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ABSTRACT

Deterministic simulation models of geothermal systems are
now used extensively, not only to understand the different
processes occurring within the geothermal reservoir, but
also to predict future responses. Accurate model results are
critical for the short- and long-term management of a
geothermal field, particularly in determining the production
strategy and ongoing management and development of the
field. However, model predictions are often affected by
uncertainties in input data, model parameters, and by
incomplete knowledge of the underlying physics. A
deterministic  simulation assumes one set of input
conditions, and generates one result without considering
uncertainties. When making decisions based on these
models, managers of geothermal fields must include some
estimate of uncertainty to reflect the imperfect information
at their disposal. In this work, we present a method for
estimating the uncertainty in the prediction of a reservoir
model, thus taking an important step towards the
development of a more robust decision support tool.

A synthetic 2D model that included six faults was
developed and then used to generate production data against
which the working model could be calibrated. Calibration
was carried out using the gradient based Levenberg
Marquardt  optimization algorithm  with  Tikhonov
regularization. The calibration process determined the
possible parameter values for the faults and background
permeability of the working model using temperature,
pressure and tracer recovery curves. Assuming a parameter
probability distribution based on the result of the local
sensitivity information at the optimum parameter values, a
Monte Carlo analysis was then used to investigate the
uncertainty interval of the model prediction of four different
forecast scenarios.

1. INTRODUCTION

A numerical model of a geothermal system enables
forecasts to be made of its response to different operating
scenarios. With these forecasts, different resource
management strategies can be explored and compared,
allowing an optimal decision to be made. This requires that
the properties of the numerical model are consistent with
that of the real-life system. This is obviously very difficult
to achieve for several reasons. One reason for this difficulty
is that physical reservoir properties, boundary conditions
and geological parameters are very difficult if not
impossible to measure accurately in the field at a resolution
that would be useful in the model. Another reason is the
governing equations used to calculate the state of the
system are approximate. The level of approximation gets
worse when computational constraints are taken into

account as these tends to force the modeller to reduce the
resolution of the model to be able to complete the
computations within a reasonable amount of time.

In place of directly measuring system properties, modellers
employ calibration in order to estimate the important
reservoir properties which they think affect the field
behaviour of interest. This is achieved by comparing a
model response with responses measured from the real
system such as downhole logs and well flow data, as well as
making use of the modeller’s prior knowledge about the
other aspects of the conceptual model of the system. The
ultimate goal of using the model to make different forecasts
can then be performed once these important parameters that
control the response of the system have been identified.

The traditional way that models are used in the geothermal
industry is to make reservoir development or resource
management decisions using production forecasts from one
version of a history matched model. Often several scenarios
are investigated and compared with each other. The one
which has the most benefit from a financial, technical or
environmental perspective is then chosen from these
different forecast scenarios. However, no matter how well a
calibrated model fits the measured data, it does not
necessarily represent the true behaviour of a real system
because of the complexities inherent in the system being
modelled. This is an obvious result of the limitation of the
parameters that can be measured in the field. Consequently,
any prediction made on the basis of the calibrated model
has a potential error. Such an error must therefore be
accounted for when making resource management decisions
on the basis of model outcomes.

This work investigates methods for quantifying uncertainty
in a geothermal reservoir simulation. To characterize the
uncertainty in predicted reservoir performance, it should be
first recognized that numerical models are inherently non-
unique and there exists several different sets of model
structure and/or parameters that can describe a real system.
The problem therefore translates to finding different sets of
reservoir descriptions that honour all available data so that
they can be used to simulate reservoir performance. The
data that must be honoured includes both expert knowledge
and measured quantities. Sampling methods are proposed to
generate these different realizations of the model that
behave like the real system. The outcome of this work will
contribute to improving the geothermal modelling practice
with respect to quantifying prediction uncertainties so that
model results can be better interpreted and used as a
resource management tool. The information about the
uncertainties involved in the model provides a confidence
level about the model forecast which can assist the
geothermal operators in assessing the risks involved in
using the model results and in making decisions
accordingly.
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1.1 Brief review of previous work on uncertainty
quantification of geothermal model predictions

Three notable studies on this topic have been reported in the
literature. Tureyen & Onur (2010) presented an uncertainty
quantification study of a lumped-parameter problem using
the pressure data from the Balcova-Narlidere geothermal
field. They used a randomized maximum likelihood method
to generate several realizations of the model parameters that
can reproduce the measured pressure. In the method that
they used, several random sets of parameter values were
generated. The parameter values in each of the generated
sets of samples are then adjusted so that the model response
is consistent with the measured pressure. The predictive
uncertainty is then characterized by obtaining predictions
from each of the model realizations.

Vogt, et. al. (2012) estimated the uncertainty in the long
term performance prediction of the model for the Soultz
EGS project. They used sequential Gaussian simulation to
generate 880 model realizations. The permeability structure
of each realization was calibrated using an Ensemble
Kalman Filter to fit their response to the measured
temperature and pressure logs as well as tracer circulation
data. Finally, the ensemble of calibrated models obtained
during the calibration stage was used to estimate the
uncertainty in the 50 year prediction of the variation in head
and temperature within the reservoir.

A more recent uncertainty estimation study was made by
Moon, et al. (2014) using a model of the Ngatamariki
geothermal system. In their work, they explored the
uncertainties in the forecasted enthalpies of a 50 year
production forecast. They identified the key parameters in
the model that affected the natural state behaviour and the
prediction of interest by ranking their influences based on
the normalized sensitivity coefficients. Using the estimated
value as the mean and assigned ranges as the basis for the
uncertainty, they generated random samples of these highly
influential parameters to generate different model
realizations. With the generated samples, they were able to
propagate the uncertainties of the selected parameters to the
forecasted enthalpies in the production wells.

2. DESCRIPTION OF THE METHODOLOGY

One method of estimating the uncertainty is to generate all
the models that are consistent with both the measured data
and conceptual information of the system, and then
simulate future production using each of them. In the
geothermal modelling context, this is a difficult task
because the time needed to obtain each calibrated model
can typically be several months or even a few years.
Uncertainty quantification is even more computationally
expensive because of the need to generate a sufficiently
large number of these calibrated models to properly
characterize the uncertainty. In this work, an alternative
two-step process of generating several samples of near-
calibrated models is considered. The steps involved are (1)
calibrating the model, then (2) generating samples using
information from the calibration process to carry out the
error analysis. The general approach is similar to that used
by Moon, et al. (2014) with some notable differences. First,
the parameter uncertainties are based on how well the
parameter values were identified during the calibration
process rather than being assigned a priori. Second, the
propagation of uncertainty is not limited to a few selected
influential parameters. Third, a much larger number of

Monte Carlo samples were made to ensure a reasonable
coverage of the parameter space.

The method used is linear perturbation analysis. This
method has been described by several other authors (Press,
et. al., 1996), (Finsterle, 1999), (Tarantola, 2005), (Oliver,
Reynolds, & Liu, 2008) and (Doherty, 2015). It is based on
the idea that once the values of the model parameters have
been adjusted to obtain an acceptable match between the
model response and the measured data, those parameter
values can be perturbed slightly and the match obtained
should still be acceptable. The same perturbation can then
be applied to model predictive runs to obtain a range of
possible outcomes. If the perturbation is sufficiently small,
a linear analysis can be used to derive confidence intervals
for a future prediction run. The perturbation in the
parameter values can be obtained using the post calibration
parameter uncertainty as a basis. This requires that the
derivatives (gradients) of the response data with respect to
the parameters in the model are known.

The method starts with the uncertainty propagation
equation for a linear model given by (Arras, 1998):

0% =JoCufo" (1)

In this equation, o2 is a matrix with the number of rows and
columns equal to the number of predicted quantities and
whose diagonal elements corresponds to the variance of
each predicted quantity. J, is the Jacobian matrix which is

composed of elements defined by: Jo;; =%, i.e., the
J

gradient of predicted value 1y, with respect to all
parameters x;. The matrix C,on the other hand is the
variance-covariance matrix of parameter x which contains
the parameter uncertainty and the correlation information
for the parameters. For a well-posed inverse problem with
parameters estimated by minimizing a least squares
objective function to obtain small residuals (difference
between model and measured data), this C, matrix can be
obtained using the equation:

Ce=(0"wp™ (2)

J in (2) is similar to J, in (1) except that the element J;; here
is the gradient of the calculated historical response (rather
than the predicted quantity), with respect to all parameters
x;. W is the weighing matrix whose diagonal element is the
inverse of the variance that represents the measurement
error of the observation data that were used in the parameter
estimation process. For a single prediction y, with
uncorrelated parameters, (1) takes the more familiar form
(Devore, 1987):

o0 = 3 (2 ®

4

Equation (3) implies that there are two factors affecting the
uncertainty in the model prediction; (1) the sensitivity of
the prediction with respect to the parameters and (2) the
uncertainty in the parameter value. Thus, a highly uncertain
parameter may not necessarily affect the prediction
uncertainty if that parameter has small influence over the
predicted quantity. Conversely, a parameter with small
uncertainty may result to a high predictive uncertainty if the
parameter has very high impact on the predicted quantity.
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Geothermal models are typically nonlinear but they can be
assumed to be linear near the minimum of the objective
function by virtue of a first-order Taylor series
approximation. The steps needed to quantify model
prediction uncertainty based on the theory above are as
follows:

i. Calibrate the model either manually or
automatically using a minimization algorithm. This will put
the model in a “low residuals” state to make (2) valid.

ii. Calculate the calibration gradient matrix J based
on the best estimated parameters then use (2) to obtain the
post-calibration variance-covariance matrix which contains
the parameter uncertainty and correlation information. The
gradient matrix J can be obtained through a finite difference
approximation. Automatic parameter estimation software
such as PEST and iTOUGH provides utilities to obtain both
the gradient and covariance matrix.

iii. Monte Carlo simulation may be performed using
the covariance matrix in Step (ii) as a basis for the
probability distribution of the uncertain parameters. The
sampling method used for the Monte Carlo analysis in this
paper assumed a normal distribution for the uncertain
parameters with mean and standard deviation based on the
best parameter estimate and the post calibration parameter
variance (from the covariance matrix), respectively. If the
standard deviation for a certain parameter is unrealistically
high, it must be replaced with a reasonable lower value that
reflects expert knowledge. This will prevent sampling of
extremely high or extremely low parameter values. To
improve the efficiency, Latin hypercube sampling is used
and the parameter correlation structure based on the post-
calibration covariance matrix was imposed using the rank
correlation method described by Iman & Conover (1982). A
rejection criterion was added by setting a threshold
objective function value to ensure that the distribution of
models prediction only includes those which were
considered to be in a near-calibrated state. The models
which pass this acceptance test are used to make
predictions.

3. APPLICATION TO A SYNTHETIC MODEL

A synthetically-generated 2D production-injection model
was constructed with TOUGH2 to serve as the ‘true’
system. The model covers a total lateral area of 100km? and
a thickness of 1000m. The model domain has a region with
fine grid blocks 50m x 50m in size where three production
wells and one injection well were placed. Outside this fine
grid region, the blocks increase gradually up to a maximum
size of 500m x 500m. The model starts off with uniform
temperature and pressure of 270°C and 18 MPa,
respectively. There were no upflow, outflow or heat fluxes
defined. This was done mainly to simplify the problem and
to do away with the need for a natural state run. There were
pressure dependent recharge blocks at the edge of the
model to prevent the pressure from continually dropping as
fluid was extracted from the production wells.

The flow in the model is controlled by the six high
permeability paths representing the faults and the non-
uniform background permeability. The heterogeneous
background permeability was generated by kriging
interpolation from 200 arbitrary pilot points. The
corresponding permeability values at each of the pilot
points were sampled randomly from a normal distribution.

The kriging interpolation used a spherical variogram that
was fitted against the variogram of the 200 pilot points. The
variogram has a maximum correlation length of 3000m and
has no anisotropy. A dual porosity approach composing of
3 interacting continua (1 fracture and 2 matrix elements)
was applied throughout the entire model domain in order to
obtain good temperature and tracer recovery trends.
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Figure 1. Synthetic model configuration. The red and
blue dots are the production and injection wells
location, respectively. The model has a non-
uniform background permeability generated by
kriging from 200 arbitrary pilot point locations.
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Figure 2. Measured data generated from the synthetic
model

During the production period, the three production wells
were set to produce at constant flow rates with a combined
total of 180 kg/s. The injection well was set to a constant
injection of 136 kg/s (~75 % of the produced fluid) at an
injection temperature of 160°C. This production-injection
scheme drives the response of the reservoir which was
monitored through the temperature/enthalpy and pressure at
the production wells. Tracer was also injected into the
injection well at the start of production and the tracer return
was monitored from the three production wells.

It was assumed that the reservoir had been operating under
these conditions for the past 5 years. In a real geothermal
field operation, the production and injection rates would
have changed with time in response to pressure decline and
cooling/boiling. However in the synthetic model, this effect
has been left out since it is assumed that the injection and
production rates are perfectly known in the working model.
Synthetic calibration data representing the reservoir
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response composed of the temperature, pressure and tracer
concentration from each of the production wells was
obtained by running this model for 5 years. Artificial noise
was added to the simulated response.

3.1 Working Model Description

A model with a similar structure and dimensions to the
synthetic or truth model was constructed to serve as the
working model. It covers the same area, and has the same
number and sizes of grid blocks. The fault locations were
assumed to be known and other parameters such as
porosity, volume fraction, fracture spacing, variogram
parameters and boundary recharge parameters were set at
their correct values. The mass extraction and injection rates
that drive the response of the model were assumed to be
perfectly known.

Model calibration involved identifying the permeability of
the faults and the background formation that would
reproduce the response obtained from the synthetic model.
The background permeability structure was determined
using kriging interpolation from 85 pilot points, 4 of which
were placed at the well locations while the rest were spaced
1km away from each other. Pilot point interpolation was
chosen because it provides the calibration process with the
flexibility to put heterogeneity in the permeability if needed
(Dohery, 2003). This approach frees the modeller from
having to make prior assumptions on the geometry and
extent of the region where rock properties are assumed to
be equal or similar in value. This procedure, however, also
poses a risk of creating a model with a permeability
structure that is inconsistent with the known geology of the
true system especially if pilot point locations are poorly
chosen.
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Figure 3. Working model showing the locations of the
pilot points and faults.

In modelling a real system, there will be more unknowns
than were dealt with in this example. Additionally, the
choice of the grid structure will also have an effect on the
model’s ability to estimate the system properties thereby
adding to its potential for error.

3.2 Model Calibration

The calibration was performed automatically using PEST.
The initial guess for all the fault fracture permeabilities was
1000mD and the permeability for all the pilot points was set
at ImD. The matrix permeability for both the faults and
background rock was set at 1.00E-4 mD. The weights of the
observation data were set approximately equal to the

standard deviation of the noise used to generate the
synthetic response and scaled accordingly to ensure equal
visibility of each type of data in the objective function. In
practice, these weights may be adjusted as part of the
calibration process to get a better match to the data.
However, our aim is not to produce the best data fit, but
rather to quantify the model uncertainty, and so our
weighting scheme is chosen with this in mind. During the
calibration process, the logarithm of the permeability was
estimated rather than the permeability itself.

Figure 4. Comparison of the measured data with the
modelled response after model calibration
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Figure 5. Permeability distribution of the calibrated
model (a) and contour of the difference between
the true and working model (b).
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The number of parameters involved and the limited data
available were expected to make the calibration process
difficult. To overcome this problem, one can selectively
choose only a few parameters to calibrate based on a
sensitivity analysis done prior to the actual calibration as
described by (Omagbon and O’Sullivan 2011). For this
study however, an automated approach that used Tikhonov
regularization was adopted. In this approach, a penalty
objective function (or regularization objective function) was
added to the total objective function for every deviation of
parameter values from its current value. This means that the
non-influential parameters, which would have caused
calibration difficulty, tend to remain close to their initial
values. There was no need to make prior assumption about
which parameters to exclude because they were
automatically determined after each parameter upgrade.

The result of the calibration is shown in Figure 4 and Figure
5. The temperature, pressure and tracer responses obtained
by the calibrated model from the three wells were
consistent with the measured data. However, comparison of
the permeability for each block obtained after the
calibration with that of the true model (Figure 5) shows a
significant mismatch (about two orders of magnitude) in the
background permeability near the area of the three
production wells. This mismatch will be explored further in
the succeeding section. Without the knowledge of the true
permeability distribution, one would readily conclude that
the calibrated model is a good representation of the true
system and can be used for prediction purposes.

3.3 Post Calibration Parameter Uncertainty

As previously discussed, the resulting covariance matrix
calculated using the gradient information of the model
parameters with respect to the data that was used in the
calibration process contains an approximation of the
uncertainty associated with the parameters around the local
solution. The standard deviation (given by the square root
of the diagonal component of the covariance matrix) of
each of the parameters used in the calibration together with
the estimated and true values are shown in Table 1.

Table 1. Results of parameter estimation of the model
permeabilities using PEST.

Estimated Stfingjard True value
Parameter value (mz) QeV|at|on of (mz)
(in log scale)

faultl 7.67E-11 0.37 1.00E-11
fault2 8.01E-11 0.58 5.00E-12
fault3 3.14E-12 0.08 2.00E-12
fault4 1.66E-12 0.06 1.00E-12
faults 4.04E-12 0.06 7.00E-13
faulté 3.44E-12 0.58 3.00E-11
matx1 1.65E-17 1.66 1.00E-18
Background | 6.44E-15* | 0.20-283.17 | 1.18E-14*

* Average value

The high standard deviations correspond to the parameters
of the model that cannot be identified with the data that is
available. For these cases, using expert knowledge to
estimate their values would be better than trying to
determine them by calibration. The plot in Figure 6 shows
the post calibration standard deviation in permeability for
each of the pilot points and faults. The largest circles denote
standard deviation higher than 2 or a parameter uncertainty
that is about 4 orders of magnitude away from the estimated

value. This means that the permeabilities around the region
of the large circles were not properly identified by
calibration and therefore have higher uncertainty. This is
because the observation data used in the calibration does
not contain sufficient information to properly estimate those
parameters.

Modellers should therefore be cautious in making
predictions that are dependent on the permeability of those
large circle areas given that the model was not properly
constrained at those locations. For example, Fault #6 (the
rightmost vertical fault) has a relatively large standard
deviation compared to the other faults. This is not
surprising because it is located away from where the data
were collected and hence it is to be expected that measured
data contains little or no information at all about the
permeability for this fault. A forecast, for example,
involving transferring the injection closer to this fault is
likely to result in an increase in uncertainty level. If such a
level of uncertainty is not acceptable, then additional data
collection activities have to be planned to better
characterize the properties of that fault and therefore reduce
the uncertainty in its permeability.
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Figure 6. Standard deviation bubble plot of the pilot
point and fault permeabilities (log scale). The
largest circles denote parameters with standard
deviation higher than 2.0.

The pilot points located more than 2 km away from the
wells show standard deviation higher than or equal to 2.
This is again what one would expect given their distance
from the where the data were measured. There were a few
pilot points with low standard deviations such as the two at
the right hand side of the model (4th row from the top).
This is likely to be related to the effect of the pressure
dependent recharge blocks at the side of the model on the
simulated responses in the wells. Since the boundary
recharge is affecting the response of the well, it is required
that information about the connection of the boundary
blocks and the wells has to be known to some extent.

Interestingly, there were also anomalously large standard
deviations at the pilot points near the 3 production wells. If
this plot is overlaid with the post-calibration permeability
distribution in Figure 5, it can be seen that this area
coincides with the low background permeability area near
the production wells which is notably inconsistent with the
true model. One can therefore say that incorrectly
estimating those permeability values was not surprising and
is the consequence of the calibration process not being able
to determine them from the data available. In that case, the
modeler is justified in using their expert knowledge to
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assign values they think are more realistic for those pilot
points.

3.4 Forecasting

The resulting calibrated models were used to make
predictions of the reservoir performance for the next five
years. Four scenarios were investigated using each of these
calibrated models. More importantly, the uncertainty in
each of the scenarios was quantified and analyzed. The
scenarios that were investigated are as follows:

Retain the current production — injection setup
Drill a new production well

Transfer injection

Transfer injection and drill new production

N

In all the four scenarios, the pressure and temperature
response over the forecast period were generated. In
addition, the cumulative steam produced after the 10th year
was calculated. In a real modelling exercise, decision
making is likely be driven by this total steam production
because that is what determines the revenue that can be
generated from the implementation of the activities
involved in each of the four scenarios. The locations of the
new wells for Scenarios 2 to 4 are shown in Figure 7.
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Figure 7. Model grid showing the location of the new
production (red triangle) and injection (black
triangle) wells used for forecast scenarios 2 to 4.

3.5 Monte Carlo Analysis and Rejection Sampling for
Uncertainty Quantification:

In rejection sampling, proposal models are made from some
relatively simple parameter distributions. A test is then
applied to determine whether or not to accept the proposed
models. All samples generated by this method are
independent and therefore runs can be made
simultaneously. This provides an opportunity for
implementing a parallelization algorithm to reduce the time
needed to complete the model runs. The key to the
efficiency of the rejection algorithm is selecting a proposal
density that is a close approximation to the correct posterior
probability density function (pdf) of the parameters so that
the acceptance rate is close to 100%. It can be difficult to
find a simple distribution for the proposal of trial
realizations that leads to an efficient sampling, especially
when the number of model variables is large. Using the
sampling method described in Section 2, samples with a
relatively high chance of being accepted can be generated
provided the linearity assumption is not severely violated.

A total of 1000 samples were produced using the sampling
scheme described in Section 2 (Step iii). Each of the
sampled sets of parameters were first tested by checking to
see if the weighted least square objective function was low
enough for it to be considered as near calibrated. The
calibrated model ended up with an objective function value
of 117. The rejection criterion was arbitrarily set to an
objective function value of 150 so that any model with a
higher objective function was discarded. Out of the 1000
samples generated, 630 models with an objective function
lower than the threshold were obtained. The reason for the
relatively low sampling efficiency is because the
uncertainties in some of the parameters were high and
therefore samples which are far from the optimized
parameters have also been generated making the linear
approximation invalid. Nonetheless, the number of accepted
models is still reasonably high. Only the forecasts generated
by the accepted models were included in the prediction
uncertainty assessment.

The resulting responses from the accepted models are
shown in Figure 9. There are clear differences in the width
of the uncertainty intervals between scenarios. An easier to
way interpret the results is by looking at the histogram of
the cumulative steam extraction in Figure 8 since this
summarizes the effects of the responses from the individual
wells. The separation of the distributions -effectively
quantifies the benefit that can be obtained by selecting one
scenario over the other. There is a wide separation between
adding and not adding a production well which makes
choosing between these two scenarios obvious. However if
other factors such as the cost of drilling the well is included
in the calculation, the picture might become complicated.

Deciding on whether or not to transfer the injection is more
complicated. Under the “no additional production well”
scenario (left-side plot in Figure 8), the peak of the
distribution suggests that the cumulative steam production
will increase if the injection is transferred. This is, however,
not guaranteed because the two histograms have significant
overlap. If a new production well is drilled (right-side plot
of Figure 8), transferring the injection appears to give
greater benefit because the separation of the peaks is larger.
But again this is not guaranteed because there is a
reasonable intersection between the two histograms.
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Figure 8. Distribution of the cumulative steam
extraction
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Figure 9. Forecasted intervals of temperature and
pressure for the 3 production wells for scenarios
1(a), 2 (b), 3 (c) and 4 (d)

3.6 Parameter Contribution to the Uncertainty in the
Prediction

Equation (1) in Section 2 provides a cheap way of
estimating the uncertainty interval in the prediction because
it does not require samples of parameter set to be generated
and run to prediction. What is needed instead is the
calculation of the forecast gradient matrix Jo. This is easily
obtained by making a finite difference approximation on a
model that runs through the prediction period. As
mentioned earlier, the diagonal elements of the matrix o2
corresponds to the variance of each of the predicted
quantities and the confidence intervals can be obtained from
this if a Gaussian distribution is assumed. In the example
described in this paper, this equation was used to estimate
the individual parameter contribution to the prediction
uncertainty. This was accomplished by calculating how
much o2 reduces if the row/column corresponding to the
parameter of interest is taken out from the J, and C,
matrices (Doherty, 2015).

As previously discussed, two of the factors affecting the
contribution of a parameter to the uncertainty of a
prediction are its influence on the predicted quantity and its
uncertainty. Figures 10 and 11 show the individual
contributions of the parameters to the uncertainty of the
cumulative steam production for scenarios 1 and 4 as
estimated using Equation (1). In this plot, larger circles
indicate higher contribution. Both plots were set to have the
same minimum and maximum values so they can be
compared with each other. Information like this can be
useful in identifying which parameters are crucial in
making certain predictions.
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Figure 10. Contribution of the permeability of the pilot
points and faults to the uncertainty of the
predicted cumulative steam production for
Scenario 1.
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Figure 11. Contribution of the permeability of the pilot
points and faults to the uncertainty of the
predicted cumulative steam production for
Scenario 4.

For Scenario 1, the prediction is sensitive to the parameters
whose uncertainties were significantly reduced during the
calibration. This explains why all the parameters contribute
little to the uncertainty in the predicted cumulative steam
production. In Scenario 4, the operating conditions are
different from that of the calibration period therefore the
influence of the parameters to the cumulative steam
production changes. As can be seen from Figure 11, the
faults and some of the pilot points near the wells now have
higher contribution to the uncertainty. Fault 6 contributes
significantly because the new injection well is located near
it (making the prediction sensitive to it) in addition to
having a high uncertainty value. The prediction is likely to
be just as sensitive to Fault 1 as it is to Fault 6. But since
the uncertainty in Fault 1 is smaller, it has a smaller
contribution than Fault 6.

4. SUMMARY AND CONCLUSION

This work demonstrated a synthetic case of predictive
uncertainty quantification in reservoir simulation using a
calibrated model and the local gradient information. The
key to making a reliable prediction from a geothermal
model is the accurate identification of the parameters that
affects the model’s response. The post calibration parameter
uncertainty gives an indication of how well these
parameters were identified given the amount of data used
for the calibration. Consequently, this gives modelers a
means to assess how reliably a forecast can be made from
the model. By using local gradient information, several
models with relatively low objective function can be
generated efficiently and used to investigate different model
outcomes. Using this set of models, the different levels of
uncertainty of predictions on different scenarios was
quantified. Such information can also be used in
determining which parameters are causing the uncertainty.

The approach presented here does not account for all the
sources of uncertainty especially, those from structural and
numerical errors. It is also likely to underestimate the
uncertainty especially for highly nonlinear models with
many local minima and non-Gaussian parameter
distribution. While better methods are needed to address
these issues, this technique is still particularly useful in
geothermal modeling. This is mainly because at present,

operators likely have an existing model in place, calibrated
by some standard method, which they use for making
deterministic future predictions. With a little more effort,
this method provides useful information which is not
usually available to the reservoir engineers and decision
makers.
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