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ABSTRACT 
Deterministic simulation models of geothermal systems are 
now used extensively, not only to understand the different 
processes occurring within the geothermal reservoir, but 
also to predict future responses. Accurate model results are 
critical for the short- and long-term management of a 
geothermal field, particularly in determining the production 
strategy and ongoing management and development of the 
field. However, model predictions are often affected by 
uncertainties in input data, model parameters, and by 
incomplete knowledge of the underlying physics. A 
deterministic simulation assumes one set of input 
conditions, and generates one result without considering 
uncertainties. When making decisions based on these 
models, managers of geothermal fields must include some 
estimate of uncertainty to reflect the imperfect information 
at their disposal. In this work, we present a method for 
estimating the uncertainty in the prediction of a reservoir 
model, thus taking an important step towards the 
development of a more robust decision support tool. 

A synthetic 2D model that included six faults was 
developed and then used to generate production data against 
which the working model could be calibrated. Calibration 
was carried out using the gradient based Levenberg 
Marquardt optimization algorithm with Tikhonov 
regularization. The calibration process determined the 
possible parameter values for the faults and background 
permeability of the working model using temperature, 
pressure and tracer recovery curves. Assuming a parameter 
probability distribution based on the result of the local 
sensitivity information at the optimum parameter values, a 
Monte Carlo analysis was then used to investigate the 
uncertainty interval of the model prediction of four different 
forecast scenarios.  

1. INTRODUCTION  
A numerical model of a geothermal system enables 
forecasts to be made of its response to different operating 
scenarios. With these forecasts, different resource 
management strategies can be explored and compared, 
allowing an optimal decision to be made. This requires that 
the properties of the numerical model are consistent with 
that of the real-life system. This is obviously very difficult 
to achieve for several reasons. One reason for this difficulty 
is that physical reservoir properties, boundary conditions 
and geological parameters are very difficult if not 
impossible to measure accurately in the field at a resolution 
that would be useful in the model. Another reason is the 
governing equations used to calculate the state of the 
system are approximate. The level of approximation gets 
worse when computational constraints are taken into 

account as these tends to force the modeller to reduce the 
resolution of the model to be able to complete the 
computations within a reasonable amount of time.  

In place of directly measuring system properties, modellers 
employ calibration in order to estimate the important 
reservoir properties which they think affect the field 
behaviour of interest. This is achieved by comparing a 
model response with responses measured from the real 
system such as downhole logs and well flow data, as well as 
making use of the modeller’s prior knowledge about the 
other aspects of the conceptual model of the system. The 
ultimate goal of using the model to make different forecasts 
can then be performed once these important parameters that 
control the response of the system have been identified. 

The traditional way that models are used in the geothermal 
industry is to make reservoir development or resource 
management decisions using production forecasts from one 
version of a history matched model. Often several scenarios 
are investigated and compared with each other. The one 
which has the most benefit from a financial, technical or 
environmental perspective is then chosen from these 
different forecast scenarios. However, no matter how well a 
calibrated model fits the measured data, it does not 
necessarily represent the true behaviour of a real system 
because of the complexities inherent in the system being 
modelled. This is an obvious result of the limitation of the 
parameters that can be measured in the field. Consequently, 
any prediction made on the basis of the calibrated model 
has a potential error. Such an error must therefore be 
accounted for when making resource management decisions 
on the basis of model outcomes.  

This work investigates methods for quantifying uncertainty 
in a geothermal reservoir simulation. To characterize the 
uncertainty in predicted reservoir performance, it should be 
first recognized that numerical models are inherently non-
unique and there exists several different sets of model 
structure and/or parameters that can describe a real system. 
The problem therefore translates to finding different sets of 
reservoir descriptions that honour all available data so that 
they can be used to simulate reservoir performance. The 
data that must be honoured includes both expert knowledge 
and measured quantities. Sampling methods are proposed to 
generate these different realizations of the model that 
behave like the real system. The outcome of this work will 
contribute to improving the geothermal modelling practice 
with respect to quantifying prediction uncertainties so that 
model results can be better interpreted and used as a 
resource management tool. The information about the 
uncertainties involved in the model provides a confidence 
level about the model forecast which can assist the 
geothermal operators in assessing the risks involved in 
using the model results and in making decisions 
accordingly. 
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1.1 Brief review of previous work on uncertainty 
quantification of geothermal model predictions 
Three notable studies on this topic have been reported in the 
literature. Tureyen & Onur (2010) presented an uncertainty 
quantification study of a lumped-parameter problem using 
the pressure data from the Balcova-Narlidere geothermal 
field. They used a randomized maximum likelihood method 
to generate several realizations of the model parameters that 
can reproduce the measured pressure. In the method that 
they used, several random sets of parameter values were 
generated. The parameter values in each of the generated 
sets of samples are then adjusted so that the model response 
is consistent with the measured pressure. The predictive 
uncertainty is then characterized by obtaining predictions 
from each of the model realizations. 

Vogt, et. al. (2012) estimated the uncertainty in the long 
term performance prediction of the model for the Soultz 
EGS project. They used sequential Gaussian simulation to 
generate 880 model realizations. The permeability structure 
of each realization was calibrated using an Ensemble 
Kalman Filter to fit their response to the measured 
temperature and pressure logs as well as tracer circulation 
data. Finally, the ensemble of calibrated models obtained 
during the calibration stage was used to estimate the 
uncertainty in the 50 year prediction of the variation in head 
and temperature within the reservoir.  

A more recent uncertainty estimation study was made by 
Moon, et al. (2014) using a model of the Ngatamariki 
geothermal system. In their work, they explored the 
uncertainties in the forecasted enthalpies of a 50 year 
production forecast. They identified the key parameters in 
the model that affected the natural state behaviour and the 
prediction of interest by ranking their influences based on 
the normalized sensitivity coefficients. Using the estimated 
value as the mean and assigned ranges as the basis for the 
uncertainty, they generated random samples of these highly 
influential parameters to generate different model 
realizations. With the generated samples, they were able to 
propagate the uncertainties of the selected parameters to the 
forecasted enthalpies in the production wells.  

2. DESCRIPTION OF THE METHODOLOGY 
One method of estimating the uncertainty is to generate all 
the models that are consistent with both the measured data 
and conceptual information of the system, and then 
simulate future production using each of them. In the 
geothermal modelling context, this is a difficult task 
because the time needed to obtain each calibrated model 
can typically be several months or even a few years. 
Uncertainty quantification is even more computationally 
expensive because of the need to generate a sufficiently 
large number of these calibrated models to properly 
characterize the uncertainty. In this work, an alternative 
two-step process of generating several samples of near-
calibrated models is considered. The steps involved are (1) 
calibrating the model, then (2) generating samples using 
information from the calibration process to carry out the 
error analysis. The general approach is similar to that used 
by Moon, et al. (2014) with some notable differences. First, 
the parameter uncertainties are based on how well the 
parameter values were identified during the calibration 
process rather than being assigned a priori. Second, the 
propagation of uncertainty is not limited to a few selected 
influential parameters. Third, a much larger number of 

Monte Carlo samples were made to ensure a reasonable 
coverage of the parameter space. 

The method used is linear perturbation analysis. This 
method has been described by several other authors (Press, 
et. al., 1996), (Finsterle, 1999), (Tarantola, 2005), (Oliver, 
Reynolds, & Liu, 2008) and (Doherty, 2015). It is based on 
the idea that once the values of the model parameters have 
been adjusted to obtain an acceptable match between the 
model response and the measured data, those parameter 
values can be perturbed slightly and the match obtained 
should still be acceptable. The same perturbation can then 
be applied to model predictive runs to obtain a range of 
possible outcomes. If the perturbation is sufficiently small, 
a linear analysis can be used to derive confidence intervals 
for a future prediction run. The perturbation in the 
parameter values can be obtained using the post calibration 
parameter uncertainty as a basis. This requires that the 
derivatives (gradients) of the response data with respect to 
the parameters in the model are known. 

The method starts with the uncertainty propagation 
equation for a linear model given by (Arras, 1998): 

𝜎2 = 𝐽0𝐶𝑥𝐽0𝑇 (1) 

In this equation, 𝜎2 is a matrix with the number of rows and 
columns equal to the number of predicted quantities and 
whose diagonal elements corresponds to the variance of 
each predicted quantity. 𝐽0 is the Jacobian matrix which is 
composed of elements defined by:  𝐽0𝑖𝑗 = 𝜕𝑦0𝑖

𝜕𝑥𝑗
, i.e., the 

gradient of predicted value  𝑦0𝑖 with respect to all 
parameters 𝑥𝑗 . The matrix  𝐶𝑥 on the other hand is the 
variance-covariance matrix of parameter 𝑥 which contains 
the parameter uncertainty and the correlation information 
for the parameters. For a well-posed inverse problem with 
parameters estimated by minimizing a least squares 
objective function to obtain small residuals (difference 
between model and measured data), this  𝐶𝑥  matrix can be 
obtained using the equation: 

𝐶𝑥 = (𝐽𝑇𝑊𝐽)−1 (2) 

𝐽 in (2) is similar to 𝐽0 in (1) except that the element 𝐽𝑖𝑗 here 
is the gradient of the calculated historical response (rather 
than the predicted quantity), with respect to all parameters 
𝑥𝑗 . 𝑊 is the weighing matrix whose diagonal element is the 
inverse of the variance that represents the measurement 
error of the observation data that were used in the parameter 
estimation process. For a single prediction  𝑦𝑜 with 
uncorrelated parameters, (1) takes the more familiar form 
(Devore, 1987):  

𝜎(𝑦𝑜)2 =  ��
𝜕𝑦
𝜕𝑥𝑖

�
2

(𝜎(𝑥𝑖)2)
𝑖

 (3) 

Equation (3) implies that there are two factors affecting the 
uncertainty in the model prediction; (1) the sensitivity of 
the prediction with respect to the parameters and (2) the 
uncertainty in the parameter value. Thus, a highly uncertain 
parameter may not necessarily affect the prediction 
uncertainty if that parameter has small influence over the 
predicted quantity. Conversely, a parameter with small 
uncertainty may result to a high predictive uncertainty if the 
parameter has very high impact on the predicted quantity. 
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Geothermal models are typically nonlinear but they can be 
assumed to be linear near the minimum of the objective 
function by virtue of a first-order Taylor series 
approximation. The steps needed to quantify model 
prediction uncertainty based on the theory above are as 
follows: 

i. Calibrate the model either manually or 
automatically using a minimization algorithm. This will put 
the model in a “low residuals” state to make (2) valid. 

 
ii. Calculate the calibration gradient matrix 𝐽 based 

on the best estimated parameters then use (2) to obtain the 
post-calibration variance-covariance matrix which contains 
the parameter uncertainty and correlation information. The 
gradient matrix 𝐽 can be obtained through a finite difference 
approximation. Automatic parameter estimation software 
such as PEST and iTOUGH provides utilities to obtain both 
the gradient and covariance matrix. 

 
iii. Monte Carlo simulation may be performed using 

the covariance matrix in Step (ii) as a basis for the 
probability distribution of the uncertain parameters. The 
sampling method used for the Monte Carlo analysis in this 
paper assumed a normal distribution for the uncertain 
parameters with mean and standard deviation based on the 
best parameter estimate and the post calibration parameter 
variance (from the covariance matrix), respectively. If the 
standard deviation for a certain parameter is unrealistically 
high, it must be replaced with a reasonable lower value that 
reflects expert knowledge. This will prevent sampling of 
extremely high or extremely low parameter values. To 
improve the efficiency, Latin hypercube sampling is used 
and the parameter correlation structure based on the post-
calibration covariance matrix was imposed using the rank 
correlation method described by Iman & Conover (1982). A 
rejection criterion was added by setting a threshold 
objective function value to ensure that the distribution of 
models prediction only includes those which were 
considered to be in a near-calibrated state. The models 
which pass this acceptance test are used to make 
predictions. 

3. APPLICATION TO A SYNTHETIC MODEL 
A synthetically-generated 2D production-injection model 
was constructed with TOUGH2 to serve as the ‘true’ 
system. The model covers a total lateral area of 100km2 and 
a thickness of 1000m. The model domain has a region with 
fine grid blocks 50m x 50m in size where three production 
wells and one injection well were placed. Outside this fine 
grid region, the blocks increase gradually up to a maximum 
size of 500m x 500m. The model starts off with uniform 
temperature and pressure of 270°C and 18 MPa, 
respectively. There were no upflow, outflow or heat fluxes 
defined. This was done mainly to simplify the problem and 
to do away with the need for a natural state run. There were 
pressure dependent recharge blocks at the edge of the 
model to prevent the pressure from continually dropping as 
fluid was extracted from the production wells.  

The flow in the model is controlled by the six high 
permeability paths representing the faults and the non-
uniform background permeability. The heterogeneous 
background permeability was generated by kriging 
interpolation from 200 arbitrary pilot points. The 
corresponding permeability values at each of the pilot 
points were sampled randomly from a normal distribution. 

The kriging interpolation used a spherical variogram that 
was fitted against the variogram of the 200 pilot points. The 
variogram has a maximum correlation length of 3000m and 
has no anisotropy. A dual porosity approach composing of 
3 interacting continua (1 fracture and 2 matrix elements) 
was applied throughout the entire model domain in order to 
obtain good temperature and tracer recovery trends. 

 

Figure 1. Synthetic model configuration. The red and 
blue dots are the production and injection wells 
location, respectively. The model has a non-
uniform background permeability generated by 
kriging from 200 arbitrary pilot point locations. 

 

Figure 2. Measured data generated from the synthetic 
model 

During the production period, the three production wells 
were set to produce at constant flow rates with a combined 
total of 180 kg/s. The injection well was set to a constant 
injection of 136 kg/s (~75 % of the produced fluid) at an 
injection temperature of 160°C. This production-injection 
scheme drives the response of the reservoir which was 
monitored through the temperature/enthalpy and pressure at 
the production wells. Tracer was also injected into the 
injection well at the start of production and the tracer return 
was monitored from the three production wells. 

It was assumed that the reservoir had been operating under 
these conditions for the past 5 years. In a real geothermal 
field operation, the production and injection rates would 
have changed with time in response to pressure decline and 
cooling/boiling. However in the synthetic model, this effect 
has been left out since it is assumed that the injection and 
production rates are perfectly known in the working model. 
Synthetic calibration data representing the reservoir 
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response composed of the temperature, pressure and tracer 
concentration from each of the production wells was 
obtained by running this model for 5 years. Artificial noise 
was added to the simulated response.  

3.1 Working Model Description 
A model with a similar structure and dimensions to the 
synthetic or truth model was constructed to serve as the 
working model. It covers the same area, and has the same 
number and sizes of grid blocks. The fault locations were 
assumed to be known and other parameters such as 
porosity, volume fraction, fracture spacing, variogram 
parameters and boundary recharge parameters were set at 
their correct values. The mass extraction and injection rates 
that drive the response of the model were assumed to be 
perfectly known.  

Model calibration involved identifying the permeability of 
the faults and the background formation that would 
reproduce the response obtained from the synthetic model. 
The background permeability structure was determined 
using kriging interpolation from 85 pilot points, 4 of which 
were placed at the well locations while the rest were spaced 
1km away from each other. Pilot point interpolation was 
chosen because it provides the calibration process with the 
flexibility to put heterogeneity in the permeability if needed 
(Dohery, 2003). This approach frees the modeller from 
having to make prior assumptions on the geometry and 
extent of the region where rock properties are assumed to 
be equal or similar in value. This procedure, however, also 
poses a risk of creating a model with a permeability 
structure that is inconsistent with the known geology of the 
true system especially if pilot point locations are poorly 
chosen. 

 

Figure 3. Working model showing the locations of the 
pilot points and faults. 

In modelling a real system, there will be more unknowns 
than were dealt with in this example. Additionally, the 
choice of the grid structure will also have an effect on the 
model’s ability to estimate the system properties thereby 
adding to its potential for error. 

3.2 Model Calibration 
The calibration was performed automatically using PEST. 
The initial guess for all the fault fracture permeabilities was 
1000mD and the permeability for all the pilot points was set 
at 1mD. The matrix permeability for both the faults and 
background rock was set at 1.00E-4 mD. The weights of the 
observation data were set approximately equal to the 

standard deviation of the noise used to generate the 
synthetic response and scaled accordingly to ensure equal 
visibility of each type of data in the objective function. In 
practice, these weights may be adjusted as part of the 
calibration process to get a better match to the data. 
However, our aim is not to produce the best data fit, but 
rather to quantify the model uncertainty, and so our 
weighting scheme is chosen with this in mind. During the 
calibration process, the logarithm of the permeability was 
estimated rather than the permeability itself.  

 

Figure 4. Comparison of the measured data with the 
modelled response after model calibration 

 
(a) 

 
 (b) 

Figure 5. Permeability distribution of the calibrated 
model (a) and contour of the difference between 
the true and working model (b). 
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The number of parameters involved and the limited data 
available were expected to make the calibration process 
difficult. To overcome this problem, one can selectively 
choose only a few parameters to calibrate based on a 
sensitivity analysis done prior to the actual calibration as 
described by (Omagbon and O’Sullivan 2011). For this 
study however, an automated approach that used Tikhonov 
regularization was adopted. In this approach, a penalty 
objective function (or regularization objective function) was 
added to the total objective function for every deviation of 
parameter values from its current value. This means that the 
non-influential parameters, which would have caused 
calibration difficulty, tend to remain close to their initial 
values. There was no need to make prior assumption about 
which parameters to exclude because they were 
automatically determined after each parameter upgrade.  

The result of the calibration is shown in Figure 4 and Figure 
5. The temperature, pressure and tracer responses obtained 
by the calibrated model from the three wells were 
consistent with the measured data. However, comparison of 
the permeability for each block obtained after the 
calibration with that of the true model (Figure 5) shows a 
significant mismatch (about two orders of magnitude) in the 
background permeability near the area of the three 
production wells. This mismatch will be explored further in 
the succeeding section. Without the knowledge of the true 
permeability distribution, one would readily conclude that 
the calibrated model is a good representation of the true 
system and can be used for prediction purposes. 

3.3 Post Calibration Parameter Uncertainty 

As previously discussed, the resulting covariance matrix 
calculated using the gradient information of the model 
parameters with respect to the data that was used in the 
calibration process contains an approximation of the 
uncertainty associated with the parameters around the local 
solution. The standard deviation (given by the square root 
of the diagonal component of the covariance matrix) of 
each of the parameters used in the calibration together with 
the estimated and true values are shown in Table 1. 

Table 1. Results of parameter estimation of the model 
permeabilities using PEST. 

Parameter Estimated 
value (m2) 

Standard 
deviation of 
(in log scale) 

True value 
(m2) 

fault1 7.67E-11 0.37 1.00E-11 
fault2 8.01E-11 0.58 5.00E-12 
fault3 3.14E-12 0.08 2.00E-12 
fault4 1.66E-12 0.06 1.00E-12 
fault5 4.04E-12 0.06 7.00E-13 
fault6 3.44E-12 0.58 3.00E-11 
matx1 1.65E-17 1.66 1.00E-18 

Background 6.44E-15* 0.20 – 283.17 1.18E-14* 
* Average value 

The high standard deviations correspond to the parameters 
of the model that cannot be identified with the data that is 
available. For these cases, using expert knowledge to 
estimate their values would be better than trying to 
determine them by calibration. The plot in Figure 6 shows 
the post calibration standard deviation in permeability for 
each of the pilot points and faults. The largest circles denote 
standard deviation higher than 2 or a parameter uncertainty 
that is about 4 orders of magnitude away from the estimated 

value. This means that the permeabilities around the region 
of the large circles were not properly identified by 
calibration and therefore have higher uncertainty. This is 
because the observation data used in the calibration does 
not contain sufficient information to properly estimate those 
parameters. 

Modellers should therefore be cautious in making 
predictions that are dependent on the permeability of those 
large circle areas given that the model was not properly 
constrained at those locations. For example, Fault #6 (the 
rightmost vertical fault) has a relatively large standard 
deviation compared to the other faults. This is not 
surprising because it is located away from where the data 
were collected and hence it is to be expected that measured 
data contains little or no information at all about the 
permeability for this fault. A forecast, for example, 
involving transferring the injection closer to this fault is 
likely to result in an increase in uncertainty level. If such a 
level of uncertainty is not acceptable, then additional data 
collection activities have to be planned to better 
characterize the properties of that fault and therefore reduce 
the uncertainty in its permeability.  

 

Figure 6. Standard deviation bubble plot of the pilot 
point and fault permeabilities (log scale). The 
largest circles denote parameters with standard 
deviation higher than 2.0. 

The pilot points located more than 2 km away from the 
wells show standard deviation higher than or equal to 2. 
This is again what one would expect given their distance 
from the where the data were measured. There were a few 
pilot points with low standard deviations such as the two at 
the right hand side of the model (4th row from the top). 
This is likely to be related to the effect of the pressure 
dependent recharge blocks at the side of the model on the 
simulated responses in the wells. Since the boundary 
recharge is affecting the response of the well, it is required 
that information about the connection of the boundary 
blocks and the wells has to be known to some extent.  

Interestingly, there were also anomalously large standard 
deviations at the pilot points near the 3 production wells. If 
this plot is overlaid with the post-calibration permeability 
distribution in Figure 5, it can be seen that this area 
coincides with the low background permeability area near 
the production wells which is notably inconsistent with the 
true model. One can therefore say that incorrectly 
estimating those permeability values was not surprising and 
is the consequence of the calibration process not being able 
to determine them from the data available. In that case, the 
modeler is justified in using their expert knowledge to 
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assign values they think are more realistic for those pilot 
points. 

3.4 Forecasting 
The resulting calibrated models were used to make 
predictions of the reservoir performance for the next five 
years. Four scenarios were investigated using each of these 
calibrated models. More importantly, the uncertainty in 
each of the scenarios was quantified and analyzed. The 
scenarios that were investigated are as follows: 

1. Retain the current production – injection setup 
2. Drill a new production well 
3. Transfer injection 
4. Transfer injection and drill new production 

In all the four scenarios, the pressure and temperature 
response over the forecast period were generated. In 
addition, the cumulative steam produced after the 10th year 
was calculated. In a real modelling exercise, decision 
making is likely be driven by this total steam production 
because that is what determines the revenue that can be 
generated from the implementation of the activities 
involved in each of the four scenarios. The locations of the 
new wells for Scenarios 2 to 4 are shown in Figure 7. 

 

Figure 7. Model grid showing the location of the new 
production (red triangle) and injection (black 
triangle) wells used for forecast scenarios 2 to 4. 

3.5 Monte Carlo Analysis and Rejection Sampling for 
Uncertainty Quantification: 
In rejection sampling, proposal models are made from some 
relatively simple parameter distributions. A test is then 
applied to determine whether or not to accept the proposed 
models. All samples generated by this method are 
independent and therefore runs can be made 
simultaneously. This provides an opportunity for 
implementing a parallelization algorithm to reduce the time 
needed to complete the model runs. The key to the 
efficiency of the rejection algorithm is selecting a proposal 
density that is a close approximation to the correct posterior 
probability density function (pdf) of the parameters so that 
the acceptance rate is close to 100%. It can be difficult to 
find a simple distribution for the proposal of trial 
realizations that leads to an efficient sampling, especially 
when the number of model variables is large. Using the 
sampling method described in Section 2, samples with a 
relatively high chance of being accepted can be generated 
provided the linearity assumption is not severely violated. 

A total of 1000 samples were produced using the sampling 
scheme described in Section 2 (Step iii). Each of the 
sampled sets of parameters were first tested by checking to 
see if the weighted least square objective function was low 
enough for it to be considered as near calibrated. The 
calibrated model ended up with an objective function value 
of 117. The rejection criterion was arbitrarily set to an 
objective function value of 150 so that any model with a 
higher objective function was discarded. Out of the 1000 
samples generated, 630 models with an objective function 
lower than the threshold were obtained. The reason for the 
relatively low sampling efficiency is because the 
uncertainties in some of the parameters were high and 
therefore samples which are far from the optimized 
parameters have also been generated making the linear 
approximation invalid. Nonetheless, the number of accepted 
models is still reasonably high. Only the forecasts generated 
by the accepted models were included in the prediction 
uncertainty assessment. 

The resulting responses from the accepted models are 
shown in Figure 9. There are clear differences in the width 
of the uncertainty intervals between scenarios. An easier to 
way interpret the results is by looking at the histogram of 
the cumulative steam extraction in Figure 8 since this 
summarizes the effects of the responses from the individual 
wells. The separation of the distributions effectively 
quantifies the benefit that can be obtained by selecting one 
scenario over the other. There is a wide separation between 
adding and not adding a production well which makes 
choosing between these two scenarios obvious. However if 
other factors such as the cost of drilling the well is included 
in the calculation, the picture might become complicated.  

Deciding on whether or not to transfer the injection is more 
complicated. Under the “no additional production well” 
scenario (left-side plot in Figure 8), the peak of the 
distribution suggests that the cumulative steam production 
will increase if the injection is transferred. This is, however, 
not guaranteed because the two histograms have significant 
overlap. If a new production well is drilled (right-side plot 
of Figure 8), transferring the injection appears to give 
greater benefit because the separation of the peaks is larger. 
But again this is not guaranteed because there is a 
reasonable intersection between the two histograms. 

 

Figure 8. Distribution of the cumulative steam 
extraction  
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(a) 

 

 
(b) 

 

 
(c) 

 

 
 (d) 

Figure 9. Forecasted intervals of temperature and 
pressure for the 3 production wells for scenarios 
1 (a), 2 (b), 3 (c) and 4 (d)  

3.6 Parameter Contribution to the Uncertainty in the 
Prediction 

Equation (1) in Section 2 provides a cheap way of 
estimating the uncertainty interval in the prediction because 
it does not require samples of parameter set to be generated 
and run to prediction. What is needed instead is the 
calculation of the forecast gradient matrix 𝐽0. This is easily 
obtained by making a finite difference approximation on a 
model that runs through the prediction period. As 
mentioned earlier, the diagonal elements of the matrix 𝜎2 
corresponds to the variance of each of the predicted 
quantities and the confidence intervals can be obtained from 
this if a Gaussian distribution is assumed. In the example 
described in this paper, this equation was used to estimate 
the individual parameter contribution to the prediction 
uncertainty. This was accomplished by calculating how 
much 𝜎2 reduces if the row/column corresponding to the 
parameter of interest is taken out from the 𝐽0 and 𝐶𝑥 
matrices (Doherty, 2015). 

As previously discussed, two of the factors affecting the 
contribution of a parameter to the uncertainty of a 
prediction are its influence on the predicted quantity and its 
uncertainty. Figures 10 and 11 show the individual 
contributions of the parameters to the uncertainty of the 
cumulative steam production for scenarios 1 and 4 as 
estimated using Equation (1).  In this plot, larger circles 
indicate higher contribution. Both plots were set to have the 
same minimum and maximum values so they can be 
compared with each other. Information like this can be 
useful in identifying which parameters are crucial in 
making certain predictions.  

 

Figure 10. Contribution of the permeability of the pilot 
points and faults to the uncertainty of the 
predicted cumulative steam production for 
Scenario 1. 



 
Proceedings 37th New Zealand Geothermal Workshop 

18 – 20 November 2015 
Taupo, New Zealand 

 

Figure 11.  Contribution of the permeability of the pilot 
points and faults to the uncertainty of the 
predicted cumulative steam production for 
Scenario 4. 

For Scenario 1, the prediction is sensitive to the parameters 
whose uncertainties were significantly reduced during the 
calibration. This explains why all the parameters contribute 
little to the uncertainty in the predicted cumulative steam 
production. In Scenario 4, the operating conditions are 
different from that of the calibration period therefore the 
influence of the parameters to the cumulative steam 
production changes. As can be seen from Figure 11, the 
faults and some of the pilot points near the wells now have 
higher contribution to the uncertainty. Fault 6 contributes 
significantly because the new injection well is located near 
it (making the prediction sensitive to it) in addition to 
having a high uncertainty value. The prediction is likely to 
be just as sensitive to Fault 1 as it is to Fault 6. But since 
the uncertainty in Fault 1 is smaller, it has a smaller 
contribution than Fault 6. 

4. SUMMARY AND CONCLUSION 
This work demonstrated a synthetic case of predictive 
uncertainty quantification in reservoir simulation using a 
calibrated model and the local gradient information. The 
key to making a reliable prediction from a geothermal 
model is the accurate identification of the parameters that 
affects the model’s response. The post calibration parameter 
uncertainty gives an indication of how well these 
parameters were identified given the amount of data used 
for the calibration. Consequently, this gives modelers a 
means to assess how reliably a forecast can be made from 
the model. By using local gradient information, several 
models with relatively low objective function can be 
generated efficiently and used to investigate different model 
outcomes. Using this set of models, the different levels of 
uncertainty of predictions on different scenarios was 
quantified. Such information can also be used in 
determining which parameters are causing the uncertainty. 

The approach presented here does not account for all the 
sources of uncertainty especially, those from structural and 
numerical errors. It is also likely to underestimate the 
uncertainty especially for highly nonlinear models with 
many local minima and non-Gaussian parameter 
distribution. While better methods are needed to address 
these issues, this technique is still particularly useful in 
geothermal modeling. This is mainly because at present, 

operators likely have an existing model in place, calibrated 
by some standard method, which they use for making 
deterministic future predictions. With a little more effort, 
this method provides useful information which is not 
usually available to the reservoir engineers and decision 
makers. 
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