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ABSTRACT

Soil CO, flux measurements allow the identification of
faults and near surface heat flow in geothermal areas. As
CO, is the major component of typical geothermal gases,
and is readily detectable, it is the most appropriate
component to focus on. However, a current limitation of the
CO, flux technique is the overlap between the magnitude of
biological and geothermal CO, flux in survey areas; this
overlap makes the two sources difficult to distinguish and
can give ambiguous survey results. This study
demonstrates the use of a laser-based optical absorption
technique (Cavity Ring-Down Spectroscopy, Picarro
G2132) to determine the stable carbon isotope composition
of gas samples collected from the accumulation chamber of
a portable soil diffuse CO, flux meter (West Systems,
Italy). Isotope samples were collected from the
accumulation chamber during normal CO, flux surveying at
the Tauhara and Te Mihi (Hot Hill) geothermal areas,
Taupo. This allowed both the magnitude of CO, flux, and
the relative proportions of biological and geothermal CO,
present to be determined. This combination of
measurements provides a powerful approach to distinguish
geothermal from biological CO, flux where the magnitude
of CO, flux alone is ambiguous.

1. INTRODUCTION
1.1. Soil diffuse CO, flux and geothermal exploration

Soil gas flux measurements allow the identification of faults
and near surface heat flow, assuming that those faults allow
greater fluid flow than elsewhere. As CO, is the major
component of typical geothermal gases, and is readily
detectable, it is the most appropriate component to focus
on.

In any survey of CO, flux a key task is the identification of
the biological component in the CO, flux measurements, so
this “background” can be accounted for (or quantified).

1.2 Approaches to identify the biological background
component

A review of volcanology and geothermal publications
shows that three approaches are commonly used to identify
and quantify background flux (Harvey et al., 2014). These

approaches include: (i) the graphical statistical approach
(GSA) that partitions separate log-normally distributed
populations using cumulative probability plots (Chiodini et
al., 1998; Fridriksson et al., 2006), (ii) taking a background
control set of measurements at some distance from areas of
visible surface thermal activity, where no magmatic CO,
flux is expected (Chiodini et al., 2007; Viveiros et al.,
2010), and (iii) evaluation of background on the basis of the
carbon (*3C) isotopic signature (Viveiros et al., 2010;
Rissmann et al.,2012).

This study investigates the use of a laser-based optical
absorption technique (Cavity Ring-Down Spectroscopy,
Picarro G2132) to determine the carbon (**CO,) isotopic
signature of gas samples collected from the accumulation
chamber of a portable soil diffuse CO, flux meter (West
Systems, Italy). Isotope samples were collected from the
accumulation chamber during normal CO, flux surveying at
the Tauhara and Te Mihi (Hot Hill) geothermal areas, and
at Kinloch (non-geothermal control area) near Taupo.

The aim of the study is to determine if geothermally
sourced CO, flux can be distinguished from biological
sourced CO, flux where the magnitude of CO, flux alone is
ambiguous.

2. METHODS

2.1 Field methods

Soil CO, flux measurements were made using a calibrated
West Systems portable soil gas flux meter (accumulation
chamber method). The accumulation method calculates
CO, flux by placing a 200 mm diameter accumulation
chamber on the soil surface and pressing it into the soil to
obtain a seal. Gases flowing into the chamber are pumped
to an infrared gas analyser and the increase in CO,
concentration inside the chamber over time is recorded by
the instrument. The rate of concentration increase is
proportional to flux.

Samples for 1*CO, isotope analysis were collected from the
accumulation chamber during flux measurement using a
syringe; the syringe accesses the accumulation chamber via
a septum on top of the chamber. The contents of the
syringe were then then introduced into 0.5 L Tedlar bags.
Soil CO, samples were withdrawn from the accumulation
chamber after 2 to 30 min. Samples were also collected
from the atmosphere to provide an atmospheric end-
member, which allows mixing trends to be analysed. The
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samples were analysed for CO, and CH, concentrations and
¥C0, using an isotopic CO, analyser (G2131-i Isotopic
Carbon Analyser, Picarro Inc., Santa Clara, CA, USA).

2.1 Experimental Control Study design

Isotope samples were collected from forest and grass
pasture at a farm at Kinloch, a non-geothermal area located
7km west of the Wairakei geothermal system boundary
(resistivity boundary) (Figure 1).
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Figure 1: Map of Taupo area showing study locations
at Te Mihi (Hot Hill) and Tauhara (magenta rectangles)
and experimental control area (magenta star) outside
the approximate Wairakei-Tauhara system boundary
(white boundary line). Map datum: WGS84.

Isotope samples were collected from forest, grass and scrub
(low vegetation), the three main vegetation types. Isotope
sampling was repeated (winter and summer) to determine if
any seasonal variation occurred.

Measurement locations were marked with survey pegs, so
that the exact location can be revisited over the course of
one year. CO, flux and soil temperature (30cm) were
measured at each location.

3. RESULTS AND DISCUSSION
3.1 CO2 Flux data

CO, flux populations from Te Mihi (Hot Hill), Tauhara and
the Control Set are compared as percentiles (Table 1), and
box and whisker plots (Figure 2). It is clear that the central
50% of biological flux measurements (25"- 75
percentiles) overlap with lower halves (<50 percentile) of
measurements from geothermal areas at both Te Mihi (Hot
Hill) and Tauhara (boxes in Figure 2). Te Mihi (Hot Hill)
shows the greatest overlap with the control set.

Accordingly, assuming the lower halves of CO, flux
measurements at Te Mihi (Hot Hill) and Tauhara are (at
least partly) geothermally sourced, the magnitude of CO,
flux alone cannot be used to distinguish biological and low
(<40 g m? d'*) geothermal measurements.

The following sections present the results of isotopic
analysis to verify CO, flux measurements at Te Mihi (Hot
Hill) and Tauhara are (at least partly) geothermally sourced,
and the Control Set biologically sourced.

3.2 Control Measurements

Isotopic results from the biological control set are presented
as a Keeling plot (Figure 3). The plot shows a clear mixing
line (R?=0.97) between ambient atmospheric CO, (-8.5%o)
and biogenic soil CO, flux (-26.4%.). -26%o is typical of
biogenic soil CO, flux (Smith et al. 2003). Accordingly, the
biological origin of soil CO, flux at Kinloch is confirmed.

One geothermal sample is also shown on the plot (Figure 3—
red dot). The geothermal sample is enriched in **CO, (-6.8
%o) relative to the biogenic samples (-26 %o), as expected
for a magmatic source in the Taupo Volcanic Zone (Lyon,
& Hulston, 1984).

3.3 Tauhara

CO, flux results at Tauhara show a clear relationship
between the central area of bare thermal ground and highest
geothermal CO, flux measurements (Figure 4).

Isotopic results at the Tauhara geothermal area are
presented as a Keeling plot (Figure 5). The mixing line
from the Kinloch control measutments is provided as a
reference (blue dash line - Figure 3 and Figure 5), and
shows that strong CO, flux measurements (CO, flux is
labelled in Figure 5) are located nearer to the centre of the
bare thermal ground. These measurements are also strongly
enriched in the heavier isotope 5'°C (Figure 5).

Measurement from peripheral grass areas (i.e. adjacent to
the bare thermal ground), are also enriched but to a lesser
extent than the bare thermal ground measurements.
Measurement from dry outer grass (farthest from the bare
thermal ground) are least isotopically enriched, with a
minor geothermal component possible.

Three member mixing analysis allows each sample
collected from the chamber to be expressed quantitatively
as the relative additions of the three end-members (ambient
atmosphere, biogenic and geothermal)(Hanson et al., 2014).
The proportion of geothermally sourced CO, end-member
in the chamber is clearly related to the intensity of CO, flux
(Figure 6) and is highest on the bare thermal ground (Figure
7).

3.4 Te Mihi (Hot Hill)

CO, flux results at Te Mihi (Hot Hill) show a clear
relationship between the central area of thermal ground
(black boundary) and highest geothermal CO, flux
measurements (Figure 8).

Isotopic results at the Te Mihi (Hot Hill) geothermal area
are presented as a Keeling plot (Figure 9). The mixing line
from the Kinloch control measutments is provided as a
reference (blue dash line - Figure 3 and Figure 9), and
shows that strong CO, flux measurements (CO, flux is
labelled in Figure 9) located nearer to the centre of the bare
thermal ground are also strongly enriched in the heavier
isotope 81°C.

Measurement from areas covered with Prostrate Manuka
(thermally tolerant vegetation), and grass areas at the
periphery of the thermal area, are also enriched but to a
lesser extent than the central bare thermal ground
measurements. Measurement from the peripheral grass
areas (farthest from the bare thermal ground) are least
isotopically enriched (Figure 9).
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Three member mixing analysis allows shows the proportion
of the geothermally sourced CO, end-member in the
accumulation chamber is clearly related to the intensity of
CO, flux (Figure 10), and is highest within the main
thermal area (Figure 11). A significant proportion (>8%) of
geothermally sourced CO, is present in all but 2
measurements (Figure 9 and Figure 10).

Table 1 Percentiles showing overlap for CO, flux data
sets: Te Mihi (Hot Hill), Tauhara and Control Set (g m™
db).

n 5% 25% 50% 75% 95%
Hot Hill 116 7 18 28 51 198
Tauhara 164 9 25 40 95 1237

Control 171 11 14 17 26 37
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Figure 2 Box and Whisker plot showing overlap
between CO, flux data sets: Te Mihi, Tauhara and
Control Set.
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Figure 3 Keeling Plot showing %o **CO, sampled from
accumulation chamber at Kinloch (grass control area)
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Figure 5 Keeling Plot showing %o *CO, sampled from
accumulation chamber at Tauhara. Purple mixing line
from control set (Figure 3) shown as a reference. Points
are labeled with CO, flux (g m? d%).
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4. CONCLUSIONS

Our results show the use of *CO, isotope analysis is a
highly effective tool to discriminate between geothermally
sourced and biologically sourced CO,. The technique will
be critical in vegetated areas where levels of biological CO,
flux are similar to, or dominate geothermal CO, flux;
without '*CO2 isotope analysis, the overlap between
geothermally sourced and biologically sourced CO,
provides ambiguous survey results.

The practical value of this research is to remove the
ambiguity of CO, flux results when surveying a prospect in
the early exploration phases of a geothermal project.
Thermal areas are obvious and often the focus of well
targeting. The real potential of the CO, flux technique lies
outside the thermal areas; to reliably identify blind faults, or
confirm faults have degassing geothermal fluids at depth.

The use of *CO, isotope analysis effectively raises the
sensitivity of the CO, flux technique, and likewise is
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expected to expand the utility of CO, flux surveys to locate
faults for well targeting.

Finally, the practicalities associated with *CO, isotope
analysis have only recently improved to the point where a
typical commercial CO, flux survey could include the type
isotope analysis undertaken here. Cavity Ring equipment
for isotope analysis is now commercially available, semi-
portable and rugged.
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