steady state transforms into another can be
determined with the help of linear stability theory.
Linear stability theory studies periods of time dur-
ing which the systems returns to equilibrium after
being disturbed by an infinitesimal force. Distur-
bances in the system parameters are assumed to be
so small that their second and higher order products
can be neglected in the governing equations. With
the above assumption, the governing equations can
be linearised and solved, in many cases even analyt-
ically. Analytical solutions are always preferable as
they give explicit relationships between unknown
variables and system parameters.

In reality, however, there is no infinitesimal force
and changes in the system are always finite. This
difficulty can be overcome by introducing the con-
cept of a quasi-static process.

3.1 Quasi-Static Process

A slow geothermal process can be approximated by
a quasi-static path as shown in Figure 1. Suppose
that some parameter of the system changes over
a period of time which is long compared to
the characteristic time of the system . Note that
the change of over can be finite. Assume
that at the system is at
the state of thermodynamic equilibrium. At time

, called the event time, we change parame-
ter instantly by a small amount and wait until the
system equilibrates to a new steady state. The time

during which a steady state can be restored, is
called the relaxation time of the system. If for any
( ) we have , then pro-
cess can be replaced by a quasi-static process
( in Figure 1), and for any

linearised governing equations can be
applied.

3.2 Relaxation Times

Important information on the system development
over real time can be obtained from linearised gov-
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erning equations. In particular, it is possible to
calculate the relaxation time using linearised equa-
tions. There are two relaxation times associated
with flows through permeable rocks: the time for
pressure to return to equilibrium and the time dur-
ing which water thermodynamic properties equili-
brate. When water-steam geothermal systems are
considered, the latter relaxation time is replaced
by the time during which phase saturations restore
equilibrium.

According to Pestov (1998), in a vapour-dominated
system pressure disturbance, , decays exponen-
tially, i.e.

where is the eigenvalue for the dominant mode
determined from linearised equations, is time and

is the initial disturbance at . In equation (4)
all quantities are non-dimensional. From equation
(4), reduces by a factor of after time

. Hence, can be used as the relaxation
time for pressure.

It is natural to take as the relaxation
time for phase saturations. Here is the non-
dimensional wave speed of small saturation waves
originating in the porous medium in response to
small pressure disturbances (Pestov, 1999). The
wave speed can be calculated from linearised gov-
erning equations, too.

Table 1 shows eigenvalue and non-dimensional
wave speed calculated for various reservoir per-
meabilities and for . The temper-
ature of the upper boundary is taken to be .
Corresponding values of dimensionless heat flux
are also calculated. Only for very small reservoir
permeability does exceed . In most practical
cases and the pressure field equilibrates
faster than the saturation field. Thus, does define
which steady state is likely to develop during the
evolution of a geothermal system.

3.3 Numerical Example

As an example we consider a vapour-dominated
geothermal reservoir with all boundaries imper-
meable to fluid flow so that the amount of water
trapped in the pore space is constant at all times. A
uniform heat flux is imposed at the bottom bound-

ary and a constant temperature of is pre-
scribed at the upper boundary. Rock material is as-
sumed to be homogeneous and isotropic. For our
purposes it is sufficient to use a one-dimensional
vertical numerical grid.

We assume that the reservoir permeability de-
creases with time due to deposition of chemicals
while vertical heat flux remains unchanged at

. This process corresponds to an in-
crease in dimensionless heat flux given by for-
mula (3). At every step of this process we decrease

by a small amount and wait until a new steady
state develops. As shown in our numerical experi-
ments, this process leads to the formation of a two-
layer structure with a single-phase vapour layer un-
derlying a two-phase convective zone. Figure 2 and
Figure 3 show temperature and pressure distribu-
tions respectively. Temperature and pressure pro-
files for higher values of represent distributions
of the corresponding quantities at earlier times. In
the above example we used the EOS module 1 of
the numerical simulator TOUGH2 (Pruess, 1991).

In agreement with formula (3), we obtained the
structure with a vapour layer underlying a vapour-
dominated zone when heat flux was increased
from to and was
kept constant. Calculated temperature and pressure
distributions closely matched those shown in Figure
2 and Figure 3.

4. CONCLUSIONS

Dimensional analysis and linear stability theory are
ubiquitous in mathematical modelling. This pa-
per illustrates the application of these mathematical
techniques to modelling geothermal reservoir his-
tory.

Dimensional analysis is particularly useful at the
starting step of the modelling process when em-
pirical information is conceptualised. It helps
to validate conceptual models and to make the
right choice of numerical software. When choos-
ing a numerical program for reservoir simulations,
it is always useful to begin with calculating the
Reynolds number (1) and the Rayleigh number (2).
If the Reynolds number exceeds , Darcy’s law
and most geothermal reservoir simulators cannot
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be used to describe the geothermal flow. If the
Rayleigh number exceeds , a numerical pro-
gram that includes coupling between heat and mass
transfer processes may be needed.

Dimensionless heat flux (3) is another impor-
tant non-dimensional number for geothermal mod-
elling. It governs the phase distribution within the
two-phase water-steam region. Dimensionless heat
flux is proporsional to the ratio between vertical
heat flux and reservoir permeability. Therefore,
fluctuations in the conductive heating at the base
of a reservoir and deposition/dissolution of chemi-
cals in the rock matrix change the phase distribution
within the two-phase zone and lead to the develop-
ment of distinct steady states.

Linear stability theory determines why one steady
state transforms into some other particular steady
state. Linear stability theory studies relaxation time
periods during which the system returns to equi-
librium. There are two relaxation times associ-
ated with flows through permeable rocks: the time
for pressure to equilibrate and the time for water
thermodynamic properties to restore equilibrium.
When water-steam geothermal systems are consid-
ered, the latter relaxation time is replaced by the
time for phase saturations to return to equilibrium.
Both relaxation times can be calculated from lin-
earised governing equations. Since the pressure
field equilibrates much faster than the saturation
field, the relaxation time for saturation defines the
evolution of a geothermal system.

Both dimensional analysis and linear stability the-
ory provide guidance for setting up numerical ex-
periments in the most efficient and computation-
ally inexpensive way and enable scientists and en-
gineers to study complex natural systems at geolog-
ical time scales.
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Figure 1: Quasi-static approximation.

Table 1: Eigenvalue and wave speed.
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Figure 2: Temperature versus depth.
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Figure 3: Pressure versus depth.
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