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ABSTRACT

Utilization and development of geothermal energy are still
hindered by scaling and corrosion to this day. Scaling is
particularly troublesome as it can occur in almost all
locations in geothermal power plants, i.e., in production
wells, on surface facilities, in reinjection wells, and even in
the reservoir rock formation around the reinjection wells.
However, there is no single and universally applicable
mitigation method to date, due to the unique characteristics
of each geothermal water and the complexity of scale
formation. This study aims to better understand and quantify
silica scaling assisted by artificial intelligence (Al), i.e.,
supervised machine learning (SML).

The SML was used to predict the formation rate of silica
scale based on the physicochemical characteristics of
geothermal water and the kinetics of polymerization of silicic
acid in geothermal water and adsorption of silicic acid on the
surface of scale substances. These data were used as input
parameters in the training data. The data was obtained from
onsite batch experiments in several geothermal power plants
in Japan. The rate of silica scale formation from onsite plate
immersion experiments using stainless-steel plate was used
as the output parameters. This experiment was conducted for
up to 5 hours in the corresponding geothermal power plants.

The produced models are evaluated based on their percent
relative root means squared error (oRRMSE) value when
used to predict unknown data, i.e., non-training data. Our
study showed that the model can achieve %RRMSE value of
15 which is in the good category, i.e., the model can
accurately predict the formation rate of silica scale within 5
hours. Furthermore, the model will be trained to predict the
formation rate of silica scale for up to 5 days and beyond.
This study is expected to aid geothermal power plants to
mitigate the silica scale problem more efficiently.

1. INTRODUCTION

Scaling and corrosion remain the most common challenges
in the utilization and development of geothermal energy.
Scaling is particularly more troublesome as it can occur in
almost all surface and subsurface facilities. Calcite scale may
occur due to the boiling of geothermal fluid at high
temperature within the production well (Wanner et al.,
2017). Sulfide scale might form in the two-phase pipeline
(e.g., Jamero et al., 2018 and Juhri et al., 2023). In addition,
sulfur scale has also been reported to affect the cooling tower
(Kudo & Yano, 2000; Relenyi & Rosser, 2016; Rodriguez,

2023) and heat exchanger (Garcia et al., 2002) of geothermal
power plants. Furthermore, silica can precipitate due to
steam separation and decrease in temperature inside the
separator and brine pipeline. Finally, silica can also
precipitate within the pores of reservoir rock (Yanaze et al.,
2016), decreasing the productivity of the geothermal
reservoir. All of these instances can significantly hinder
energy production from geothermal power plants.

Among the many types of scale, silica scale might form in
almost all locations. Therefore, there has been excessive
studies on silica scale. The current general understanding on
silica scale formation suggests that there are two pathways
of scale initiation: interaction between dissolved silicic acid
and the surface of the pipeline (heterogenous nucleation) and
interaction among dissolved silicic acid to form silica
particles (homogenous nucleation) (Rothbaum et al., 1979;
Chan, 1989; Gallup and Reiff, 1991; Yokoyama et al., 1993;
Mi & Elimelech, 2013). Furthermore, silica scale grows
further owing to the interaction between dissolved silicic
acid in geothermal water and the surface of silica scale.

Despite the vast studies on silica scaling, there has not been
a universally applicable mitigation method for this problem.
This is due to the various factors that can control the rate of
interaction between dissolved silicic acid in geothermal
water. Among those factors are the salinity of geothermal
water, pH, metal contents (e.g., Al, Fe, and Mpg),
temperature, and fluoride content (Tarutani, 1989;
Yokoyama et al., 1993; Manceau et al., 1995; and Gallup et
al., 1997). Finding a universally applicable prevention
method becomes more complicated due to the unique
characteristics of geothermal water in each field and,
consequently, the complexity of scale formation mechanism.

Recently, artificial intelligence (Al) has been applied in
many fields of scientific research to assist the research
strategy and modelling. In particular, Al is being used in the
geothermal energy exploration such as estimating the
reservoir temperature, determining the production drilling,
and development of enhance geothermal system (e.g., Al
Shibli and Mathew, 2019; Shahdi, et al., 2021; Moraga et al.,
2022; Wang et al., 2023). In this study, we attempt to utilize
artificial intelligence, in particular machine-learning, to
better understand and quantify silica scaling. The supervised
machine-learning (SML) was tasked to predict the formation
rate of silica scale based on the empirical data of
physicochemical properties of geothermal water responsible
for the scale formation. In addition, due to the nature of
interaction among dissolved silicic acid, the experimental
data of the kinetics behavior of the polymerization and

Proceedings 46" New Zealand Geothermal Workshop
20-22 November 2024

Auckland, New Zealand

ISSN 2703-4275



adsorption of dissolved silicic acid were also studied and
taken into consideration. The prediction model from this
study was expected to be accurate and adaptive for further
improvement with more experimental data in the future.

2. METHODOLOGY
2.1 Physicochemical Properties of Geothermal Water

The physicochemical properties of the geothermal water
consist of pH, concentrations of major anions and cations,
and concentrations of total silicic acid (Si-T), monosilicic
acid (Si-M), and metals (Fe, Al, Mg). The pH and
concentration of monosilicic acid were analyzed onsite at
geothermal power plants, whereas concentration of total
silicic acid and metals were analyzed at Economic Geology
Laboratory, Kyushu University. In addition, major ions data
were obtained from the operator of the geothermal power
plants. These data were used in the training data for the
supervised machine-learning as input parameters.

2.2 Onsite Polymerization and Adsorption Experiment

In addition to the physicochemical data of geothermal water,
the kinetics of silicic acid polymerization and its adsorption
on silica gel were also studied and introduced in the training
data. Therefore, onsite experiments were conducted in
several geothermal power plants in Japan. Both experiments
were conducted in the temperature range of 90 — 95 °C. Prior
to the analysis, samples from both experiments were filtered
by 0.45 um membrane, and immediately acidified with nitric
acid.

Polymerization experiments of silicic acid were conducted
for 60 minutes where an adequate amount of geothermal
water was sampled every 5 — 15 minutes. From these
samples, the concentration of monosilicic acid (Si-M) was
determined on-site by spectrophotometric analysis while
total concentration of silicic acid (Si-T) was determined in
laboratory by ICP-AES. The behavior of silicic acid
polymerization was observed from the change of their
concentrations during the experiment.

Furthermore, adsorption experiments of silicic acid on silica
gel (D-50-1000AW) were conducted to observe the
interaction between dissolved silicic acid with the surface of
silica gel which represent the surface of pre-formed silica
scale. The specific surface area of the silica gel was known
to be 28 m?/g. The adsorption behavior of silicic acid was
expressed as the decrease of total silicic acid concentration
after considering the effect of its polymerization.

2.3 Onsite Plates Immersion Experiment

Plates immersion experiments were conducted to quantify
the rate of silica precipitation on the surface of solid material
for a short period of time. In this study, stainless steel plates
were immersed in geothermal water corresponding to the
polymerization and adsorption experiments, for 5 hours
period and 5 days period. A piece of plate was lifted every
one hour and one day, respectively. The plate samples were
rinsed with ultrapure water and ethanol to ensure brine-free
sample and avoid further reaction.

Plate samples were analyzed by laser ablation coupled with
ICPMS to detect silica content on the plates’ surface at ppm
level. The increase of Si content on plate samples was
translated to precipitation rate of silica scale on plate surface
and used as the output parameter of the training data for
machine-learning.

2.4 Machine Learning Architecture

The Dense Feed-forward Neural Network (DFFN)
supervised machine-learning architectures were examined in
this study. The architecture consists of an input layer with 21
features, x-number of hidden layers with y-number of neuron
units each, and an output layer with 1 feature. The x and y
ranges from 1 — 10 and 1 — 100, respectively. The input for
each hidden layer passed through a batch normalization layer
for smooth learning process. In this study, the neuron units
in the hidden layers were activated using the ReLU function.

2.4.1 Range of training data

The training data in this study consists of a wide range of
characteristics. The salinity (wt % NaCl equivalent) of the
geothermal water ranges from 2,540 to 29,973 while the pH
ranges from 4.0 to 9.0. This means the model built from this
training data encompasses dilute to saline and acidic to
alkaline geothermal waters. Furthermore, the concentrations
of Si-T(0), Fe-T, and Al-T ranges from 388 to 993, <0.01 to
0.8, and <0.01 to 0.9, respectively. This further signifies the
model’s applicability to predict the silica scaling from
various types of geothermal water.

2.4.2 Preprocessing

The training data (input and output parameters) were
preprocessed before used for Al training. All input
parameters  (physicochemical properties and Kinetics
behavior of silicic acid) were normalized using minimum-
maximum method. Furthermore, the output parameter was
also normalized using minimum-maximum method.

2.4.3 Model evaluation

The accuracy of the prediction was quantified based on the
value of root mean square error in percent scale (Despotovic
et al., 2016). The value of RMSE was calculated using the
equation 1 below, where Him is measured data from onsite
experiments and Hic is calculated data by Al model. From
this RMSE value, the models are categorized into excellent
(<10%), good (10-20%), fair (20-30%), and poor (>30%)
(Jamieson et al., 1991; Heinemann and Schmidhalter, 2012;
Lietal., 2013).
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3. RESULTS AND DISCUSSION
3.1 Model Accuracy

The accuracy of the machine-learning models was evaluated
based on their ability to predict the precipitation rate of Si on
metal plates. Four experiments at four different geothermal
power plants were used to evaluate the prediction accuracy.
The general characteristics of the geothermal waters are
tabulated in Table 1 whereas the polymerization and
adsorption behavior of silicic acid is depicted in Figure 1.

Table 1. General characteristics of the geothermal waters
(GW) used as evaluation data.

GW |pH | Na | K | ca| a |siT /SéIMT AT | FeT
a 7.60 | 1,440 229 11 2,540 894 | 0.800 0.5 0.80
b 5.09 | 9,236 | 1,229 | 1,569 | 19,056 624 | 0.992 0.08 0.19
C 7.26 | 9,878 | 1,290 | 1,682 | 20,095 704 | 0.917 0.02 0.46
d 6.45 | 4,070 499 573 8,128 388 | 0.997 0.04 0.05
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Figure 2 shows the prediction of the Si precipitation rate on
metal plates based on DFFN architecture compared to the
experimental value from each corresponding geothermal
water. The best model was attained with 4 hidden layers each
containing 64 neuron units. This model has an R? value of
0.987 and an RRMSE value of 12.6% (Figure 3) which is
categorized as a good model. The model can accurately
predict the precipitation rate of Si on metal plates immersed
in geothermal water for up to 5 days.
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Figure 1: Polymerization and adsorption behavior of
silicic acid in four geothermal waters from four
geothermal power plants
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Figure 2: Comparison between Si concentration values
from onsite experiment and DFFN model’s
prediction of 4 geothermal waters with
different characteristics.
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Figure 3: Statistical evaluation of the DFFN model.

3.2 Long-Term Prediction

Furthermore, the model can accurately predict the
precipitation of Si on metal plates up to 35 days with a clear
distinction between near neutral geothermal water (a & ¢)
and acidic geothermal waters (b & d), as seen in Figure 4.
The prediction from the model indicates that at near neutral
pH, the early precipitation of silica scale (within 5 hours) was
substantially faster than at acidic pH. This is in agreement
with the previous studies on the effect of pH to the
interaction among dissolved silicic acids and between silicic
acid with the surface of silica particles (Tarutani, 1989 and
references therein). Further, the precipitation of Si seems to
follow a linear function through time. On the other hand, the
precipitation rate of Si at acidic pH was significantly slower
than that of near neutral pH within the first 5 days of
immersion time.

70000

60000

[$1)
o
(=)
o
o

Si concentration (ppm)

[ w £y
o o (=]
o (=] o
o o o
o o o

10000

0 ‘IIO 2I0 SIU
Immersion time (day)
Figure 4: Long-term prediction of Si precipitation on
metal plates from 4 different geothermal
waters.

3.3 Factor Analysis

Based on the experimental data and the prediction of the
precipitation of Si on metal plates, the most distinct
precipitation behavior occurs at the early stage of Si
precipitation (5 hours immersion time). Therefore,
contribution factor analysis was carried out to determine
parameter that contribute to the precipitation of Si during up
to 5 hours of immersion time.
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As seen from Figure 5, the main parameters that contribute
positively to the precipitation of Si are the ratio of
monosilicic acid over the total silicic acid (Si-M/Si-T) at
initial conditions, total concentration of dissolved silicic acid
(Si-T), chloride, aluminum, and pH of the geothermal water.
This is in line with the previous experimental studies (e.g.,
Marshall & Warakomski, 1980; Tarutani, 1989; Yokoyama
et al., 1989; Gallup, 1997). These parameters contribute
6.4%, 5.6%, 5.1%, 3.8%, and 3.4%, respectively. On the
contrary, the polymerization rate of dissolved silicic acid and
its adsorption on silica gel generally contribute negatively to
the precipitation of Si at the early stage. Result of the
contribution factor analysis for the precipitation of Si within
5 hours suggests that the initiation of Si precipitation is
mainly controlled by the degree of silica polymerization at
initial stage (Si-M/Si-T), total concentration of dissolved
silicic acid, concentrations of chloride and aluminum, as well
as the pH of geothermal water.

Contribution factor analysis for early
(5 hours) precipitation of Si
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Figure 5: Contribution factor of input parameters (major
characteristics of geothermal water and
kinetics behavior of dissolved silicic acid) to the
precipitation of Si on the metal plates within 5
hours of experimental.
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Figure 6: Contribution factor of input parameters (major
characteristics of geothermal water and
kinetics behavior of dissolved silicic acid) to the
precipitation of Si on the metal plates from day
5 to day 35 of the immersion experiment.

Furthermore, contribution factor analysis was also conducted
for the extended precipitation of Si (beyond 5 days) in order
to understand parameters that control the growth of the silica
scale. As depicted in Figure 6, other than experimental time,
the main contributing factors are adsorption rate of dissolved
silicic acid, temperature, and polymerization rate of silicic
acid. This is in accordance with the current understanding
that interaction between dissolved silicic acid and the surface
of silica scale (i.e., adsorption of dissolved silicic acid)
control the growth of the silica scale (Juhri et al., 2024).

4. CONCLUSION AND IMPLICATION

This study provides a steppingstone towards the universal
prediction of silica scale formation. With the low RRMSE
value of 12.6%, the model is considered accurate in
predicting the precipitation of silica on metal plates.
Furthermore, the constructed model is possible to be updated
with future onsite experiments, owing to its flexible and
adaptive behaviour.

In addition, the contribution factor analyses showed that
different parameters control the initiation and the growth of
silica scale. The initiation of silica scale formation was likely
controlled by the ratio of monosilicic acid over total silicic
acid at initial conditions, the concentrations of total silicic
acid, levels of chloride, iron and aluminium ions present, as
well as the pH of geothermal water. On the contrary, the
growth of the silica scale was mainly controlled by the
kinetic behaviour of dissolved silicic acid, i.e.
polymerization and adsorption behaviour, and temperature
of the geothermal water. This analysis result could open a
possibility of developing a universal prevention method for
silica scale problem in geothermal power plant.
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