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ABSTRACT

Heat pumps drawing heat from a water-bearing layetr with a
vertical heat exchanger are used in practice. Heat is drawn
from a framework of the ground and flowing in ground pores
water. While designing a system it is necessary to determine
the influence of heat flow drawn with a heat exchanger on the
thermal field in a deposit. Existing publications do not present
the solution that lets us determine this thermal field. In this
publication a mathematical mode! describing heat flow in a
deposit (an aquiferous layer) behind a vertical heat exchanger
is presented. This model lets us determine the thermal field in
an aquiferous layer. Starting from an energy balance equation
for an eclementary sector of porous surface a partial
differential equation describing transient heat flow in ground
medium was obtained. This equation has been solved by
Laplace transformation. Obtained solution describes thermal
field in an aquiferous layer behind a heat exchanger in
relation to input temperature, flow of heat drawn with a heat
exchanger, time and properties of the ground.

1. INTRODUCTION

In many countries heat pumps using ground energy have
become commercial equipment as a part of heating systems in
one-family houses, hotels and public buildings, etc.

There are used in practice heat pumps drawing heat with a
vertical heat exchanger from an aquifer (Sanner, 1992). The
heat is drawn from the ground framework and from flowing
in ground piping water. While designing a system it is
essential to determine the heat flow which can be drawn with
a heat exchanger. Existing publications do not present the
analytical solution that lets us estimate that thermal field.

Kujawa and Szaflik (1998), assuming some simplifications,
derived a partial differential equation that describes heat
propagation in ground. Solving the equation for appropriate
boundary conditions, the authors estimated a relation for
replacing convective heat-transfer coefficient from an
aquiferous layer to a vertical heat exchanger. Coming out
from the equation and changing boundary conditions it is
possible to determine thermal field in the ground behind a
heat exchanger.

In this publication a mathematical model is presented of heat
propagation in an aquiferous layer behind a vertical heat
exchanger. This model lets us determine the thermal field in
the ground behind a vertical heat exchanger.
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2. FORMULATION AND SOLUTION OF THE
BOUNDARY PROBLEM

2.1 Differential equation

To introduce a differential equation for transient heat flow
through a porous medium, there were made the following
assumptions for a flow of heat in ground:

e porous space is unlimited and it does not emit heat, an
overall heat-transfer coefficient A, specific heat ¢, and

density p, are constants,

* a flow rate I/"f , its thermal conductivity A, specific heat
¢, and density p ¢ are constants,

o heat flow conducted in fluid flow direction in relation to
heat carried away with fluid is negligible,

e a medium is porous enough to equilibrate the temperature
of the fluid filling the porous medium and the temperature of
the medium very quickly and they are equal at each point of
the section (Lauwerier, 1955),

e considering unit normal surface in relation to a fluid flow
direction porosity determined by pores’ surface P, is

constant for each section,
o a heat exchanger is infinitely long and its calorific effect to
is constant ¢ .

Based on the above assumptions the problem resolves itself
into a two-dimensional problem. Assuming Cartesian co-
ordinate system, to simplify the problem, in the way that a
water flow in ground is parallel to one of the axes (axis x ).
In this case giving up the heat as a result of conductance goes
on perpendicular to the axis (parallel to axis y).

Starting from an energy balance equation for an elementary
sector of porous surface, a partial differential equation
describing transient heat flow in ground medium was
obtained:
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The velocity v from the relation (1) is determined as an
average velocity in pores’ space.

To simplify the problem there is introduced new variables &
and 7 determined by the following relations (2) and (3):
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Taking into account an average velocity v, in equation (2)
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and Darcy formula
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we obtain as follows:
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where: k - filtration coefficient related a kind of ground, m/s;
I - hydraulic gradient.

Replacing equation (1) with (3) and (6) it can be written as
follows:
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It is assumed that temperature of medium and fluid in the
output moment is the same in whole volume.

2.2 Determination of thermal field behind a heat
exchanger

According to one assumptions the thermal field is symmetric,
a symmetry plane is parallel to direction of flow and it comes
across the centre of a heat exchanger. The symmetry axis is
adiathermal. (Heat does not flow through the symmetry axis.)
The solution can be obtained as a sum of two boundary
problems:

¢ one, when it is assumed that on the whole boundary of the
field a negative heat source of steady expenditure equal to
capacity of a heat exchanger occurs,

and

« the other when it is assumed that on the boundary, except
the beginning part equal to the diameter of a heat exchanger,
heat source of opposite sign and the same capacity as in first
problem occurs.

Sum of above solutions fulfils the condition of adiathermal
symmetry surface out of the part equal to the width of a heat
exchanger. Schematic of cross-section of the field, ground
heat exchanger and assumed model is presented in

The formulated boundary value problem resolves itself into
determining a distribution of temperature for a quarter plane
with the following boundary condition:

e at an output moment the temperature in a whole medium is
constant and it equals to the temperature of the medium:
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Hx,y,7=0)=0, 8)

e the temperature on inflow surface (surface 0y ) is constant
and equal to output temperature:

Hx=0,y,7)=0, )

o the heat flux on a heating surface (of a heat exchanger) is
constant

9 di(x,y=0,7) 4

& (10)

The schematic of the system with boundary conditions, is
presented in

For new variables £, 7 boundary conditions are determined
as follows:
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To solve the problem formulated above there was used
Laplace’a double-transformation (Doetsch, 1961 and Korn

and Korn, 1968). It was used because of variable 7, & . The

solution of the equation in the transformed domain can be
written:
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where u is a field of temperature and p and s are complex
variables corresponding to variables £ and 7.

Coming back to the original space the solution is written as
follows:
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where function U is a unit step function and the functions
ierfc are determined for particular variables as follows:
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This solution describes unsteady thermal field in porous
medium in which fluid flows. The field is bounded by cooling
plane of steady heat flow intensity. Thermal field depends on
output temperature, heat flow intensity as well as ground and
time parameters.

3. DETERMINATION OF THERMAL FIELD IN
GROUND BEHIND A HEAT EXCHANGER

Temperature is estimated as a sum of temperature from two
solutions: given one and the other of opposite sign which is
displaced in the part equal to the diameter of a heat exchanger
d,, value d, equals value of a variable x, :

csps(l—P0)+c/pro
klcsp,

& = d,. (19)

System with centre in the end point of a heat exchanger was
taken as a reference co-ordinate system. Thus the solution of
first boundary problem is as follows:
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and the other’s:
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Thermal field in a deposit behind a heat exchanger is
determined by sum of above solution as follows:
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For some long time (T - oo) it can be assumed that thermal

field in the reservoir is fixed and then the temperature of
reservoir is determined by the following relation:

t=/21—‘? JE+& ierfe— L _ [Fierfe—T_|. (23)
a
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Using relation (23) temperature in a sand reservoir was
calculated. The ground is characterised by the following
parameters: ¢, = 729 J/(kgK), A, = 6,048 W/(mK), p, = 2800
kg/m’. To make the calculations variable values of filtration
coefficient k: 0.006 m/s, 0.012m/s and 0.023 m/s were
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assumed (these values are characteristic for highly pervious
ground). At assumed hydraulic gradient / =0.001 an average
velocity of water in ground v, is relatively about: 0.5 m/24
hours and 1.0 m/24 hours. Parameters of the water are as
follows: ¢, = 4190 J/(kgK), 1, = 0.597 W/(mK), p s =1000
kg/m®.

The diameters of a heat exchanger d,, are relatively 0.060 m,
0.108 m and 0.219m. A flow of heat was assumed at the
level of ¢ =500 W/m?,
Porosity of ground was P, =0.35, and
¥y =0+2m. Results of the calculations are presented in Fig.
4, Fig. § and Fig. 6.

x=0+5m,

4, DISCUSSION

Spatial graphs of thermal fields presented in and
[Fig. 6]show how temperature of the ground behind a vertical
heat exchanger is changing towards the axis x (direction of
water flow in ground) and towards the axis y. When the
strength of heat flow is steady, temperature depends on
assumed diameter of a heat exchanger and filtration
coefficient k. Increase of value % causes decrease of
temperature of the ground behind a heat exchanger. With
increase of a diameter of a heat exchanger d, temperature of

the ground behind a heat exchanger increases, too.

To picture clearly the variability of temperature in ground, a
selected graph was cut with planes perpendicular to axes x
and y. In this way there were obtained flat diagrams
presented in Temperature of the ground behind a heat
exchanger along the axis x (parallel to direction of water
flow) reaches maximum in certain distance from the
beginning of system [(Fig. 3a)] It results from inflow of cold
ground water. In a plane perpendicular to direction of water
flow it is observed decrease of maximum and clear
extension of range of interaction of temperature changes.

5. CONCLUSIONS

In this publication a relation which lets us determine the
unsteady thermal field behind a vertical heat exchanger
immersed in ground is deduced. Temperature depends on:
intensity of heat flow drown by a heat exchanger, the
diameter of the heat exchanger, parameters describing
medium filled with fluid and time. After some long time it
can be assumed that temperature of a deposit is fixed. Thus
deducing relation is considerably simplified. Based on
obtained relations thermal field behind a vertical heat
exchanger may be determined for designing systems.
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Fig. 1. The scheme of accepted model
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Fig. 2. The scheme of considering system with boundary conditions
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Fig. 3. Thermal field in the ground behind a heat exchanger along the axis y (a) and the axis x (b) (a diameter of a heat exchanger
d, =0.060m, a heat flow §=2000W/m?)
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Fig. 4. Spatial graph of thermal field in the ground
behind a heat exchanger of diameter d, =0.060m

when a heat flow is ¢ =500 W/m2

Fig. 5. Spatial graph of thermal field in the ground behind
a heat exchanger of diameter d, =0.108m when a heat

flow is ¢ =500W/m?
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Fig. 6. Spatial graph of thermal field in the ground behind a heat exchanger of diameter d, = 0.219m when a heat flow is
¢=500W/m?
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