

THE ITALIAN GEOTHERMAL DATABASE

Enrico Barbier¹, Stefano Bellani¹ and Fabio Musmeci²

¹CNR-International Institute for Geothermal Research, Via Alfieri 1, 56010 Ghezzano (Pisa, Italy)

²ENEA- Department of Environment, Via Anguillarese 301, 00060 La Casaccia (Rome, Italy)

Keywords: Geothermal energy, geothermal resources, database, inventory.

ABSTRACT

The geothermal inventory ranks the Italian territory. The objective of the national database is to store information related to the location and characteristics of geothermal fluids in Italy. All the data gathered are stored in a computer database specifically set up for this purpose. The database includes wells that produce a geothermal fluid (hot water, steam or gas), geothermal or hydrocarbon exploratory wells, water wells above 30°C, unproductive wells, thermal springs and other manifestations. At the moment 2750 wells and about 570 thermal springs are included in the database with maps of temperature distribution at 1000, 2000, and 3000 m from ground level, and heat flow contours of all the Italian territory. The database is about 15 megabytes in size and is available on CD-ROMs for PCs under MS/DOS Windows 3.11 or Windows 95/98. The data management system used is the software Visual Basic with the Access engine, and can be hosted in any PC with at least 8 Mb of RAM.

1. INTRODUCTION

In 1986 the Italian Parliament voted a Bill to implement an assessment of national geothermal resources, with the aim to provide incentives for geothermal energy development. The objective of the inventory was to rank all Italian territory, integrate all data of geothermal interest, and organize them in a standard, readily accessible and readable format for the private and public user.

The four main organisations involved at that time in geothermal research and development, the National Research Council (CNR), the Italian Electric Power Company (ENEL), the Italian Agency for New Technologies, Energy and Environment (ENEA), and AGIP, the National Oil Company, collaborated in compiling the inventory of the Italian geothermal resources.

All the available and potentially useful geological, drilling, hydrogeological, geophysical and thermal data have been collected from geothermal and hydrocarbon wells, from thermal springs and other geothermal manifestations (e.g. fumaroles) (ENEL et al., 1988; CNR, 1994). Maps of Italian territory with temperature distribution at 1000, 2000, and 3000 m from ground level have been compiled using these data, together with a heat flow map and a geothermal ranking of the whole country.

2. THE NATIONAL GEOTHERMAL DATABASE

All the gathered data were stored in a computer database set up specifically for this purpose by CNR (the International Institute for Geothermal Research) and ENEA (Department of Environment) (Barbier and Musmeci, 1998). In the database the "objects" are wells that produce a geothermal fluid (hot water, steam or gas), geothermal exploratory wells or hydrocarbon wells (AGIP, 1977), water wells above 30°C, and unproductive wells which can provide useful information on temperatures at depth in the area, and on the surface heat flow. Thermal springs and other manifestations are also classified as objects. At the moment 2750 wells and about 570 thermal springs are included in the database.

Each of the above objects is described through properties that show its essential features. In the case of a well, for instance, the properties include its name, geographic coordinates, altitude and depth, year of completion, mining results, the fluid temperature, the stratigraphy, the chemistry of any fluid produced, the drilling profile, etc.

Fifteen paper forms were designed to give a standard format to the data. These were originally collected on these forms and then loaded in the database.

The National Geothermal Database runs on a CD-ROM with a Windows 3.11 / Windows 95/98 application, capable of handling composite alphanumeric and geographical information, and taking full advantage of the Windows friendly interface of icons, buttons, and point/click interactions. The user - program interface is twofold: they can browse through the information stored on the CD, or add their own data to the database. In this latter case the user's hard disk must have a minimum of 20 megabytes disk space available for its installation.

The architectural choice is a relational database with main tables on wells and springs. In these tables each of the objects (wells and springs) is regarded as one record, and identified by a single ID numerical code as a key ("chiave" in Italian language). The identification table (main table, Fig. 1) provides general information about an object (its name, location, temperature, use, and several further characteristics).

Additional tables can be compiled with related information about temperatures (Fig. 2), heat flow, geological profile of the well (Fig. 3), chemistry of the fluid, and so on. They are linked to the main table through the same key, and actually behave as subdirectories of the main directory (the identification table), easily selectable through icons on the screen. On these additional tables a number of records may refer to the same object: for example, there may be several chemical or isotopic analyses of a fluid that were carried out

on different dates for the same spring (Fig. 4) or for the same well.

The full list of the related tables for wells and springs is the following:

- Identification and location data (wells and springs),
- Temperature data at depth (for wells only),
- Temperature gradient and heat flow data (wells only),
- Stratigraphic column of the well (wells only),
- Reservoir characteristics (wells only)
- Production of the well (wells only)
- Chemical, physical and isotopic characteristics of the water (or steam) discharged (wells and springs),
- Chemical, physical and isotopic characteristics of the gas discharged (wells and springs),
- Technical profile of the well (wells only),
- Correlation to vertical depths for deviated wells (wells only).

The user can define the criteria by which they wish to query the database (e.g. temperature $>30^{\circ}\text{C}$ and depth <1000 m). The output is a printable table that can also help in selecting a given object. The option of an automatic temperature-depth coloured graph has been added for each well, as well as a generalised coloured stratigraphic column. A further option is the extraction of selected portions of the database in files with text format (.txt).

The database also includes a GIS (Geographic Information System) which uses the same ID code of the object (the key). The GIS displays maps on which the locations of the selected wells and thermal springs/manifestations are easily identified by coloured symbols. A mouse click on each symbol displays all the information available on the chosen object. The database comprises a map of Italy showing the 20 Italian regions and the boundaries of the provinces, and 20 regional maps with the boundaries of the local administrations (counties). Any area can be zoomed in, out, or translated.

Contours of temperature distribution at 1000, 2000 (Fig. 5) and 3000 m from ground level, as well as heat flow contours of all of the Italian territory can be overlain on the regional maps.

From the main table the user can jump directly to the GIS and watch the selected object on the maps. For a quality analysis of the data entry, a family of functions is available to check the internal coherence of the data sets and to help to resolve any data conflicts. A context sensitive help function is also available to help the user. The help system is complete with a glossary.

At the moment, the National Geothermal Database is about 15 Megabytes in size and is available on CD-ROM to run on PC under MS/DOS Windows 3.11 or Windows 95/98. The data management system used is the software Visual Basic with the Access engine, and can be hosted in any PC with at least 8 megabytes of RAM.

3. REFERENCES

AGIP (1977) *Temperature sotterranea (Subterranean temperatures)*. AGIP, Milan, 1390 pp. and unpublished updates up to 1993.

Barbier, E. and Musmeci F. (1998) The Italian National Geothermal Database. *World Renewable Energy Congress Proceedings, Part IV*, Florence 20-25 September 1998, pp. 2737-2740.

CNR (National Resources Council of Italy) – International Institute for Geothermal Research (1994) *Aggiornamento dell'Inventario delle risorse geotermiche nazionali (Update of the Italian national geothermal resources inventory)*. Ministero dell'Industria, Rome, 3 reports + 8 maps.

ENEL, ENI-AGIP, CNR and ENEA (1988) *Inventario delle risorse geotermiche nazionali. Indagine d'insieme sul territorio nazionale (Inventory of the Italian national geothermal resources. Global survey of the national territory)*. Ministero dell'Industria, Rome, 75 pp. + enclosures.

DATI ANAGRAFICI DEL POZZO

DATI DI IDENTIFICAZIONE

NAME	PC 29	TIPO	<input checked="" type="radio"/> Produzione <input type="radio"/> Esplorazione <input type="radio"/> Gradiente termico <input type="radio"/> Domestico <input type="radio"/> Ignoto	CHIAVE	5341015		
LATITUDINE	425013 N	LONGITUDINE	114046 E	M. Mario	004622 W		
				Esatte	<input type="radio"/> Si <input checked="" type="radio"/> No		
				PORTATA	21.4		
Tmax (°C) 338 a prof. (m) dal piano campagna 3500.00 Quota del p.c. (m) 566				kg/h			
(Tmax proviene dalla scheda Dati Termometrici)				m ³ /h			
<input checked="" type="radio"/> Terra <input type="radio"/> Acque interne <input type="radio"/> Mare		REGIONE		TOSCANA	l/s		
		PROVINCIA		SIENA	kg/s		
COMUNE	PIANCASTAGNAIO	CAMPO	In senso minore	M. AMIATA			
LOCALIZZAZIONE GEOGRAFICA							
RIFERIMENTO TOPOGRAFICO IGM		FOGLIO 1:100.000	129	TAVOLETTA	IVSE		
		FOGLIO 1:200.000	4965				
PROPRIETARIO	ENEL	DATA COMPLETAMENTO	23/12/1982	PROFONDITA' (m)	3563		
				Sul percorso pozzo			
Calcolo Quota da Rotary							
PROFONDITA' INIZIO DEVIAZIONE (m)		PROFONDITA' DEL FONDO POZZO SULLA VERTICALE (m)					
FONDO POZZO	LATITUDINE	N	LONGITUDINE	E	M. Mario ?	Anno rilevamento dati	o completamento pozzo
SCOPO	ESITO MINERARIO	STATO DEL POZZO	USO				
<input checked="" type="radio"/> Geotermico	<input type="radio"/> Idrocarburi gassosi	<input checked="" type="radio"/> In produzione	<input type="radio"/> Energia elettrica	<input type="radio"/> Potabile	<input checked="" type="radio"/> Stoccaggio		
<input type="radio"/> Acqua fredda	<input checked="" type="radio"/> Anidride carbonica	<input type="radio"/> In prova	<input type="radio"/> Riscaldamento edifici	<input type="radio"/> Agrozootecnico	<input type="radio"/> Controllo		
<input type="radio"/> Idrocarburi	<input type="radio"/> Acqua fredda	<input type="radio"/> Chiuso temporan.	<input type="radio"/> Balneoterapeutico	<input type="radio"/> Processi industriali	<input type="radio"/> Nessuno		
<input type="radio"/> Minerario	<input checked="" type="radio"/> Fluido geotermico	<input type="radio"/> Cementato	<input type="radio"/> Esaurito	<input type="radio"/> Reiniezione	<input type="radio"/> Ostruito		
	<input type="radio"/> Petrolio						
	<input type="radio"/> Industrialmente sterile						
	<input type="radio"/> Sterile						
				UTILIZZATORE			
				ANNI DI USO: da	a	mesi di utilizzo annuo	

Fig. 1. Identification, location, mining and production data of a well.



Fig. 2. Temperature-depth data from a well (the last column shows the reliability of temperature data).

Fig. 3. Lithological data and generalized stratigraphic column of a well.

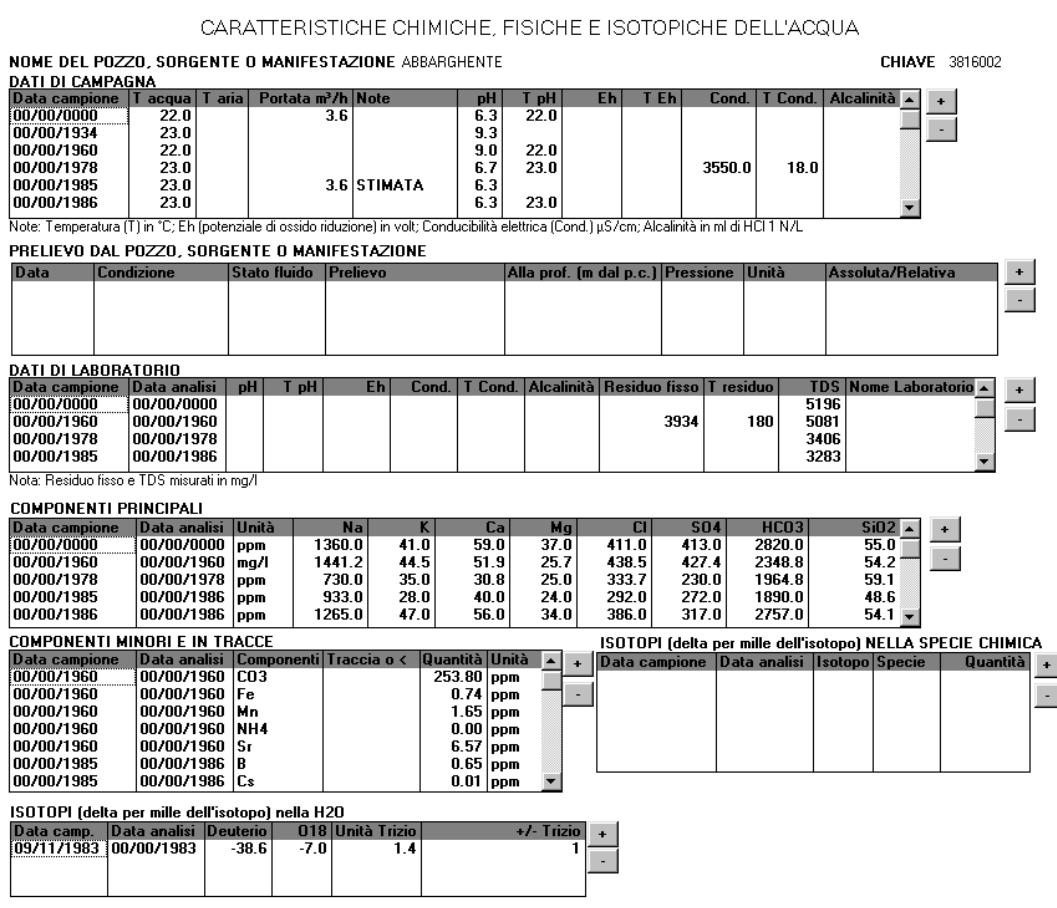


Fig. 4. Chemical, physical and isotopic characteristics of thermal water from a spring

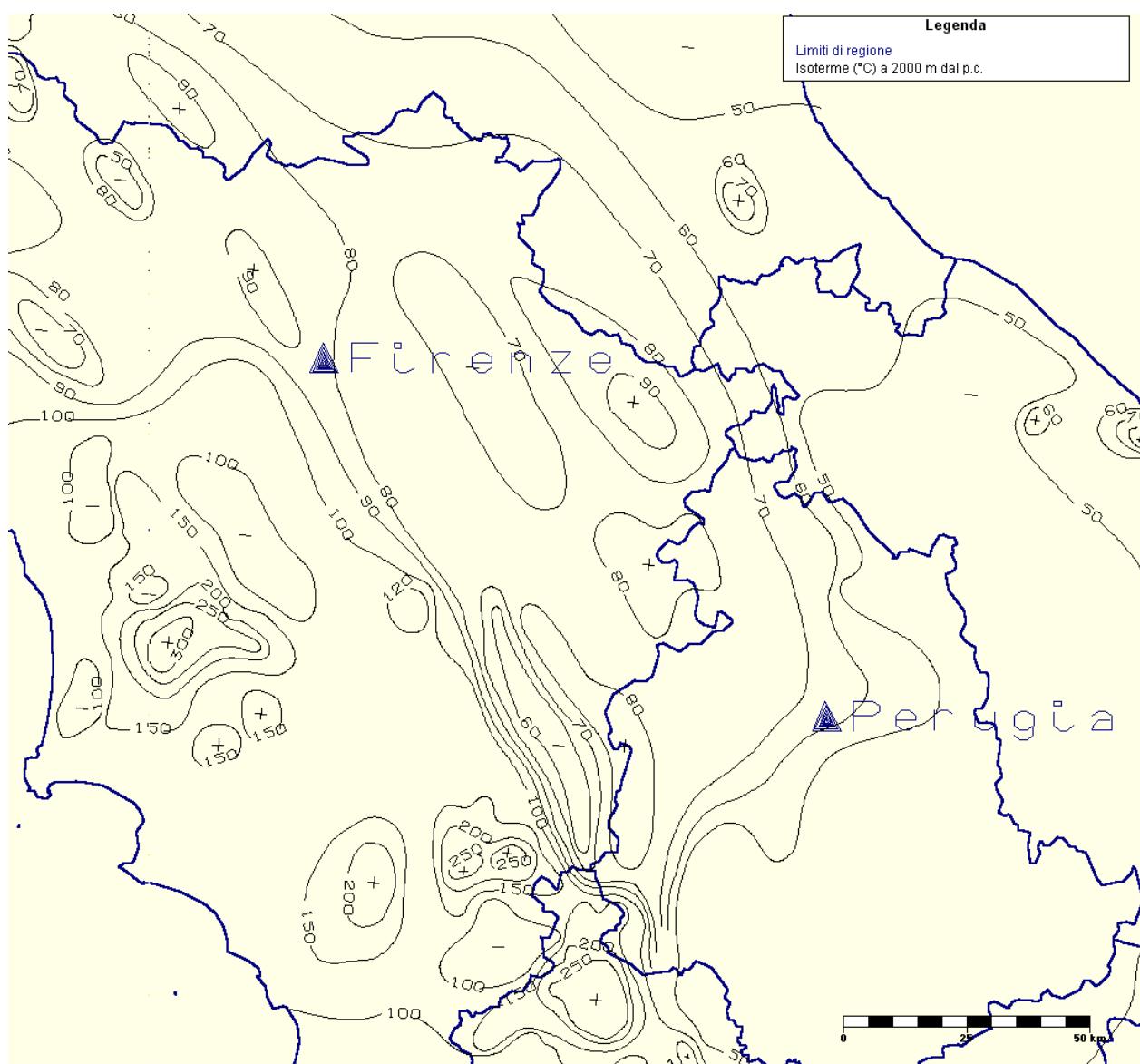


Fig. 5. Part of Central Italy with region boundaries (thicker lines) and temperature isolines at 2000 m b.g.l. (°C).