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ABSTRACT

Dynamic response of a reservoir crack with fluid leakage along
the crack periphery is studied by using a two-dimensional
fluid-filled crack in an elastic medium, i.e. a rock mass. In
order to understand the source mechanism of microseismic
events observed during hydro fracturing, many crack models
were constructed and were analyzed. Those crack models were
made up of an infinite fluid-filled slit or a single crack.
However, in HDR/HWR fields, geothermal reservoirs consist
of networks of cracks and permeable layers. This means that
fluid leakage from the crack tip likely to be one of the main
parameters governing the dynamics of a fluid-filled crack. A
simple model is constructed to examine how the fluid leakage
at the crack tip affects the dynamics of the crack, where we take
account of the effect of fluid viscosity, permeability of rock and
interfacial stiffness due to contact between the asperities on the
upper and lower surfaces of the crack. We model the fluid
leakage from the crack tip to be one-dimensional fluid flow in
the direction along the extension line of the crack and express a
variety of fluid leakage phenomena by introducing an
appropriate boundary condition for fluid motion at the crack tip.
We use Darcy’s law for describing fluid leakage at the crack tip.
We derive a singular integral equation for determining the
displacement gap across the crack in the Laplace image and
Fourier image spaces, where the motion of fluid in the crack is
taken into account, and we solve the integral equation
numerically. It is revealed that fluid leakage has strong effect
on the higher modes of oscillation. The eigen angular
frequencies become smaller with increasing fluid leakage at
the crack tip. Nodes of each mode of oscillation approach the
crack tip with increasing fluid leakage. It is also revealed that
intensity of attenuation becomes stronger with increasing fluid
leakage. However, for fluid leakage exceeding a certain value,
the situation is opposite, i.e., attenuation becomes weaker with
increasing fluid leakage. These effects of fluid leakage at the
crack tip are stronger for the larger interfacial stiffness along
the crack line and weaker for larger fluid viscosity and for
larger aspect ratio, i.e. the ratio of the crack length to the initial
aperture of the crack.

1. INTRODUCTION

In the advanced geothermal heat extraction such as HDR
(Duchane, 1991) and HWR (Takahashi and Hashida, 1992),

one of the key technologies is the characterization of
geothermal reservoir cracks created by hydraulic fracturing. It
is critical if we can estimate the basic geometrical
characteristics, such as size, aperture and degree of contact
between the upper and lower crack surfaces. For this purpose,
AE/MS methods are most promising. The so-called passive
acoustic methods have been verified to be powerful in the
characterization (Niitsuma et al., 1987) and have been widely
used (e.g., Fehler and Bame, 1985). In the passive acoustic
methods, elastic waves due to crack growth during hydraulic
fracturing are monitored to estimate the geometrical and
mechanical characteristics of reservoir cracks. In order to
estimate the characteristics of a reservoir crack, we first need to
understand the dynamic response of a fluid-filled crack. So far
the dynamic response of a fluid-filled crack has received fairly
intensive attentions for understanding the source mechanism of
volcanic earthquakes and microseismic events observed during
hydraulic fracturing (Chouet, 1986; Ferrazzini and Aki, 1987;
Dvorkin et al., 1992). Ferrazzini et al. (1990) examined the
field AE data observed at Fenton Hill (US HDR test site) and
estimated the characteristics of the reservoir cracks. Those
models just stated above employed an infinite fluid-filled slit or
a single crack surrounded by impermeable or permeable rock.
However, in HDR/HWR fields, geothermal reservoirs consist
of networks of cracks and permeable layers. Furthermore,
microseismic events during massive hydraulic fracturing occur
primarily on or close to preexisting faults or joints. These two
points suggest that fluid leakage from the crack tip likely to be
one of the main parameters governing the dynamics of a fluid-
filled crack.

In the present paper, we study the dynamic response of a two-
dimensional fluid-filled crack in an elastic medium in order to
clarify the basic characteristics of dynamics of a reservoir
crack, paying special attention to examine how the fluid
leakage from the crack tip affects the dynamics of the crack.
We also take account of the effect of fluid viscosity,
permeability of rock and interfacial stiffness due to partial
contact between the asperities on the upper and lower crack
surface, as well. We model the fluid leakage from the crack tip
to be one-dimensional flow in the direction along the extension
line of the crack and express a variety of fluid leakage
phenomena by introducing an appropriate boundary condition
for fluid motion at the crack tip. Regarding fluid dynamics in
the crack, we follow the approach employed by Dvorkin et al.
(1990). Firstly, we derive a singular integral equation defined
along the crack line in the Laplace and Fourier image spaces
and solve it numerically. Then we discuss the effect of the fluid
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leakage on the dynamic response of the crack.

2. CRACK MODEL

Let us consider an oscillating two-dimensional fluid-filled
crack of length 2a and of aperture d in an infinite elastic
medium (Figure 1). Let us introduce a Cartesian coordinate
system xi (i=1, 2, 3). The stress and the displacement, referred
to the coordinate system, are denoted as σij and ui (i, j =1, 2, 3),
respectively. The fluid leakage from the crack tip is assumed to
be one-dimensional flow in the direction along the extension
line of the crack. The permeable layer on which crack exists is
saturated with fluid. The permeability of the layer is
significantly small compared to the crack itself but is large
enough compared to the intact rock. Through the crack surface,
fluid filtrates into the surrounding permeable rock. In the
following, the stiffness per unit area induced by the partial
contact between the upper and lower crack surfaces is denoted
as k. We call the stiffness “interfacial stiffness”. Let CL and CT

be the phase velocities of the P and S waves of the rock. Let
( )pg  be the Laplace transform of a function ( )tg  of time t.

The boundary condition on the crack surface is expressed as
follows:

( )axPukx <+−∆=+→ 1
*
333033 3

| σσ ,       (1)

where ∆u3 is the gap of u3 induced along the crack line, P is the
pressure of the fluid in the crack and *

33σ  is the normal stress
applied to the crack surface. Following Hayashi et al. (1995),
we finally arrive at the following expression for the stress 33σ
on the crack surface after tedious manipulations:
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Here, µ is the shear modulus of the medium, κ=CL/CT and
ζ=|x1–ξ1|. The symbol Pf∫ denotes the finite part integral.
Coefficients q1~q5 are known functions of κ, the expressions of
which are not presented here for brevity.

Let us assume that the amplitude of oscillation of the crack
surface is small compared to the original aperture of the crack
and that the variation of the fluid density is much smaller than

its reference undisturbed value. Following Dvorkin et al.
(1990), we finally arrive at the following differential equation
for the fluid pressure P  in the Laplace image space:
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where

η
ρ p
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Here, η is the fluid viscosity, m0 is the porosity of the
surrounding rock, k0 is the permeability of the rock, b is the
bulk modulus of the fluid and ρf is the density of the fluid. We
impose the boundary condition that, at the crack tip, the fluid
velocity uf1 in the x1-direction inside the crack is equal to the
sum of the velocity in the x1-direction of the elastic medium
and the fluid velocity of fluid leakage. Then the boundary
condition at the crack tip is expressed as follows:
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where, ml and kl are the porosity and the permeability of the
permeable layer respectively. Second term in the right hand
side of eq.(5) can be derived from Darcy’s law and the
conservation of mass in the permeable layer under the
condition that the pressure is continuous across the crack tip
into the x1-direction and the pressure is undisturbed far from
the crack tip. In order to perform numerical calculations, we
need values of ml and kl. Since we do not know these values in
real fields, we replace the permeable layer by a slit with
equivalent hydraulic properties (Figure 2). The aperture of the
slit with equivalent hydraulic properties is denoted dl, and we
call this aperture “the effective aperture”. We set ml=dl/d and
kl=dl

2/12.

Let us introduce the following non-dimensional quantities:
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By substituting eq.(2) into eq.(1) and also the expression of P
derived from eq.(3) into eq.(1), we get a singular integral
equation of the non-dimensional displacement gap φ . By
taking account of the asymptotic behavior of the displacement
gap at the crack tip, let us express the non-dimensional
displacement gap as follows, with unknown coefficients nA
and the Chebyshev polynomial of the second kind Un(·):
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=
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k
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21,φ .                    (7)

By substituting eq.(7) into the singular integral equation and by
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applying a usual collocation technique, we finally arrive at the
simultaneous linear algebraic equations for nA  (n=1, 2, …, N).
Let us introduce a function ∆(s), which is determinant of the
matrix, the elements of which are the coefficients of the
simultaneous linear algebraic equations. The imaginary parts
of the roots of ∆(s)=0 are the eigen angular frequencies and the
real parts of the roots of ∆(s)=0 represent the intensity of the
attenuation of the oscillation. In the following, we denote the
roots of ∆(s)=0 as αj. Here, j represents the mode number of the
oscillation. It should be noted that the complex conjugate of αj

is also the root of ∆(s)=0 and s=αj is the zero point of order 1.
By performing the inverse Laplace transform, we arrived at the
following expression for the non-dimensional displacement
gap across the crack:
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where τ is non-dimensional time defined as τ =CT t/a and Bk is
function of αj.

Following Hayashi et al. (1995), we define the non-
dimensional interfacial stiffness δ0 such that
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Here, ν is the Poisson’s ratio of elastic medium, A0 is the crack
area and A* is the real contact area on the crack area.

The dynamic response of a two-dimensional fluid-filled crack
is analyzed also in the Fourier image space. The resulting
expressions are obtained readily by replacing the parameter p
into –iω in the expressions for the Laplace image space, where
ω is angular frequency. In the following, we introduce a
parameter Ω and a function ( )Ωφ ,

~ x . The parameter Ω is
defined as Ω =aω/CT. The function ( )Ωφ ,

~ x  is the Fourier
transform of a function φ (x,τ).

3. DYNAMIC RESPONSE OF THE CRACK

Following values have been used, referring the material
properties of water and granite: the ratio of the rock density to
fluid density is 2.5, µ/b=15, ν =0.25 (κ =1.7), m0=0.01, k0=10-

19m2. Also, we have set the aspect ratio a/d to be 103, 5×103, 104,
aperture d to be 10-4, 10-3, 10-2m, the interfacial stiffness 0δ ′  to
be 0, 0.01, 0.1 and fluid viscosity η to be 10-3, 10-2, 2×10-2 Pa·s

(1~20cP). Here, we call the ratio of the effective aperture dl to
the initial aperture d “aperture ratio” and have set the aperture
ratio to be 10-3, 10-2, 10-1. Large aperture ratio means large fluid
leakage.

Figure 3 shows examples of spectra of non-dimensional
displacement gap across the crack ( )Ωφ ,

~ x . Dark shade in
Figure 3 means large displacement gap across the crack

( )Ωφ ,
~ x . The oscillation of the crack surface has the modes

with total node number 1, 2, 3,··· (Figure 3). We call, in the
following, these modes the 2nd, 3rd, 4th,··· modes, respectively.
The numbers between two figures indicate the mode numbers.
Eigen angular frequencies are smaller for larger aperture ratios,
as is discussed later in detail. Especially, effect of the leakage is
stronger on the higher modes than on the lower modes and
nodes become unclear with increasing aperture ratio. Figure 4
shows waveforms of the 5th mode. Nodes near the crack tip
approach the crack tip with increasing fluid leakage. Peaks
between the crack tip and the node near the crack tip become
lower with increasing fluid leakage and vanish for large fluid
leakage. Figure 5 shows variation of non-dimensional eigen
angular frequencies with respect to aperture ratio. In this figure,
the results shown on the extreme left are the results obtained
under the boundary condition that there is no fluid leakage at
the crack tip. In this case, the second term of the left hand side
in eq.(5) is absent. We call this boundary condition “close
condition”. The results shown on the extreme right are the
results obtained under the boundary condition that fluid in the
crack goes in and out completely freely across the crack tip. In
this case, instead of eq.(5), we use the boundary condition that
pressure caused by oscillation is equal to zero (P=0) at the
crack tip. We call this condition “open condition”. Eigen
angular frequencies of close condition and those of low fluid
leakage are almost the same. For large fluid leakage, the eigen
angular frequency of the Nth mode is almost the same as that of
the (N-2)th mode derived under open condition. This result can
be derived from Figure 4. Since nodes near the crack tip
approach to the crack tip with increasing fluid leakage in
Figure 4, the Nth mode of closed condition changes into the
(N-2)th mode of open condition. Eigen angular frequency of
the 2nd mode becomes smaller with increasing fluid leakage.
Figure 6 shows the effect of aperture and the interfacial
stiffness on eigen angular frequencies of the 3rd and 4th modes.
In Figure 6(a), when the interfacial stiffness is zero, i.e., when
the crack is completely open up without any partial contact,
effect of fluid leakage is weak. In Figure 6(b), when the
interfacial stiffness is large, effect of fluid leakage is strong.
Especially, effect of fluid leakage is stronger for large aperture.
Figure 7 shows the effect of aspect ratio on eigen angular
frequencies of the 3rd and 4th modes. Effect of fluid leakage is
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stronger for smaller aspect ratio. Figure 8 shows the effect of
fluid viscosity on eigen angular frequencies of the 3rd and 4th
modes. Effect of fluid leakage is weaker for larger fluid
viscosity. Now we introduce a non-dimensional parameter L
defined as

T
f

ll C
da
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d

km
L

ρη /
1

/
1

2
= .                 (11)

This parameter L is derived from the second term in the right
hand side of eq.(5). From the results shown in Figures 6, 7 and
8, fluid leakage at the crack tip disturbs the oscillation of the
crack more strongly for larger aperture d, smaller aspect ratio
a/d and smaller fluid leakage η. By combination of these
parameters, the parameter L becomes large. Except for the
effect of the interfacial stiffness, we can explain the effects of
these parameters on the oscillation of crack by using the
parameter L. When the parameter L is large enough, oscillation
of crack under close boundary condition at the crack tip
changes to oscillation of crack under open boundary condition.
Figure 9 shows variation of intensity of attenuation of the 3rd
and 7th modes with respect to aperture ratio. Larger value of
|Re. αj| means larger intensity of attenuation (see eq.(8)). The
intensity of attenuation becomes larger with increasing
aperture ratio at smaller aperture ratio and then switches to
become smaller with increasing aperture ratio at larger aperture
ratio. As a result of increasing fluid leakage, intensity of
attenuation of the Nth mode under close condition becomes
intensity of attenuation of the (N-2)th mode under open
condition.

4. CONCLUSIONS

The dynamic response of a two-dimensional fluid-filled crack
was examined, emphasizing the effects of fluid leakage at the
crack tip, the interfacial stiffness, aperture, aspect ratio of the
crack and fluid viscosity. We adopted Darcy’s law for
describing fluid leakage at the crack tip. The conclusions that
are derived from the present work can be summarized as
follows:
(1) For larger fluid leakage at the crack tip, non-dimensional

eigen angular frequency is smaller than that for no fluid
leakage. Waveform of the Nth mode of close boundary
condition at the crack tip changes to the waveform of the
(N-2)th mode of open boundary condition with increasing
fluid leakage.

(2) The effect of fluid leakage at the crack tip is strong for the
higher mode, the larger interfacial stiffness, larger
aperture, smaller aspect ratio and smaller fluid viscosity.

(3) The intensity of attenuation becomes larger with
increasing fluid leakage at smaller fluid leakage and then
switches to become smaller with increasing fluid leakage
at larger fluid leakage.
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