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ABSTRACT 

Utilization and development of geothermal energy are still 

hindered by scaling and corrosion to this day. Scaling is 

particularly troublesome as it can occur in almost all 

locations in geothermal power plants, i.e., in production 

wells, on surface facilities, in reinjection wells, and even in 

the reservoir rock formation around the reinjection wells. 

However, there is no single and universally applicable 

mitigation method to date, due to the unique characteristics 

of each geothermal water and the complexity of scale 

formation. This study aims to better understand and quantify 

silica scaling assisted by artificial intelligence (AI), i.e., 

supervised machine learning (SML).  

The SML was used to predict the formation rate of silica 

scale based on the physicochemical characteristics of 

geothermal water and the kinetics of polymerization of silicic 

acid in geothermal water and adsorption of silicic acid on the 

surface of scale substances. These data were used as input 

parameters in the training data. The data was obtained from 

onsite batch experiments in several geothermal power plants 

in Japan. The rate of silica scale formation from onsite plate 

immersion experiments using stainless-steel plate was used 

as the output parameters. This experiment was conducted for 

up to 5 hours in the corresponding geothermal power plants.  

The produced models are evaluated based on their percent 

relative root means squared error (%RRMSE) value when 

used to predict unknown data, i.e., non-training data. Our 

study showed that the model can achieve %RRMSE value of 

15 which is in the good category, i.e., the model can 

accurately predict the formation rate of silica scale within 5 

hours. Furthermore, the model will be trained to predict the 

formation rate of silica scale for up to 5 days and beyond. 

This study is expected to aid geothermal power plants to 

mitigate the silica scale problem more efficiently. 

1. INTRODUCTION  

Scaling and corrosion remain the most common challenges 

in the utilization and development of geothermal energy. 

Scaling is particularly more troublesome as it can occur in 

almost all surface and subsurface facilities. Calcite scale may 

occur due to the boiling of geothermal fluid at high 

temperature within the production well (Wanner et al., 

2017). Sulfide scale might form in the two-phase pipeline 

(e.g., Jamero et al., 2018 and Juhri et al., 2023). In addition, 

sulfur scale has also been reported to affect the cooling tower 

(Kudo & Yano, 2000; Relenyi & Rosser, 2016; Rodriguez, 

2023) and heat exchanger (Garcia et al., 2002) of geothermal 

power plants. Furthermore, silica can precipitate due to 

steam separation and decrease in temperature inside the 

separator and brine pipeline. Finally, silica can also 

precipitate within the pores of reservoir rock (Yanaze et al., 

2016), decreasing the productivity of the geothermal 

reservoir. All of these instances can significantly hinder 

energy production from geothermal power plants.  

Among the many types of scale, silica scale might form in 

almost all locations. Therefore, there has been excessive  

studies on silica scale. The current general understanding on 

silica scale formation suggests that there are two pathways 

of scale initiation: interaction between dissolved silicic acid 

and the surface of the pipeline (heterogenous nucleation) and 

interaction among dissolved silicic acid to form silica 

particles (homogenous nucleation) (Rothbaum et al., 1979; 

Chan, 1989; Gallup and Reiff, 1991; Yokoyama et al., 1993; 

Mi & Elimelech, 2013). Furthermore, silica scale grows 

further owing to the interaction between dissolved silicic 

acid in geothermal water and the surface of silica scale. 

Despite the vast studies on silica scaling, there has not been 

a universally applicable mitigation method for this problem. 

This is due to the various factors that can control the rate of 

interaction between dissolved silicic acid in geothermal 

water. Among those factors are the salinity of geothermal 

water, pH, metal contents (e.g., Al, Fe, and Mg), 

temperature, and fluoride content (Tarutani, 1989; 

Yokoyama et al., 1993; Manceau et al., 1995; and Gallup et 

al., 1997). Finding a universally applicable prevention 

method becomes more complicated due to the unique 

characteristics of geothermal water in each field and, 

consequently, the complexity of scale formation mechanism. 

Recently, artificial intelligence (AI) has been applied in 

many fields of scientific research to assist the research 

strategy and modelling. In particular, AI is being used in the 

geothermal energy exploration such as estimating the 

reservoir temperature, determining the production drilling, 

and development of enhance geothermal system (e.g., Al 

Shibli and Mathew, 2019; Shahdi, et al., 2021; Moraga et al., 

2022; Wang et al., 2023). In this study, we attempt to utilize 

artificial intelligence, in particular machine-learning, to 

better understand and quantify silica scaling. The supervised 

machine-learning (SML) was tasked to predict the formation 

rate of silica scale based on the empirical data of 

physicochemical properties of geothermal water responsible 

for the scale formation. In addition, due to the nature of 

interaction among dissolved silicic acid, the experimental 

data of the kinetics behavior of the polymerization and 
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adsorption of dissolved silicic acid were also studied and 

taken into consideration. The prediction model from this 

study was expected to be accurate and adaptive for further 

improvement with more experimental data in the future. 

2. METHODOLOGY  

2.1 Physicochemical Properties of Geothermal Water 

The physicochemical properties of the geothermal water 

consist of pH, concentrations of major anions and cations, 

and concentrations of total silicic acid (Si-T), monosilicic 

acid (Si-M), and metals (Fe, Al, Mg). The pH and 

concentration of monosilicic acid were analyzed onsite at 

geothermal power plants, whereas concentration of total 

silicic acid and metals were analyzed at Economic Geology 

Laboratory, Kyushu University. In addition, major ions data 

were obtained from the operator of the geothermal power 

plants. These data were used in the training data for the 

supervised machine-learning as input parameters. 

2.2 Onsite Polymerization and Adsorption Experiment 

In addition to the physicochemical data of geothermal water, 

the kinetics of silicic acid polymerization and its adsorption 

on silica gel were also studied and introduced in the training 

data. Therefore, onsite experiments were conducted in 

several geothermal power plants in Japan. Both experiments 

were conducted in the temperature range of 90 – 95 °C. Prior 

to the analysis, samples from both experiments were filtered 

by 0.45 m membrane, and immediately acidified with nitric 

acid.  

Polymerization experiments of silicic acid were conducted 

for 60 minutes where an adequate amount of geothermal 

water was sampled every 5 – 15 minutes. From these 

samples, the concentration of monosilicic acid (Si-M) was 

determined on-site by spectrophotometric analysis while 

total concentration of silicic acid (Si-T) was determined in 

laboratory by ICP-AES. The behavior of silicic acid 

polymerization was observed from the change of their 

concentrations during the experiment.  

Furthermore, adsorption experiments of silicic acid on silica 

gel (D-50-1000AW) were conducted to observe the 

interaction between dissolved silicic acid with the surface of 

silica gel which represent the surface of pre-formed silica 

scale. The specific surface area of the silica gel was known 

to be 28 m2/g. The adsorption behavior of silicic acid was 

expressed as the decrease of total silicic acid concentration 

after considering the effect of its polymerization. 

2.3 Onsite Plates Immersion Experiment 

Plates immersion experiments were conducted to quantify 

the rate of silica precipitation on the surface of solid material 

for a short period of time. In this study, stainless steel plates 

were immersed in geothermal water corresponding to the 

polymerization and adsorption experiments, for 5 hours 

period and 5 days period. A piece of plate was lifted every 

one hour and one day, respectively. The plate samples were 

rinsed with ultrapure water and ethanol to ensure brine-free 

sample and avoid further reaction.  

Plate samples were analyzed by laser ablation coupled with 

ICPMS to detect silica content on the plates’ surface at ppm 

level. The increase of Si content on plate samples was 

translated to precipitation rate of silica scale on plate surface 

and used as the output parameter of the training data for 

machine-learning. 

2.4 Machine Learning Architecture 

The Dense Feed-forward Neural Network (DFFN) 

supervised machine-learning architectures were examined in 

this study. The architecture consists of an input layer with 21 

features, x-number of hidden layers with y-number of neuron 

units each, and an output layer with 1 feature. The x and y 

ranges from 1 – 10 and 1 – 100, respectively. The input for 

each hidden layer passed through a batch normalization layer 

for smooth learning process. In this study, the neuron units 

in the hidden layers were activated using the ReLU function.  

2.4.1 Range of training data 

The training data in this study consists of a wide range of 

characteristics. The salinity (wt % NaCl equivalent) of the 

geothermal water ranges from 2,540 to 29,973 while the pH 

ranges from 4.0 to 9.0. This means the model built from this 

training data encompasses dilute to saline and acidic to 

alkaline geothermal waters. Furthermore, the concentrations 

of Si-T(0), Fe-T, and Al-T ranges from 388 to 993, <0.01 to 

0.8, and <0.01 to 0.9, respectively. This further signifies the 

model’s applicability to predict the silica scaling from 

various types of geothermal water.  

2.4.2 Preprocessing 

The training data (input and output parameters) were 

preprocessed before used for AI training. All input 

parameters (physicochemical properties and kinetics 

behavior of silicic acid) were normalized using minimum-

maximum method. Furthermore, the output parameter was 

also normalized using minimum-maximum method.  

2.4.3 Model evaluation 

The accuracy of the prediction was quantified based on the 

value of root mean square error in percent scale (Despotovic 

et al., 2016). The value of RMSE was calculated using the 

equation 1 below, where Hi,m is measured data from onsite 

experiments and Hi,c is calculated data by AI model. From 

this RMSE value, the models are categorized into excellent 

(<10%), good (10-20%), fair (20-30%), and poor (>30%) 

(Jamieson et al., 1991; Heinemann and Schmidhalter, 2012; 

Li et al., 2013). 

………. (1) 

  

3. RESULTS AND DISCUSSION 

3.1 Model Accuracy 

The accuracy of the machine-learning models was evaluated 

based on their ability to predict the precipitation rate of Si on 

metal plates. Four experiments at four different geothermal 

power plants were used to evaluate the prediction accuracy. 

The general characteristics of the geothermal waters are 

tabulated in Table 1 whereas the polymerization and 

adsorption behavior of silicic acid is depicted in Figure 1. 

Table 1. General characteristics of the geothermal waters 

(GW) used as evaluation data. 

GW pH Na K Ca Cl Si-T 
Si M 

/ Si T 
Al-T Fe-T 

a 7.60 1,440 229 11 2,540 894 0.800 0.5 0.80 

b 5.09 9,236 1,229 1,569 19,056 624 0.992 0.08 0.19 

c 7.26 9,878 1,290 1,682 20,095 704 0.917 0.02 0.46 

d 6.45 4,070 499 573 8,128 388 0.997 0.04 0.05 
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Figure 2 shows the prediction of the Si precipitation rate on 

metal plates based on DFFN architecture compared to the 

experimental value from each corresponding geothermal 

water. The best model was attained with 4 hidden layers each 

containing 64 neuron units. This model has an R2 value of 

0.987 and an RRMSE value of 12.6% (Figure 3) which is 

categorized as a good model. The model can accurately 

predict the precipitation rate of Si on metal plates immersed 

in geothermal water for up to 5 days.  

 
Figure 1: Polymerization and adsorption behavior of 

silicic acid in four geothermal waters from four 

geothermal power plants 

 

 
Figure 2: Comparison between Si concentration values 

from onsite experiment and DFFN model’s 

prediction of 4 geothermal waters with 

different characteristics. 
 

 
Figure 3: Statistical evaluation of the DFFN model. 

 

3.2 Long-Term Prediction 

Furthermore, the model can accurately predict the 

precipitation of Si on metal plates up to 35 days with a clear 

distinction between near neutral geothermal water (a & c) 

and acidic geothermal waters (b & d), as seen in Figure 4. 

The prediction from the model indicates that at near neutral 

pH, the early precipitation of silica scale (within 5 hours) was 

substantially faster than at acidic pH. This is in agreement 

with the previous studies on the effect of pH to the 

interaction among dissolved silicic acids and between silicic 

acid with the surface of silica particles (Tarutani, 1989 and 

references therein). Further, the precipitation of Si seems to 

follow a linear function through time. On the other hand, the 

precipitation rate of Si at acidic pH was significantly slower 

than that of near neutral pH within the first 5 days of 

immersion time.  

 
Figure 4: Long-term prediction of Si precipitation on 

metal plates from 4 different geothermal 

waters. 

 

3.3 Factor Analysis 

Based on the experimental data and the prediction of the 

precipitation of Si on metal plates, the most distinct 

precipitation behavior occurs at the early stage of Si 

precipitation (5 hours immersion time). Therefore, 

contribution factor analysis was carried out to determine 

parameter that contribute to the precipitation of Si during up 

to 5 hours of immersion time.  
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As seen from Figure 5, the main parameters that contribute 

positively to the precipitation of Si are the ratio of 

monosilicic acid over the total silicic acid (Si-M/Si-T) at 

initial conditions, total concentration of dissolved silicic acid 

(Si-T), chloride, aluminum, and pH of the geothermal water. 

This is in line with the previous experimental studies (e.g., 

Marshall & Warakomski, 1980; Tarutani, 1989; Yokoyama 

et al., 1989; Gallup, 1997). These parameters contribute 

6.4%, 5.6%, 5.1%, 3.8%, and 3.4%, respectively. On the 

contrary, the polymerization rate of dissolved silicic acid and 

its adsorption on silica gel generally contribute negatively to 

the precipitation of Si at the early stage. Result of the 

contribution factor analysis for the precipitation of Si within 

5 hours suggests that the initiation of Si precipitation is 

mainly controlled by the degree of silica polymerization at 

initial stage (Si-M/Si-T), total concentration of dissolved 

silicic acid, concentrations of chloride and aluminum, as well 

as the pH of geothermal water. 

 
Figure 5: Contribution factor of input parameters (major 

characteristics of geothermal water and 

kinetics behavior of dissolved silicic acid) to the 

precipitation of Si on the metal plates within 5 

hours of experimental. 

 

 
Figure 6: Contribution factor of input parameters (major 

characteristics of geothermal water and 

kinetics behavior of dissolved silicic acid) to the 

precipitation of Si on the metal plates from day 

5 to day 35 of the immersion experiment. 

 

Furthermore, contribution factor analysis was also conducted 

for the extended precipitation of Si (beyond 5 days) in order 

to understand parameters that control the growth of the silica 

scale. As depicted in Figure 6, other than experimental time, 

the main contributing factors are adsorption rate of dissolved 

silicic acid, temperature, and polymerization rate of silicic 

acid. This is in accordance with the current understanding 

that interaction between dissolved silicic acid and the surface 

of silica scale (i.e., adsorption of dissolved silicic acid) 

control the growth of the silica scale (Juhri et al., 2024).  

 

4. CONCLUSION AND IMPLICATION 

This study provides a steppingstone towards the universal 

prediction of silica scale formation. With the low RRMSE 

value of 12.6%, the model is considered accurate in 

predicting the precipitation of silica on metal plates. 

Furthermore, the constructed model is possible to be updated 

with future onsite experiments, owing to its flexible and 

adaptive behaviour.  

In addition, the contribution factor analyses showed that 

different parameters control the initiation and the growth of 

silica scale. The initiation of silica scale formation was likely 

controlled by the ratio of monosilicic acid over total silicic 

acid at initial conditions, the concentrations of total silicic 

acid, levels of chloride, iron and aluminium ions present, as 

well as the pH of geothermal water. On the contrary, the 

growth of the silica scale was mainly controlled by the 

kinetic behaviour of dissolved silicic acid, i.e. 

polymerization and adsorption behaviour, and temperature 

of the geothermal water. This analysis result could open a 

possibility of developing a universal prevention method for 

silica scale problem in geothermal power plant. 
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