

GEOCHEMICAL CHARACTERISATION OF WATERS AND GASES OF ISCHIA ISLAND (ITALY).

Salvatore Inguaggiato ^{1,2}, Giovannella Pecoraino ².

¹ Istituto Nazionale di Geofisica. – Via Di Vigna Murata, 605 – Roma (Italy). Poseidon System, Catania.

² Istituto di Geochimica dei Fluidi C.N.R.-Via U. La Malfa, 153 – Palermo (Italy).

Key Words: gas and water geothermometers, fluid geochemistry, Ischia Island, $\delta^{13}\text{C}_{\text{CO}_2}$, gas-water-deep fluids interactions.

ABSTRACT

Between 1994 and 1995 gas samples from some fumaroles and thermal waters were collected on Ischia Island. The chemical composition of the shallow and deep natural hydrothermal fluids discharged is related to the main hydrological and lithological characteristics of the rock formations present in the reservoir. The calculated mass vapor fraction (y) of the reservoir is always positive suggesting the presence of a biphasic system where the dominant liquid has a temperature ranging from 240 to 280°C. The liquid phase is made up of modified seawater, heated fresh seawater and meteoric water. The mixing between these components together with interaction processes with the surrounding rocks is the origin of all of the island's groundwaters. The gaseous phase is mainly carbon dioxide with variable contents of helium that reflect different degrees of interaction with shallow groundwaters. The isotopic composition of the helium and the CO₂ of these gases is characteristic of fluids that originate in a mantle that has undergone crustal contamination. The helium values are from 1 to 3 R/Ra and values of $\delta^{13}\text{CO}_2$ among -5 and -28‰. The negative $\delta^{13}\text{C}$ value with respect to typical magmas in the Mediterranean (with $\delta^{13}\text{CO}_2$ ranging from 0 to -28‰) is the result of deep gases and groundwater interaction during their rise towards surface. The equilibrium temperature of the deep reservoir, found by using the chemical composition of the sampled gases, is uniform at 280±20°C. The homogeneity of the equilibrium temperatures of the sampled gases in different areas of the island probably indicates the existence of a common geothermal reservoir from which the gases originate. The differences in the equilibrium temperatures, estimated from the water's chemical composition, are due to mixing processes between modified sea water that represents the deep recharge of the system, and shallow groundwaters recharged by meteoric and marine waters at lower temperatures. The amount of steam in the reservoir is below 2% of total water content. The calculated values of pCO₂ in the reservoir are highly variable and range between 1 and 28 bars. The observed values do not show any correlation with other parameters and do not allow the evaluation of pCO₂ in the geothermal reservoir.

1. INTRODUCTION

Ischia, Phlegraean Fields and Vesuvius are part of the classic active volcanic area of the alkali-potassic Quaternary Roman Province of central-southern Italy developed within the Campanian graben, on the central-western margin of the Apennine chain. The volcanism is thought to be a consequence of tensional tectonics with NW-SE and NE-SW trends induced by the opening of the Tyrrhenian sea basin. This volcanic activity started about 2.0 Ma ago and has lasted until the present day with the historical eruption of Vesuvius, Phlegraean Fields and Ischia. The NE-SW tectonic trend marks the alignment of the volcanic areas of Phlegraean Fields and Ischia that were formed by many eruptive centers and are characterized by the presence of many thermal springs,

fumaroles, frequent earthquakes and bradyseismic phenomena (Santacroce, 1987, Vezzoli, 1988). The island of Ischia lies on the northwest edge (rim) of the Bay of Naples, opposite Capo Miseno. Oblong in shape, Ischia has a circumference of 34 km and a surface area of 46 km². The island is part of a volcanic field that was larger than the present island. Mt. Epomeo, an active volcano-tectonic horst raised by the intrusion of a superficial magmatic chamber, constitutes the highest part of the island (787 m a.s.l.) and the only part involved in the tectonic uplift (Vezzoli, 1988). The last eruption on the island took place in 1301 A.D. at Arso. There have been destructive earthquakes more recently, the last in 1833 when the entire town of Casamicciola was destroyed. Geothermal research was carried out on the island in the 1940's (Penta and Conforto, 1951). Several wells were drilled there and the highest temperature (232°C) was measured in the deepest well at 1150 m. Many thermal springs (T ~90°C) and fumaroles (T~100°C), and shallow earthquakes (the last one in 1881, Mercalli, 1884) testify to the persistent state of activity of the magmatic system. The aim of this work is to evaluate the thermodynamic features (P, T and vapour fraction) of the island's deep reservoir feeding shallow fluids.

2. HYDROGEOCHEMICAL FRAMEWORK

Between 1994 and 1995 gas samples from some fumaroles and thermal waters were collected on Ischia Island. Figure 1 shows the location of sampled fluids. The chemical composition of water samples from Ischia samples (Table 1) suggests that these are the result of the mixing of seawater and low salinity waters of probable meteoric origin, as hypothesised by De Gennaro et al., (1984), and Panichi et al., (1992). Water-rock interaction processes are particularly evident in many samples. The chemical composition of Ischia thermal waters are due to the mixing of at least three end-members: a "marine" modified component (e.g. S. Lorenzo sample, the most saline, with the highest concentration of B and t=90°); a "fresh" meteoric component that has undergone little rock interaction (e.g. sample 11, the least saline, with the lowest concentration of B, and t=28°C); a "modified" meteoric component due to rock interaction processes (e.g. samples 15 and 18, intermediate salinity and B concentration and t=30 and 53°C respectively). Sample 5 (S. Lorenzo), represents waters of marine origin, subsequently modified and heated. In fact, the salinity of these water samples reaches values sometimes higher than that of seawater. The distribution of sample data points in the ternary diagram in Figure 2 (Giggenbach, 1988) shows that most of the waters fall within the fields of non-equilibrium or partial equilibrium with the rocks. Samples 11 and 5 identified as mixing end members, fall within the fields of immature and partially mature waters, respectively. The intermediate samples tend to lie in positions of increasing maturity towards the saline end member (5). Samples 14, 15 and 16 fall within the field of full equilibrium with equilibrium temperatures between 100 and 160°C. Samples 5, 8 and 18 show Na/K ratios typical of high temperature equilibrium (240 to 280°C) in agreement with temperatures measured in the perforation wells drilled by SAFEN in the 1950's (Penta and Conforto, 1951). From the application of various geothermometers in mature water samples an estimation of the deep reservoir waters was made.

Table 2 shows the calculated temperatures of the more representative samples. The data clearly shows that the Na/K, Na-K-Ca and Na-Li geothermometer ratios have comparable temperatures between them (even though Na-Li of Fouillac always shows T lower than that of Kharaka), while the SiO₂ and Mg ratios show a lower T. Water-rock exchange reactions involving Mg proceed relatively fast at low temperatures. This geothermometer, like that of K/Mg^{1/2}, appears to be a good indicator of the last temperature of water-rock equilibration in ascending water. A contributing factor in this apparent re-equilibrium is that both Mg and Li are minor constituents in most thermal waters. Thus reactions involving a relatively small amount of these constituents may have a great effect on their ratios. When the estimated temperatures using K/Mg^{1/2}, Li/Mg^{1/2} and other geothermometers (particularly Na-K-Ca and silica) are in agreement, it is fairly certain that water-rock equilibration at the estimate temperature range was reached and that water-rock reaction during surface flow was negligible. Agreement between K/Mg^{1/2} and Li/Mg^{1/2} geothermometer temperatures, but higher estimated temperatures when using other geothermometers, may indicate a relatively short time in the reservoir, and intermediate temperatures where water-rock equilibrium only occurs with respect to the most reactive phases involving Mg. The estimated temperatures for the waters from the San Lorenzo well, ranging from 247 to 274°C (Table 2) confirm the hypothesis that this is the most representative sample of the deep reservoir that feeds the thermal manifestations of the island. Furthermore, the saturation index for this well (SI=logAP/Kps) for various mineralogical species at various temperatures, using microcline to balance the Al and SiO₂ in equilibrium with quartz was taken. Considering the uncertainty of ± 0.25 , the range of equilibrium temperature shown in the SI vs T diagram (Fig. 3) varies within the 260 and 300°C range. The average temperature of the reservoir can be considered near 280°C. This value is compatible with that measured with the geothermometers in a liquid phase.

3. GAS COMPOSITION

Free gas samples of Ischia are essentially CO₂-dominant gases mixed with air in various proportions (Table 3). In the He-CO₂-N₂ plot (Fig. 4) the samples show wide variations in the He/CO₂ ratio that reflect different degrees of interaction between fluids of deep and shallow origin. This variation is a consequence of the difference in solubility of He and CO₂ in groundwater and the chemical-physical conditions of the groundwater (T, pH, TDS). The free gas samples cluster near the CO₂ vertex and follow two distinct trends (Fig. 4): the first with an increase in the He/CO₂ ratio due to interaction processes with the groundwater; the second with an increase in the N₂/CO₂ ratio caused by atmospheric contamination. A possible explanation for the high concentrations of He in fumaroles 28, 29, 32 and 33, is that CO₂-rich fluids rose from depth with He/CO₂ ratios corresponding to that the gas phase dissolved in magma, and became enriched in He after interaction with shallow, CO₂-unsaturated groundwaters. The extent of this reaction is a function of different He and CO₂ solubility coefficients (He=8.7 ml/l and CO₂ = 759 ml/l at STP condition), as well as the pH of the groundwater, since CO₂ solubility depends on this parameter (Capasso et al., 1996, 1997). Local groundwaters are able to dissolve large amount of CO₂ thus enriching He in the residual phase. On the other hand, the dissolved gases show a He/N₂ ratio (solubility coefficients of N₂ = 14.6 ml/l at STP condition) that varies to

atmospheric probably due to interaction with shallow air saturated waters. Moreover, the alignment of these samples toward the CO₂ vertex in Fig. 4 indicates different degrees of interaction with deep fluids rich in CO₂. Starting from the method developed by Giggenbach (1980) for New Zealand hot water systems, D'Amore et al. (1982) and D'Amore and Celati (1983) showed that combining gas solubility and the equilibrium constants of two reactions, both the temperature and the mass vapour fraction (y) of the reservoir can be calculated. The calculated mass vapour fraction (y) of the reservoir is always positive (Table 4), hence suggesting the presence of a biphasic system. The amount of steam in the reservoir is below 2% of total water content. The calculated values of pCO₂ in the reservoir are highly variable and range between 1 and 28 bars. The observed values do not show any correlation with other parameters and do not allow the evaluation of pCO₂ in the geothermal reservoir. The equilibrium temperatures of fumarole gases were estimated using six different geothermometers in a gaseous phase reported in appendix 1 (D'Amore & Panichi 1980; Arnorsson & Gunnlaugsson, 1985; Arnorsson et al., 1983; Giggenbach et al., 1980; Saracco & D'Amore 1989; Giggenbach, 1987). The temperatures obtained are listed in Table 4 along with the vapour fraction y and the pCO₂. The information provided by the six gas-geothermometers was used to calculate the equilibrium temperature sufficiently consistent between them. The average temperature calculated considering all gas-geothermometers and all sites (n=27) is 288°C \pm 27. Moreover, by using the graph method proposed by Giggenbach (1991) based on CO/CO₂ and CH₄/CO₂ ratios (Fig. 5), we were able to estimate the temperature of the deep reservoir that feeds this volcanic system. The resulting temperatures ranged from 270 to 330°C. These results are consistent with the estimated values of the cationic geothermometers, calculated by the saturation index for sample 5 and with the temperature of the ISFV2 well drilled in the 1950's (Penta & Conforto, 1951). Other authors have also estimated the deep equilibrium temperatures of the Ischia gases, Carapezza et al. (1988) obtained values ranging from 214 to 364 °C for 9 different sites, in agreement with our estimates. The temperatures calculated by Panichi et al. 1992 ranged from below 200 to above 250°C, slightly lower than our calculated values. Tedesco (1996) also calculated the deep temperatures on the basis of chemical and isotopic equilibrium of carbon species. The obtained values ranged from 280 to 550°C. The highest T values were also supported by temperatures calculated by isotopic reactions between CH₄ and CO₂. However, such high values are probably due to different degrees of contamination from shallow CH₄-rich hydrothermal fluids. In this case the isotopic values of $\delta^{13}\text{C}$ of CH₄ reported by Tedesco (1996) do not allow discrimination of the origin of methane.

4. GAS ISOTOPE COMPOSITION

He and C isotopic compositions give useful information about fluid origin and about the chemical and isotopic processes that gases undergo as they rise towards the surface. In particular, the He isotopic composition is utilised to determine the different origins of fluids because of its low reactivity and solubility in the waters. CO₂, on the other hand, is highly reactive and soluble in waters and it is involved in several chemical and isotopic equilibria that modify the original composition of fluids. The $\delta^{13}\text{C}_{\text{CO}_2}$ and $^3\text{He}/^4\text{He}$ of the gases of Ischia are given in Figure 6 together with those of MORB, and other active volcanic areas in the Mediterranean Sea (Etna,

Vulcano, Phleorean Fields). Like the other volcanic areas, helium and $\delta^{13}\text{C}_{\text{CO}_2}$ values of Ischia do not fall into the MORB compositional field (Fig. 6). Helium isotopic ratios of Ischia fluids show values ranging from 1 to 3.6 Ra (Ra= 1.4×10^{-6}), very similar to those of Phleorean Fields, and clearly lower than those in fluids from Etna and Vulcano. These values seem to indicate that gases originated in a mantle that locally underwent crustal contamination. In particular, low $^3\text{He}/^4\text{He}$ values can be related to the particular abundance of U and Th values in the host rocks that release particles of α (radiogenic ^4He). $\delta^{13}\text{C}_{\text{CO}_2}$ values show a wide range from 0 to -5‰ vs PDB (Table 3), similar to those observed in other volcanic active areas in Italy (ranging from -3 to 0‰). Such values are more positive than those related to MORB (-8 to -5‰ ; Taylor et al., 1967; Deines, 1970). The more positive isotopic values of these samples with respect to MORB, rather than reflecting shallow contamination processes by CO_2 derived from thermal metamorphism of carbonate sediments of the basement of the volcano, would suggest that the source of magmatic CO_2 is already contaminated (Marty et al. 1994; Hoernle et al., 1995). Such a hypothesis is soundly supported by the results obtained from recent geochemical studies in the Mediterranean area (Capasso et al., 1996, 1997, 1998, 1999; Giammanco and Inguaggiato, 1996; Inguaggiato and Italiano, 1998; Inguaggiato and Pecoraino, 1998; Giammanco et al., 1998).

5. SUMMARY AND CONCLUSIONS

Geochemical studies of the thermal waters and gases of the Ischia Island have permitted to identify and characterise deep and surface components that feed the hydrothermal system. Deep magmatic fluids are characterised by CO_2 -rich gases with helium isotopic values ranging from 1 to 3.6 R/Ra and $\delta^{13}\text{C}$ of CO_2 values around -2‰ . These gases have an isotopic composition reflecting crustal contamination of the mantle. In particular, low $^3\text{He}/^4\text{He}$ values can be related to the particular abundance of U and Th in the host rocks that release radiogenic ^4He . The deep reservoir has a liquid-dominant biphasic system ($y=0.02$) with equilibrium temperatures near 280°C and PCO_2 up to 30 atm. The liquid phase is made up of modified seawater that is enriched in B, K, Na and depleted in Mg because of intense processes of exchange with the rocks. The equilibrium temperature of the deep reservoir, determined using the chemical composition of the sampled gases, is uniform and varies between $280 \pm 20^\circ\text{C}$. The homogeneity of the equilibrium temperatures of the sampled gases in different areas of the island probably indicates the existence of a common geothermal reservoir from which the gases originate. The differences in the equilibrium temperatures, estimated from the water's chemical composition, are due to the mixing processes between modified sea water that represents the deep recharge of the system, and shallow groundwaters recharged by meteoric and marine waters at lower temperatures. Concluding, the chemical and isotopic differences observed in Ischia Island fluids are linked to interaction processes (equilibria and/or kinetics) between deep and shallow fluids. For this reason we exclude the existence of different reservoirs feeding the geothermal system like Tedesco (1996) proposed.

ACKNOWLEDGEMENTS

The authors are indebted to Salvatore Giammanco and Franco D'Amore for their helpful suggestions.

REFERENCES

Arnórsson, S. and Gunnlaugsson, E. (1985). New gas geothermometers for geothermal exploration – calibration and application. *Geoch. Cosm. Acta*, Vol. 49, pp.1307-1325

Arnórsson, S., Gunnlaugsson, E., Svarsson, H. (1983). The chemistry of geothermal waters in Iceland. III. Chemical geothermometry in Geothermal investigation. *Geoch. Cosm. Acta*, Vol.47, pp.567-577.

Capasso, G., Favara, R., and Inguaggiato, S. (1996). Chemical and isotopic characterization of gaseous emissions on Vulcano Island (Aeolian Islands, Italy). In: *Proc. 4th Internl. Symp. on the Geochemistry of the Earth's Surface*, S. H. Bottrell (Ed), pp. 554-558.

Capasso, G., Favara, R., and Inguaggiato, S. (1997). Chemical features and isotopic composition of gaseous manifestations on Vulcano Island (Aeolian Islands, Italy): an interpretative model of fluid circulation. *Geochim. Cosmochim. Acta*, Vol.61, pp. 3425-3440.

Capasso, G., Favara, R., Inguaggiato, S., and Pecoraino, G. (1998). Chemical and isotopic characterization of fluids from Neapolitan Volcanic Area and relation with volcanic activity. *International Conference on Information Technology and Disaster Management*. London, England. September 1998.

Capasso, G., Favara, R., Francofonte S. and Inguaggiato, S. (1999). Chemical and isotopic variations in fumarolic discharge and thermal waters at Vulcano Island (Aeolian Islands, Italy) during 1996: evidence of resumed volcanic activity. *J. Volcanol. Geoth. Res.*, Vol.88, pp.167-175.

Carapezza, M.L., Hauser, S., Parella, F., Scelsi, E., Valenza, M., Favara, R., and Gurrieri, S. (1988). Preliminary studies of geothermal fluids of the island of Ischia: Gas geochemistry. *Rend. Soc. It. Miner. Petrol.*, Vol.43, pp.967-973.

D'Amore, F. and Celati, R. (1983). Methodology for calculating steam quality in geothermal reservoir. *Geothermics*, Vol. 12 (2-3), pp.129-140.

D'Amore F. and Panichi, C. (1980). Evaluation of deep temperatures of hydrothermal system by a new gas-geothermometer. *Geoch. Cosm. Acta*, Vol.44, pp.549-556.

De Gennaro, M., Ferreri, M., Ghiara, M.R. and Stanzione D. (1984). Geochemistry of thermal waters on the island of Ischia (Campania, Italy). *Geothermics*, Vol.13 (4), pp. 361-374.

Deines, P. (1970). The carbon and oxygen isotopic composition of carbonates from the Oka Carbonatite complex, Quebec, Canada. *Geochim. Cosmochim. Acta*, Vol.34, pp.1199-1225.

Fouillac, C. and Michard, G. (1981). Natrium/Lithium ratios in water applied to geothermometry of geothermal reservoirs. *Geothermics*, Vol.10, pp.55-70.

Fournier, R.O. (1973). Silica in thermal waters: Laboratory and field investigations. In: *Proceedings, International*

Symposium on Hydrogeochemistry and Biogeochemistry, Tokyo, 170, v. 1, Hydrogeochemistry, Washington D.C., Clark, pp. 122-129.

Fournier, R.O. (1979). A revised equation for the Na/K geothermometer. *Geotherm. Resourc. Counc. Trans.*, Vol.3, pp.221-224.

Giammanco, S. and Inguaggiato, S. (1996). Soil gas emissions on Mount Etna (Sicily, Italy): geochemical characterization and volcanic influences. In: *Proc. 4th Internl. Symp. on the Geochemistry of the Earth's Surface*, S. H. Bottrell (Ed), pp. 569-573.

Giammanco, S., Inguaggiato, S. and Valenza M. (1998). Soil and fumarole gases of Mount Etna: geochemistry and relations with volcanic activity. *J. Volcanol. Geoth. Res.*, Vol.81, pp.297-310.

Giggenbach, W.F. (1980). Geothermal gas equilibria. *Geochim. Cosmochim. Acta*, Vol. 44, pp.2021-2032

Giggenbach, W.F., 1981. Geothermal mineral equilibria. *Geochim. Cosmochim. Acta*, Vol. 45, pp.393-410

Giggenbach, W.F., 1987. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand. *Appl. Geochem.*, Vol.2, pp.143-161.

Giggenbach, W.F., 1988. Geothermal solute equilibria. Derivation of Na-K-Mg-Ca geoindicators. *Geochim. Cosmochim. Acta*, Vol.52, pp.2749-2765.

Giggenbach, W.F., 1991. Chemical techniques in geothermal exploration. In: *Application of geochemistry in geothermal reservoir development*. F.D'Amore (Ed). Roma, 1991.

Kharaka, Y.K. and Mariner, R.H. (1989). Chemical geothermometers and their application to formation waters from sedimentary basins. In: *Thermal History of Sedimentary Basins*, Naeser, N.D. and McCollon, T.H. (Eds), Springer-Verlag, N.Y. pp. 99-117.

Hoernle, K., Yu-Shen, Z. and Graham, D. (1995). Seismic and geochemical evidence for large-scale mantle upwelling beneath the eastern Atlantic and western and central Europe. *Nature*, 374: 34-39.

Inguaggiato, S. and Italiano, F. (1998). Helium and carbon isotopes in submarine gases from the Aeolian arc (Southern Italy). In: *Proceeding of the 9th international symposium on water-roch interaction-WRI 9*, Taupo, New Zealand, 30 march- 3 april 1998, Arehart & Hulston (Eds) Balkema, Rotterdam.

Inguaggiato, S. and Pecoraino, G. (1998). Chemical and isotopic features of gas manifestations at Phleorean Fields and

Ischia island, Italy. In: *Proceeding of the 9th international symposium on water-roch interaction-WRI 9*, Taupo, New Zealand, 30 march- 3 april 1998, Arehart & Hulston (Eds) Balkema, Rotterdam.

Marty, B., Trull, T., Lussiez, P., Basile, I., Tanguy, J. C., 1994. He, Ar, O, Sr and Nd isotope constraints on the origin and evolution of Mount Etna magmatism, *Earth Planet. Sci. Lett.*, Vol.126, pp. 23-39.

Mercalli, G. (1884). L'isola di Ischia e il terremoto 20 luglio 1883. *Mem. R. Ist. Lomb. Cl. Sci. Mat. Nat.*, Vol.15, pp.99.

Nieva, D. and Nieva, R. (1987). Developments in geothermal energy in Mexico, part 12 - A cationic composition geothermometer for prospection of geothermal resources. *Heat recovery systems and CHP*, Vol.7, pp.243-258.

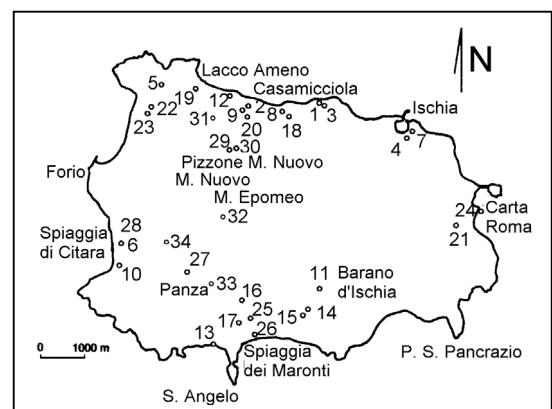
Panichi, C., Bolognesi, L., Ghiara, M.R., Noto, P. and Stanzione, D. (1992). Geothermal assesment of the island of Ischia (southern Italy) from isotopic and chemical composition of the delivered fluids. *J. Volcanol. Geoth. Res.*, Vol.49, pp.329-348.

Penta, F. and Conforto, B. (1951). Risultati di sondaggi e ricerche geominerarie nell'isola di Ischia dal 1939 al 1943 nel campo d'1 vapore, delle acque termali e delle forze endogene in generale. *Ann. Geofis.*, Vol.4, pp.1-33.

Saracco, and D'Amore, F. (1989). CO2 B: a computer program for applying a gas geothermometer to geothermal systems. *Computer and Geoscience*, Vol.15, pp.1053-1065.

Taylor, H.P., Frechen, J. and Degens, E.T. (1967). Oxygen and carbon isotope studies of carbonatites from the Laacher See district, West Germany and the Alnö district, Sweden. *Geochim. Cosmochim. Acta*, Vol.31, pp. 407-430.

Tedesco, D., 1996. Chemical and isotopic investigation of fumarolic gases from Ischia island (southern Italy): evidences of magmatic and crustal contribution. *J. Volcanol. Geoth. Res.*, Vol.74, pp.233-242.


Tonani, F. (1980). Some remarks on the application of geochemical techniques in geothermal exploration. In: *Proceedings, Adv. Eur. Geoth. Res., Second Symp.*, Strasbourg, pp. 428-443.

Truesdell A.H. and Fournier, R.O. (1975). Calculation of deep reservoir temperatures from chemistry of boiling hot springs of mixed origin (abs). *2nd United Nations Symp. on the Development and Use of Geothermal Resources*, San Francisco, May 20-29, 1975, Abstract Volume, III-25.

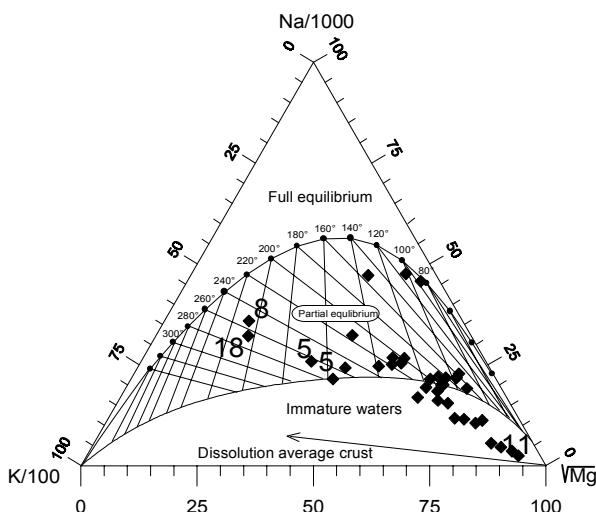

Vezzoli, L., (Editor), 1988. Island of Ischia. *C.N.R. Quaderni de "La Ricerca Scientifica"*. Vol. 114 (10), pp.122.

Table 1. Chemical composition of thermal waters (selected data). Contents are expressed in mg/kg.

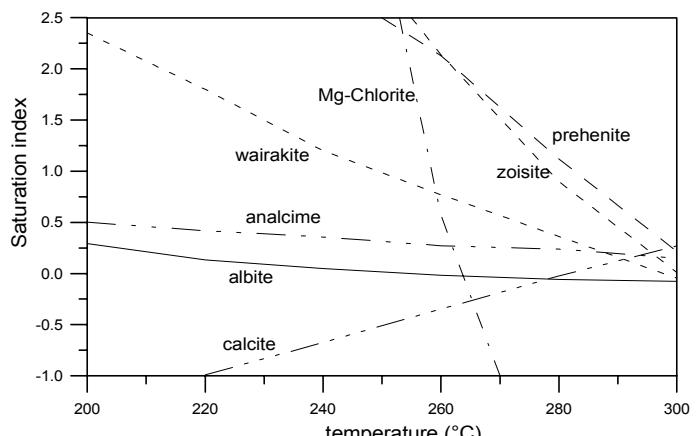
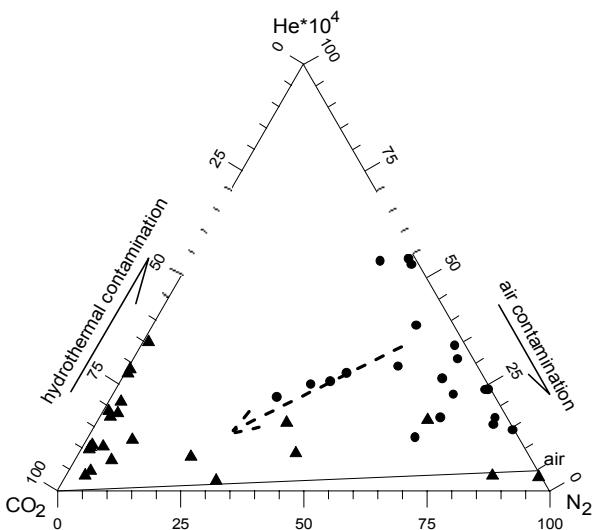

n.	data	t	pH	SiO ₂	Na	K	Ca	Mg	Li	Cl	SO ₄	Alc	B
4	ott-95	48	6.5	100	10744	663	651	1305	n.d.	20235	2329	1586	6.3
5	gen-94	73	5.7	170	8253	1341	300	277	41	14633	703	229	n.d.
5	ott-95	66	6.0	180	14058	2031	436	395	n.d.	23855	1307	275	16.9
8	ott-95	47	7.7	150	1125	143	16	4	n.d.	465	572	1708	2.3
11	ott-95	28	6.4	0	166	25	141	17	n.d.	79	179	580	0.9
15	ott-95	30	6.9	n.d.	1426	12	33	2	n.d.	378	693	2440	2.3
16	ott-95	90	7.0	n.d.	3635	112	88	9	n.d.	5037	451	531	8.5
18	ott-95	53	8.5	n.d.	959	142	2	0	n.d.	333	334	1642	2.3
21	ott-95	34	5.5	n.d.	11678	569	521	1310	n.d.	19978	2494	528	6.8

Figure 1. Location map of sampled fluids

Figure 2. Relative Na, K and Mg contents of thermal waters. Isotherms calculated by use of Na-K and K-Mg geothermometers are given. Full and partial equilibrium and immature waters are also shown.

Figure 3. Temperature (°C) estimated for n. 5 well by using saturation indexes for various mineralogical species at temperature ranging from 200 to 300°C.


Table 2: Calculated temperatures obtained by applying cationic geothermometers (1= Truesdell & Fourier, 1975; 2: Tonani, 1980; 3: Arnorsson et al., 1983; 4: Fournier, 1979; 5: Nieva and Nieva 1987; 6: Giggenbach, 1980; 7: Kharaka and Mariner, 1989; 8: Fouillac and Michard, 1981; 9: Fournier, 1973)

Samples	t Na/K ¹	t Na/K ²	t Na/K ³	t Na/K ⁴	t Na/K ⁵	t Na/K ⁶	t Na-K-Ca ⁷	t K/Mg ⁸	t Li/Mg ⁹	t Na/Li ⁷	t Na/Li ⁸	t SiO ₂ ⁹
Thermal C.1	139	143	148	177	164	194	197	110	75	114	73	137
S.Lorenzo	247	258	251	263	248	274	266	160	160	242	217	169
P. SAFEN	168	173	175	200	187	216	215	134	128	187	152	183
H. Reginella	167	173	175	200	187	216	200	127	118	168	131	153

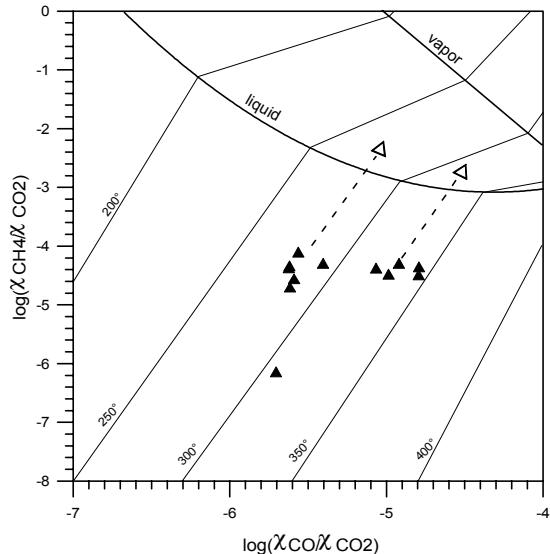


Table 3. Chemical and isotopic composition of gas samples. He, H₂, CO, CH₄ contents are expressed in ppm, O₂, N₂ and CO₂ contents in %vol. Isotopic carbon values of CO₂ are expressed in ‰ vs. PBD.

n.	Samples	Data	t	He	H ₂	O ₂	N ₂	CO	CH ₄	CO ₂	$\delta^{13}\text{C}_{\text{CO}_2}$	${}^3\text{He}/{}^4\text{He}$	
24	Carta Romana	Jan-94	15	2.0	<2	0.4	1.8	<1	53.5	95.8	-2.05	n.d.	
24	Carta Romana	oct-95	16	2.0	<2	0.4	1.0	1.9	0.7	96.4	-2.49	0.93	
25	Terme Linda	Jan-94	98	7.9	101	2.1	7.5	<1	75.1	88.9	-2.97	n.d.	
25	Terme Linda	oct-95	98	21.0	121	0.6	2.1	2.6	75.3	95.0	-3.01	1.63	
26	Spiaggia Maronti	Jan-94	103	5.4	2.7	1.5	4.4	3.8	49.0	96.5	-3.04	n.d.	
26	Spiaggia Maronti	oct-95	101	13.9	558	3.2	10.1	10.6	45.0	88.3	-3.26	3.69	
27	Panza C.Sportivo	oct-95	98	9.3	174	6.5	25.5	12.3	24.7	76.6	-3.52	n.d.	
28	Pozzo Safen Citara	Jan-94	50	23.0	1416	0.2	3.6	<1	36.7	97.1	-4.49	n.d.	
29	Pizzone	Monte	oct-95	99	113.0	11800	0.4	1.7	2.3	24.8	89.5	-5.00	3.56

Nuovo

Figure 4. CO₂, N₂ and He*10⁴ contents of fumarolic gases. External arrows indicate effects of hydrothermal and air contamination, dashed arrow indicates the effect of interaction between local groundwaters and deep gases. Full triangles are deep gases, full circles are dissolved gases.**Table 4.** Calculated temperatures obtained by applying gas geothermometers (1: D'Amore and Panichi, 1980; 2: Arnorsson and Gunnlaugsson, 1985; 3: Giggenbach, 1987; 4: Saracco and D'Amore, 1989; 5: Giggenbach, 1980).

Samples	t ¹	t ²	t ³	t ⁴	t ⁵	y ⁴	pCO ₂
Pizzone Mt Nuovo	283	288	313	281	270	n.d.	0.018
Panza C.Sportivo	340	271	273	320	330	n.d.	0.025
Mt Citto	313	297	313	300	300	328	0.018
Mt Corvo	226	268	303	285	300	231	0.002
Cimmento Rosso	266	277	281	280	280	271	0.005

Figure 5. Evaluation of temperature (°C) of the Ischia geothermal reservoir using CH₄, CO, CO₂ contents of discharged gases.**Figure 6.** The ${}^3\text{He}/{}^4\text{He}$ vs $\delta^{13}\text{C}_{\text{CO}_2}$ for Ischia gases.