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ABSTRACT

The FAST-C software is designed to run models for density-
driven flow in porous media and in free fluids. The codes are
equipped with the GeoShell graphical user interface which
allows user-friendly input, control and variation of all relevant
parameters. The software has been applied to several problems
in which density-driven flow patterns are involved: free and
forced convection, oscillatory convection, saltwater intrusion,
saltwater upconing, the saltdome problem and the salt-lake
problem.
While the general code allows the set-up of three-dimensional
models, there is a special version for two-dimensional
modeling, FAST-C(2D), containing several advanced options.
As an application of FAST-C(2D) code a synthetic test-case of
geothermal flow is modeled. The mixed convection regime in
the example can be characterized by two non-dimensional
numbers, the Rayleigh number and a new dimensionless
number which relates buoyancy to external forces. The
example demonstrates how numerical experiments in the space
of dimensionless variables can be used to understand the
complex interaction of various processes in a geothermal
system.

1. INTRODUCTION

Density-driven flow is induced by temperature and/or salinity
gradients. Flow and transport processes are coupled when there
is influence of temperature or salinity on fluid density. The
coupling complicates the situation in comparison to usual
applications with constant density in which flow is not affected
by transport processes.
When density differences in a system, either in porous media
or in free space, are small, flow and heat transport can be
modelled separately. But there are several situations in which
the density coupling has to be taken into account. A small list
may suffice here: thermal and saline convection, saltwater
intrusion, saltwater upconing, interaction between salt-lakes
and groundwater, contact with heating and cooling facilities,
heat pumps. In geothermal phenomena density gradients are
involved that are too big to be neglected.
Often the transition from one flow regime to another is
characterized by a certain threshold - by density gradients or by
a dimensionless number. A well-known example is Bénard
convection for which there is a transition from conduction to
stable convection at the critical Rayleigh number.

2. DIFFERENTIAL EQUATIONS

The FAST software is designed for the set-up of numerical
models. There are several parts of the FAST package which
can be used for different phenomena. FAST-A enables 3D-
modeling of flow in saturated and unsaturated porous media
(Holzbecher, 1996). FAST-B(2D) allows 2D-modeling of
transport processes, including sorption, decay and degradation
(Holzbecher, 1996). With FAST-C code coupled flow and
transport models in 3D can be set-up. The FAST-C(2D) code
is designed for modeling density-driven flow in 2D vertical
cross-sections. As the latter is the most advanced part of the
FAST package and especially suited for modeling geothermal
phenomena, this contribution deals with FAST-C(2D) only. A
textbook including software on CD-ROM was published by
Holzbecher (1998a) recently. The book shows how the
numerical techniques are derived from fundamental principles,
describes details of the code and how to use it. Furthermore
application and test-cases are described and modeled.
Using the FAST-C(2D) code the modeler can choose between
several model options. Steady state modeling or transient
simulations can be performed. The driving force for density-
driven flow can be temperature or salinity gradients. The input
parameters depend on the choice between dimensionless
formulation and physical units. The most recent version lets
the user choose between porous medium and free fluid flow.
The numerical code is derived from a set of partial differential
equations. The differential equations themselves are a
mathematical expression of fundamental principles like mass
and energy conservation. Well established empirical relations
are used to describe mass and energy fluxes: Darcy’s Law,
Fick’s Law and Fourier’s Law.
In dimensionless formulation thermal convection is described
by the set of three differential equations:
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with dimensionless streamfunction Ψ, vorticity ω and
normalized temperature θ. In the porous medium case equation
(2) can be replaced by an explicit formula for vorticity:
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All relevant physical parameters are combined in
dimensionless numbers - the Rayleigh-number
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and the Prandtl-number:
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with permeability k, ratio of heat capacities γ, acceleration due
to gravity g, reference density ρ, maximum density difference
∆ρ, system height H, dynamic viscosity µ, and thermal
diffusivity D. For free fluids the permeability k has to be
replaced by H2 and γ by 1:

Ra = ⋅ ⋅
⋅

g H

D

∆ρ 3

µ
(7)

In the porous medium the Rayleigh number is the single
dimensionless parameter.
For the porous medium case Holzbecher (1998a) shows in
detail how differential equations are derived from basic
principles. Additionally the details of transformation into
dimensionless form is given there.

3. NUMERICAL APPROACH

The differential equations are discretized using a standard
finite difference (FD) approach. The user has influence only on
the FD representation of the 1st order terms - an option that can
be important because it allows control of numerical dispersion.
In transient simulations the modeler has the choice of
timestepping procedures.
For each differential equation a linear system of equations
results. In a Picard type of solution algorithm these linear sets
are solved successively until a certain criterion is fulfilled. The
criterion can be altered by the user specifying a maximum
number of iterations and tolerance.
Linear systems are solved using conjugate gradient (CG)
methods, with or without preconditioning. Different CG
variants are used depending on the type of linear systems -
symmetric or unsymmetric matrices are treated differently. The
user has some additional options to alter predefined CG-
parameters.
The code is equipped with a graphical user interface
(GeoShell) for PCs. The interface comes with standard
techniques like a menu bar with submenu entries, with input
boxes, alert messages and other tools (see Figure 1). The menu
automatically adjusts to the selected model type: necessary
parameters are enabled, unnecessary parameters are disabled.
Clicking buttons and entering values in input boxes makes
work easy for the modeler. The shell software provides a
graphical representation of the model area giving the user an
easy way to input change and control input data. This is
extremely useful when input data are distributed. Moreover a
large online help library provides information that can be
useful not only for the novice but for advanced users also.
There are several options for the boundary conditions too. For
streamfunction and temperature Dirichlet and Neumann type
conditions can be specified. Boundary conditions can be
different from one part of the boundary to the other. Using this
option various examples of density-driven flow can be set-up
and modeled. As an example a schematic view of boundary

conditions for modeling free convection - the classical Bénard
example in a vertical cross-section - is given in Figure 2.

4. APPLICATIONS AND TEST CASES

Several examples have been calculated using the FAST-C(2D)
code - for testing purposes and for application cases. The
Henry problem has become a classical testcase for saltwater
intrusion modeling (Holzbecher 1998a). The Nile-delta aquifer
in Egypt was treated as an application case for seawater
intrusion (Holzbecher and Baumann, 1994). A saltwater
upconing example was published by Holzbecher (1995) and
Holzbecher and Heinl (1995). Holzbecher (1998b) examined
the change of convective flow patterns when variations of
viscosity are considered. In a similar expertise the influence of
nonlinear density dependency was studied (Holzbecher, 1997).
Recently the modeling of ground- and surface water in the
vicinity of salt-lakes has drawn some attention (Holzbecher
1999a, b). Several other examples, like the Elder problem and
oscillatory convective motions can be found in the above
mentioned textbook (Holzbecher 1998a).

5. GEOTHERMAL TESTCASE

5.1 Conceptual Model

For codes designed to set-up geothermal models a test case was
proposed by Yusa (1983). The intention of the hypothetical
example is to estimate the relative importance of potential flow
and thermal convective flow.
A vertical cross-section of an aquifer is studied in which the
flow pattern is influenced from above and below. At the
bottom the subsurface fluid is in contact with a high
temperature zone, from which heat - not fluid - enters the
studied region. At the top there is a prescribed potential flow.
Seasonal changes that are characteristic for near-surface
potential flow in field situations are neglected in order to keep
the test-case simple. Input parameters for the test case are
listed in Table 1.
The proposed example has been used by several researchers to
test their codes. Yano (1989) tested a finite element code based
on a slightly differing formulation of differential equations.
With a former version of the FAST-C(2D) code Holzbecher
and Yusa (1995) obtained very similar results than in the
original publication (Yusa, 1983). Springer (see Holzbecher
1998a) tested his finite element THERMOD code, confirming
basic features of geothermal flow found in former publications.

5.2 Numerical Model

A new numerical model is set up with FAST-C(2D). A
schematic view of the test-case example in a vertical cross-
section and the boundary conditions is given in figure 3. The
system is closed for fluid at three boundaries. In the
streamfunction formulation a constant value Ψ=0 is prescribed
there. At the top boundary the Neumann condition specifies
the horizontal velocity along the upper edge: ∂Ψ/∂z=vbound.
Thus strength of potential flow enters the model via this
Neumann type condition.
There is a high temperature boundary condition at the location
of contact with the hot formation in the subsurface and a low
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temperature boundary condition on the top boundary. On
vertical boundaries there is no diffusive and advective heat
flux.
The modeling in this paper is done with a fine grid of 200
equal blocks in the horizontal and 40 equal blocks in the
vertical direction. Four cases are modeled differing only in the
strength of the potential flow, i.e. the boundary condition at the
upper boundary is changed. The four cases are distinguished
by the hydraulic gradient at the top edge, which is zero in the
first simulation, 1%, 3% and 5% in the following model runs.
All transient simulations start with the constant (low)
temperature situation. Simulated time-period is the same for all
different: 0.78 dimensionless time units.

5.3 FAST-C(2D) Results

Results of the model are shown in Figure 4. For all four cases
two figures are shown, one showing the contours of the
streamfunction, the other the temperature distribution. Thus
figures 4a, 4c, 4e and 4g show streamfunction contours at the
end of the simulated time period for the four different cases.
Contour levels are chosen equidistantly, not only within one
figure but also from one figure to the other. Only in figure 4a
the spacing between contours is reduced one order of
magnitude because otherwise the flow pattern would not be
visible any more. Figures 4b, 4d, 4f and 4h show temperature
distribution in equal steps between Tmin and Tmax at the end of
the simulated time period.
The cases for potential gradients 0, 1% and 5%, represented by
figures 4a-4d and 4g-4h, seem to be quasi-steady state. Only
marginal changes are observable from one time step to the
other. There is a transient development captured in figures 4e
and 4f for the case with 3% potential.
Altogether the figures confirm the findings from former
calculations for Yusa’s test-case, although in detail there are
quite big differences, even when the new results with FAST-
C(2D) are compared with output obtained on a coarser grid.
Relatively narrow tongues of hot fluid moving upward along
the vertical boundary adjacent to the heat source, which were
found in coarse grid simulations, are not be confirmed by the
fine grid results.
Generally solutions of differential equations are approximated
better by numerical models with finer discretization. Thus it is
not unusual that a coarse grid simulation fails to give some
features of the real solution. Similar observations have been
made and discussed for the Elder example (Holzbecher 1998a).

5.4 Epilogue

A new dimensionless parameter Co can be introduced to
describe the balance between potential and thermal convective
flow in the geothermal test-case. Holzbecher and Yusa (1995)
propose the definition:
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where vbound is the velocity prescribed at the top boundary.
With increasing number Co thermal convection becomes more
important. With decreasing Co the relative importance of
potential flow rises.
A classification of flow patterns using the dimensionless
number Co is given in Table 2. For small values of Co
convective motions can not be recognized. For high values of
Co (for vbound=0) there is one convection roll. In the transition

zone between these two regimes two convection rolls can be
observed and there is a flow field with thermal transients
ejected from the high temperature region.
The new Co-number in the second form of equation (8) turns
out to be useful in other applications of mixed convection as
well. The new dimensionless number can be used in all cases
in which a second moment, besides buoyancy, determines the
pattern of fluid motions in the considered system. Often a
characteristic velocity is explicitly or implicitly given,
describing the additional outer moment, which can be used in
the definition of Co in equation (8).
The Henry problem for saltwater intrusion can be recognized
as such a problem. In a series of numerical experiments
Holzbecher (1998a) shows that it is convenient to use Co to
estimate of the intrusion (penetration) length of the salt-water
front.
Holzbecher (1999b) explains rigorously how Co can be used to
classify mixed convection processes below a saline disposal
basin. Another test-case in which Co has been introduced
successfully is the salt-dome problem (Holzbecher, 1998a).
Altogether it can be concluded that numerical experiments
with dimensionless parameters are a useful tool for describing
complex flow systems. The FAST-C(2D) code is a powerful
and user-friendly tool to perform such experiments, although it
is applicable for formulations with physical units as well.
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Tables

Symbol Parameter Value
Tmin minimum temperature 20°C
Tmax maximum temperature 250°C
H height 1000 m
L length 5000 m

∆ρ density difference 230 kg/m3

µ dynamic viscosity 2. 10-4kg/m/s2

k permeability 10-14 m2

D thermal diffusivity 10-6 m2/s
γ ratio of heat capacities 2

Ra Rayleigh number 113
∂h/∂x|top hydraulic gradient 0, 1%, 3%, 5%

Table 1: Input parameters for geothermal test case

Hydraulic
gradient Co=Ra/Pe Flow pattern

0.0 ∞ one steady roll
1 % 23.06 two steady convection rolls
3 % 7.69 no steady state
5 % 4.69 no convection

Table 2: Flow pattern classification for geothermal test case
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Figures

Figure 1: Main menu and submenu entries of GeoShell user interface

 

Flow  

H ea t 
T=Tmin 

T=Tmax 

Prescribed streamfunction (Dirichlet type) 

Prescribed temperature (Dirichlet type) 
No diffusive flux (Neumann type) 

Figure 2: Schematic view of free convection test case
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Flow  

H ea t 
T=Tmin 

T=Tmax 

Prescribed horizontal flow (Neumann type) 
Prescribed streamfunction (Dirichlet type) 

Prescribed temperature (Dirichlet type) 
No diffusive flux (Neumann type) 

Figure 3: Schematic view of geothermal testcase
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Ψ for hydraulic gradient 0% 

Τ for hydraulic gradient 0% 

Ψ for hydraulic gradient 1% 

Τ for hydraulic gradient 1% 

Ψ for hydraulic gradient 3% 

Τ for hydraulic gradient 3% 

Ψ for hydraulic gradient 5% 

Τ for hydraulic gradient 5% 

Figure 4: FAST-C(2D) results for the geothermal test case with refined grid (see text for further explanation)
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