

# DEEP HEAT FLOW AND GEOTHERMAL STRUCTURE IN SICHUAN BASIN OF CHINA

WANG Xuben<sup>1</sup>, WANG Jiyang<sup>2</sup>, LI Qingyang<sup>1</sup>, YU Huijin<sup>1</sup>

<sup>1</sup>Chengdu University of Technology, Sichuan, Chengdu, 610059, People's Republic of China

<sup>2</sup>Institute of Geology, Academia Sinica, Beijing, 100011, People's Republic of China

**Key Words:** crust geothermal structure, heat flow, Sichuan Basin

## ABSTRACT

With a hybrid-crust heat-flow model, using the "peeling" method, we have investigated the deep geothermal structures of the southwestern and middle uplifts, and the northwestern depression and south lowly folded belt as well as eastern highly folded belt, Sichuan Basin of China. The temperature values at the Conard surface are in the range of 371-494 degree centigrade, and those at the Moho discontinuity are in the range of 552 - 821 degrees centigrade. Preliminary analysis of the bottom temperature of the sub-crust and the lithosphere temperature distribution indicates that Sichuan Basin is a stable tectonic unit relatively with fairly low temperature and heat flow except the southwestern part of the Basin.

## 1. INTRODUCTION

*Birch et al.* (1968), *Roy et al.* (1968), and *Lachenbruch* (1968) have described a two element linear relationship between surface heat flow,  $q_o$ , and heat production of shallow rocks,  $A_o$ , in plutonic areas:

$$q_o = q_r + A_o D \quad (1)$$

where  $q_r$  is called the reduced heat flow (often considered as the upper-mantle heat flow) and  $A_o D$  represents the contribution from radiogenic source in the upper crust, with  $D$  being related to the characteristic thickness of the heat-generating layer. This relation means that the surface heat flow consists of two components, radiogenic-source heat flow and upper-mantle heat flow. It has provided a very useful and simple tool both for constructing heat generation models of the upper crust and for extrapolating surface data to the depths needed for analysis of deep geothermal structure. *Pollack and Chapman* (1977) indicated that this relation would be applicable in many non-plutonic settings. They also proposed a new empirical relation between reduced heat flow,  $q_r$ , and the mean heat flow of a province,  $q_o$ , such that  $q_r \approx 0.6q_o$ , to estimate the reduced heat flow in cases where heat-flow and heat-production data are not available. Combining linear relationship between mean heat flow and reduced heat flow with characteristic depths from a world-wide distribution of tectonic provinces, the results show that characteristic depth  $D$  lies within a quite restricted range:  $8.5 \pm 1.5$  km.

*Lachenbruch* (1970) considered the distribution model of an exponential decrease of heat production with depth as the only possible explanation of the linear relationship of equation (2) given through differential erosion, although he explained three

assumption models (step model, linear model and exponential model). *Swanberg* (1972) provided a field study to support the exponential source model by determining the nature of variation of heat production with depth in the Idaho Batholith.

*Wang Jiyang et al.* (1988), *Wang Jian, Wang Jiyang et al.* (1992) indicated that the exponential distribution model of radiogenic production is not applicable within sedimentary stratigraphic sequences. They further indicated that there are no uniform models to explain the distribution of heat production, because the distribution of radioactive elements in sedimentary strata depend mainly on lithological features related to sedimentary processes, depositional environments and other factors, according to their studies of deep geothermal structure in the Liao He and Hua Bei Basins of China.

## 2. CALCULATION OF DEEP HEAT FLOW

By measurements of neutron activation analysis and the chemical analysis of trace elements of rock specimens, we have determined the contents of radioactive elements U, Th, and K in sedimentary strata of Sichuan Basin (see Table 1), and calculated the radiogenic heat production in terms of the formula provided by *Birch* (1954) as follows:

$$A_o = 0.1327\rho(0.73c_U + 0.20c_{Th} + 0.27c_K) \quad (2)$$

where  $\rho$  is the mean density of a stratum, and  $c_U$ ,  $c_{Th}$  and  $c_K$  represent the contents of U, Th, and K, respectively.

The results show that the distribution of heat production does not seem consistent with exponential decrease with depth (see table 1). To satisfy practical needs, we have designed a hybrid distribution model of radiogenic heat production in the upper crust of Sichuan Basin. For the case of one-dimensional steady-state heat flow, we assume that the second part of equation (1) comprises two kinds of calculating models, we simply define the second part of equation (1) as crust heat flow,  $q_C$ ,  $q_C = q_{C1} + q_{C2}$ . For sedimentary sources, we utilize step models according to the following formula to calculate the heat flow,  $q_{C1}$ , contributed by sedimentary strata lying above crystalline basement at depth  $z_i$ :

$$q_{C1} = \int_0^{z_i} A(z)dz = \sum_{i=1}^n A_i z_i \quad (3)$$

where  $n$  is the number of sedimentary layers, and  $A_i$  and  $z_i$ , two parameters, which can be determined, represent the mean heat production of each stratum and its corresponding thickness, respectively.

For plutonic sources of the basement, the model of exponential decrease in radiogenic heat production with depth is used to estimate the heat flow  $q_{C2}$  generated by materials lying between depths  $z_i$  and  $z^*$ . We assume that the heat flow  $q(z^*)$  across the depth  $z^*$  is uniform throughout the province. The calculating formula is written as

$$q_{C2} = \int_{z_i}^{z^*} A(z_i) e^{-\frac{z}{D}} dz \quad (4)$$

Where  $A(z_i)$  represents the radiogenic heat production of materials at depth  $z_i$ , and  $D$  is the thickness of the heat-producing enriched zone. We have calculated the  $D$  of different areas of the basin.

We have used this hybrid-crust heat-flow model to calculate the deep heat flows of several subtectonic units in the Basin. Figure 1 is one of the geothermal models in different sub-tectonics of the Basin, which illustrates the hybrid models of crust radiogenic heat-source distribution. For the upper part of this distribution,  $A_0$  is the calculated value for each sedimentary layer above the stratum Pt; for the lower part, the exponential model is used.

### 3. CRUST GEOTHERMAL STRUCTURE

With the help of the crust heat distribution model, the deep geothermal structures have been estimated. The vertical temperature recursion formula can be written from resolution of the one-dimensional heat conducting equation:

$$T_i^{bottom} = T_i^{top} + q_i^{top} \frac{z_i}{k_i} - \frac{A_i z_i^2}{2k_i} \quad (5)$$

This formula denotes that one can resolve the bottom temperature  $T_i^{bottom}$  of stratum  $i$  if one knows the top surface temperature  $T_i^{top}$  and top surface heat flow  $q_i^{top}$ , as well as the thickness  $z_i$ , thermal conductivity  $k_i$ , and radiogenic heat production  $A_i$  of the same stratum. The geothermal state at different depths can be estimated by using the so-called “peeling” method, extrapolating downward from the surface temperature according to the formula.

Further, lithospheric temperature features below the Moho discontinuity have been crudely estimated by using the above models and data. Taking the general rock thermal conductivity value of upper mantle as  $3.4 \text{W/m}^{\circ}\text{K}$ , the mantle’s geothermal gradient may be estimated by means of mantle heat flow. The assessed temperature-depth relations of different substructure units are shown in Figure 2. We can assess the depth of the asthenosphere from the intersection of the geothermal curve with the rock solidus. The rock solidus shown in Figure 2 comes from *Lachenbruch and Sass’s* (1978) dry basalt solidus formula:

$$T = 1050 + 3z \quad (6)$$

Where  $z$  represents depth in kilometers, and  $T$  is temperature at that depth in degree centigrade. With the estimation, we know that Weiyuan-Longnuchi uplift has a highest temperature at Moho discontinuity:  $821.3$  degree centigrade while the Tongjiang-Xintong Depression and East highly

folded belt have lower temperature at the discontinuity. The value of Nanchong slope, Chengdu depression, and south lowly folded belt are located at a middle level. Chengdu depression, Tongjiang-Xintong depression, and East highly folded belt have the thickest lithosphere about  $127 \text{ km}$ . Weiyuan-Longnuchi uplift has the most thin lithosphere thick: about  $75.6 \text{ km}$ . Nanchong slope and South lowly folded belt have lithosphere of the about  $100 \text{ km}$ .

### 4. CONCLUSION

By means of calculating or estimating terrestrial heat flow and measurement of the uranium, thorium, and potassium contents of rock samples, we use a hybrid heat generation model to estimate the crust heat structure for the combination of plutonic basement overlain by sedimentary strata that is present in the basin. Then using this model, we have calculated the mantle heat flow of several subtectonic units in the basin. The surface heat-flow values range from  $35$  to  $80 \text{ mW/m}^2$ , with a mean value of  $62.44 \text{ mW/m}^2$ , while the mantle heat-flow ranges from  $22. \text{ mW/m}^2$  to  $38.95 \text{ mW/m}^2$ .

Using the “peeling” method, we have investigated the deep geothermal structures of the southwestern and middle uplifts, and the northwestern depression and south lowly folded belt as well as eastern highly folded belt. The temperature values at the Conard surface are in the range of  $371$ - $494$  degree centigrade and those at the Moho discontinuity are in the range of  $552$  -  $821$  degrees centigrade (see table 2). Preliminary analysis of the bottom temperature of the sub-crust and the lithosphere temperature distribution indicates that Sichuan Basin is a stable tectonic unit relatively with fairly low temperature and heat flow except the southwestern part of the Basin

Table 2 has showed that the characters of deep heat flow and temperature structure in different sub-tectonic units of Sichuan Basin, the southwestern of China.

### ACKNOWLEDGMENTS

This project is supported by State Natural Science Foundation of China. The authors are also grateful to Professors Wang Jian and Xiong Liangping, Wang Jun, and Jin Xi for their providing some data and giving us a lot of helpness.

### REFERENCES

- Birch, F., 1954. Heat flow radioactivity. In Henry Faul (editor), *Nuclear Geology*, John Wiley and Sons Inc., New York, 148-175.
- Birch, F., Roy, R. F. and Decker, E. R., 1968. Heat flow and thermal history in New York and New England, In Zen, E., White, W. S., Hadley, J. B. and Thompson, J. B., Jr (editor), *Studies of Appalachian Geology: Northern and Maritime, Interscience*, New York, 437-451.
- Lachenbruch, A. H., 1968. Preliminary geothermal model of the Sierra Nevada, *Journal of Geophysical Research*, 73, 6977-6989.
- Lachenbruch, A. H., 1970. Crustal temperature and heat

production: implication of the linear-flow relation, *Journal of Geophysical Research*, 75, 3291-3300.

Lachenbruch, A. H. and Sass, J. H., 1978. Models of an extending lithosphere and heat flow in the basin and range province, *Geol. Soc. Am.*, 152, 209-250.

Pollack, H. N., & Chanpman, D. S., 1977. Mantle heat flow, *Earth and Planetary Science Letters*, 34, 174-184.

Roy, R. F., Blackwell, D. D., & Birch, F., 1968. Heat generation of plutonic rocks and continental heat-flow province, *Earth and Planetary Science Letters*, 5, 1-12.

Swanberg, C. A., 1972. Vertical distribution of heat generation in the Idaho batholith, *Journal of Geophysical*

*Research*, 77, 2508-2513.

Wang Jiyang, Yang Shuzhen & Shen Jiying, 1988. Deep geothermal characteristics and history of heat evolution, Huabei area. In Chen Maixiang (editor), *Geotherm in Huabei area*, Scientific Press, 200-214, "in Chinese".

Wang Jian, Wang Jiyang, Xiong Liangping, et al, 1992. Geothermal characteristics of the Liaohe graben and their relationship to oil-gas resource, *Bulletin of Institution of Geology, Chinese Academy of Science*, Scientific Press, 5, 1-77, "in Chinese".

Wang Jun, Huang Shangyao, Huang Geshan, & Wang Jiyang, 1990. *Basic Characteristics of the Earth's Temperature Distribution in China*, Seismological Press, "in Chinese".

**TABLE 1 Stratigraphic contents of  $^{238}\text{U}$ ,  $^{232}\text{Th}$ , and  $^{40}\text{K}$ , as well as heat production,  $A_0$ , in Sichuan Basin**

| Stratigraphic unit                 | Major lithologies          | $^{238}\text{U}$ (PPM) | $^{232}\text{Th}$ (PPM) | $^{40}\text{K}$ (%) | $\rho(\text{g/cm}^3)$ | $A_0$ ( $\mu\text{W/m}^3$ ) | Numbs. samples |
|------------------------------------|----------------------------|------------------------|-------------------------|---------------------|-----------------------|-----------------------------|----------------|
| Jurassic (J)                       | Sandstone, mudstone        | 2.9                    | 12.8                    | 2.37                | 2.54                  | 4.06                        | 2              |
| Group Xujiahe of Triassic (Th)     | Sandstone, mudstone, shale | 2.9                    | 9.7                     | 2.73                | 2.54                  | 3.86                        | 4              |
| Group Recoubuo of Triassic (Tr)    | Limestone, dolomite, shale | 2.9                    | 0.08                    | 0.16                | 2.68                  | 1.80                        | 1              |
| Group Jialingjing of Triassic (Tc) | Limestone, dolomite        | 2.6                    | 2.9                     | 1.21                | 2.68                  | 2.38                        | 67             |
| Group Feixianguan of Triassic (Tf) | Limestone, mudstone        | 0.61                   | .74                     | 0.24                | 2.68                  | 0.56                        | 1              |
| Permian (P)                        | Limestone, shale           | 0.84                   | 2.91                    | 0.37                | 2.70                  | 1.11                        | 57             |
| Carboniferous (C)                  | Limestone, shale           | 3.4                    | 1.00                    | 0.24                | 2.70                  | 2.35                        | 5              |
| Silurian (S)                       | Limestone, mudstone        | 2.7                    | 15                      | 3.29                | 2.74                  | 5.09                        | 2              |
| Ordovician (O)                     | Limestone, shale, dolomite | .71                    | 5.12                    | 0.39                | 2.48                  | 1.30                        | 2              |
| Cambrian(ε)                        | Limestone, dolomite        | .85                    | 2.55                    | 0.92                | 2.82                  | 1.22                        | 4              |
| Sinian (Z)                         | Dolomite                   | 1.44                   | 0.28                    | 0.26                | 2.80                  | 1.05                        | 6              |
| Upper-crust                        | Gneiss, migmatite,         |                        |                         |                     |                       | 4.20                        | 45             |
| Lower-crust                        |                            |                        |                         |                     |                       | 1.16                        | 30             |

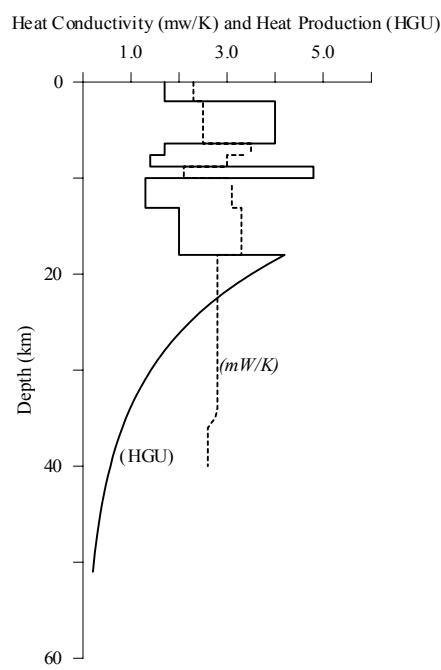



Figure 1 One example of crustal geothermal structure model in Sichuan Basin of China

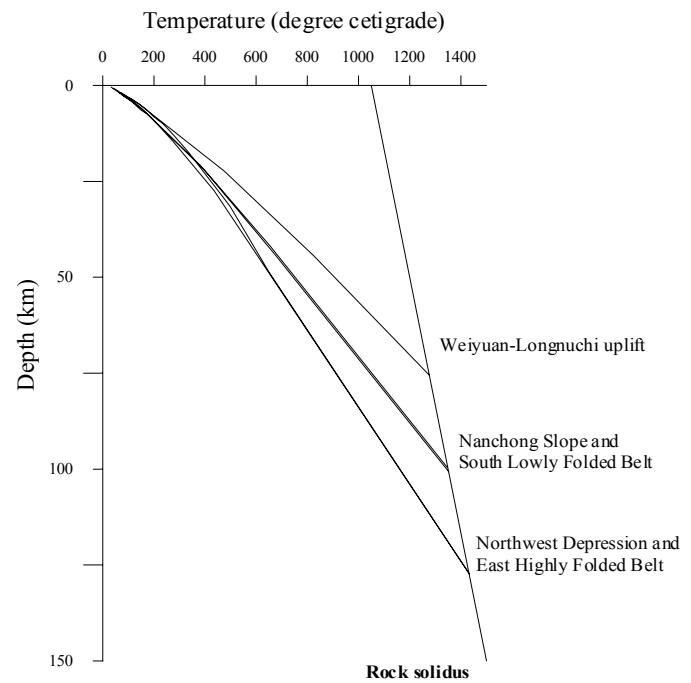



Figure 2 Deep geothermal structure in Sichuan Basin of China

Table 2 Calculating results of deep heat flow and crust geothermal structure in Sichuan Basin

| Structure units<br>Heat flow<br>Or temperature | Chengdu<br>depression | Tongjiang-<br>Xintong<br>depression | Weiyuan uplift | Nanchong<br>slope | South lowly<br>folded belt | East highly<br>folded belt |
|------------------------------------------------|-----------------------|-------------------------------------|----------------|-------------------|----------------------------|----------------------------|
| $q_0$                                          | 59.24                 | 58.94                               | 67.83          | 60.80             | 60.71                      | 55.82                      |
| Bottom of sediments                            | 45.48                 | 47.49                               | 63.49          | 53.79             | 54.02                      | 49.72                      |
| Bottom of metamorphic rock                     | 41.82                 | 44.14                               |                |                   | 50.77                      | 44.60                      |
| Conard surface                                 | 27.97                 | 31.28                               | 46.38          | 39.65             | 39.59                      | 33.62                      |
| Moho discontinuity                             | 21.92                 | 25.59                               | 38.55          | 32.21             | 31.77                      | 27.64                      |
| $q_r$                                          |                       |                                     |                |                   |                            |                            |
| $q_r/q_0$ (%)                                  | 37.0                  | 43.1                                | 56.84          | 53                | 52.3                       | 49.5                       |
| D                                              | 10.81                 | 10.1                                | 13.45          | 11.11             | 8.78                       | 8.63                       |
| Temperature at Corad surface                   | 494.37                | 432.93                              | 472.90         | 391.41            | 374.48                     | 370.95                     |
| Temperature at Moho discontinuity              | 643.8                 | 593.3                               | 821.3          | 668.4             | 639.7                      | 552.8                      |
| Thickness of lithosphere                       | 127.0                 | 127.3                               | 75.6           | 99.5              | 100.7                      | 126.8                      |