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ABSTRACT 
The “Geothermal Supermodels” project is a four-year New 
Zealand-based research programme focusing on developing 
next-generation integrated geothermal modelling tools. A 
major part of this programme is the development of a new 
open-source geothermal reservoir flow simulator, featuring 
modern modular object-oriented code design, parallelized 
assembly and solution of equations, leverage of established 
numerical libraries, improved input and output and 
improved convergence of natural state models. 

This paper describes the software design of this new 
simulator, the software development workflow (which 
includes integrated unit testing and automated generation of 
documentation) and progress to date on implementation, 
together with preliminary output from a test problem. 

1. INTRODUCTION 
The “Geothermal Supermodels” project is a four-year 
research programme based in New Zealand, aiming to 
develop next-generation integrated geothermal modelling 
tools. These include a new flow simulator, geophysical and 
geochemical codes, together with the linkages between 
them (Burnell et al., 2015). 

This paper focuses on the flow simulator component of the 
project, discussing currently-available simulators suitable 
for geothermal reservoir modelling, and outlining the 
specification for a new simulator. Details are given of the 
software design, development workflow and progress to 
date on implementation, as well as preliminary results from 
a demonstration problem. 

2. FLOW SIMULATOR REQUIREMENTS 
2.1 Thermodynamic and numerical requirements 
Fluid flows in geothermal systems are difficult to model 
numerically, largely because of the highly non-linear 
processes taking place. Fluids may undergo large changes 
in temperature, often resulting in phase transitions and 
zones of multi-phase flow. Numerical simulators for 
modelling these systems must not only be capable of 
representing this complex thermodynamic behaviour, but 
must also be based on numerical methods robust enough to 
cope with the additional computational challenges posed by 
geothermal problems. 

Of the few software packages available that meet these 
requirements, probably the best-known and most widely 
used for geothermal reservoir modelling is the TOUGH2 
simulator (Pruess, 2004). It is capable of modelling multi-
phase, multi-component flows at temperatures up to around 
350°C, and its algorithms for handling phase changes are 

robust in most situations. It is based on an “integrated finite 
difference” (or finite volume) numerical method which, 
while being of relatively low order accuracy, is reliable and 
applicable to unstructured meshes, which are often useful 
for modelling e.g. complex domains or areas of local 
refinement. 

The TOUGH2 code dates back to the 1980s, and its 
longevity and the shortage of competing codes in the 
geothermal modelling sector are indications of the level of 
difficulty involved in modelling geothermal systems, and of 
the robustness of the numerical formulation TOUGH2 uses. 

However, in recent years the need to solve larger and more 
demanding problems has become increasingly common. As 
a result, new simulation software requirements have 
emerged and the limitations of older software like 
TOUGH2 have become more apparent. Some of these 
requirements are detailed below. 

2.2 Additional requirements 
2.2.1 Large models 
Present-day geothermal reservoir models regularly call for 
numbers of grid blocks in the range 104 - 105, still small 
compared with models used for example by the petroleum 
industry, but probably not envisaged when software like 
TOUGH2 was written. Progressing to larger, more detailed 
models is not practical without code able to run in parallel 
on multi-processor desktop machines or larger compute 
clusters. 

Parallel versions of TOUGH2 have been developed, e.g. 
TOUGH2-MP (Zhang et al,  2003) and TOUGH+ (Moridis 
et al., 2008), but in our view retro-fitting parallel capability 
to existing serial code is not only very difficult, but usually 
not as successful as code designed and written in parallel 
from the start. In addition, the multi-processor versions of 
TOUGH2 are still hampered by other design limitations of 
the original code (see below). 

2.2.2 Complex production scenarios 
Simulations of geothermal production scenarios requires 
the ability to model complex arrangements of wells 
(generators) whose flow rates are influenced by reservoir 
conditions, flow rates in other wells and management 
constraints. Makeup wells need to be added, as needed, into 
the model. None of this is possible with TOUGH2 in its 
standard form. Variants such as AUTOUGH2 (Yeh et al., 
2012) do include some capability for it, but the convenience 
and flexibility of these extra options is again limited by the 
original code design. 

2.2.3 Input and output 
The input for TOUGH2 (even in its more recent 
incarnations) comes from a fixed-format text file. The 
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fixed-width formats are relatively easily machine-readable 
(and writeable) but can easily lead to subtle errors when 
edited manually. 

Output from TOUGH2 is also in the form of formatted text 
files. Particularly for large models, this make the output 
files large in size and slow to post-process. Furthermore, 
there is little standardization of the particular output 
formats between different versions of TOUGH2 or even 
between different equation-of-state modules, which makes 
machine reading for post-processing unnecessarily difficult. 

More efficient and effective options for input and output 
formats, which avoid these problems, are now available and 
will be described below. 

2.2.4 Thermodynamic formulation 
TOUGH2 (and most other simulators used for non-
isothermal subsurface modelling) use the IFC-67 
thermodynamic formulation for calculating the properties 
of water. However, this has now been superseded by the 
IAPWS-97 formulation (Wagner et al., 2000), which is 
faster and more accurate. In some situations the differences 
in results between the two formulations can be significant. 
Ideally, it would be useful to have both available, with 
IAPWS-97 for general use and IFC-67 for backwards 
compatibility and benchmarking purposes. 

2.2.5 Convergence of natural state models 
One of the most problematic aspects of geothermal 
reservoir modelling is obtaining a stable natural state 
solution, usually by trying to run the natural state TOUGH2 
model with adaptive time stepping until the time step size is 
large. In many cases a large time step size is, in practice, 
difficult to reach. Sometimes this may be a result of 
complex rock structures in the model or the movement of 
boiling zones or air/water interfaces through the mesh. 

In other cases, however, it can arise from subtle 
inconsistencies in the way thermodynamic properties are 
calculated by TOUGH2 during phase transitions 
(O'Sullivan et al., 2013). Hence, there is room for 
improvement in the way these calculations are carried out. 
Some such improvements have recently been added to the 
AUTOUGH2 simulator. 

Additionally, the solution of the linear equations (formed 
during each iteration of the solution of the governing non-
linear equations at each time step) can fail, particularly as 
the model approaches a steady state and the linear equations 
become increasingly ill-conditioned. Improved linear 
equation solvers and preconditioners for difficult problems 
are an area of active research and some are available via 
commonly-used numerical libraries (see below). Use of 
such libraries, rather than using built-in solvers, would 
allow access to these new methods. 

2.2.6 Extended modelling capability 
For some problems, extended modelling capability is 
needed, beyond that provided by a flow simulator like 
TOUGH2 in its basic form. For example, some models may 
require the simulation of rock mechanics or the movement 
of chemical species. For deeper models, supercritical 
capability may be need to handle very high temperatures 
and pressures. 

Ideally, it should be possible to add such extra capability to 
the simulator using a modular approach, as has been used in 
multi-physics codes such as MOOSE (Podgorney et al., 
2010). Unfortunately the main TOUGH2 code was written 
in an era when this was not yet possible, at least within the 
limitations of the Fortran 77 language it was written in. 
More modern languages and coding paradigms make it 
easier to develop clear, modular code. However, this is not 
something that can easily be retro-fitted to existing 
software. Adding significant extra capability to TOUGH2 
has generally involved 'forking' the entire code (i.e. creating 
a separate version with the extra capability added), e.g. 
chemical transport via TOUGHREACT (Xu et al., 2006) or 
supercritical capability via the supercritical version of 
AUTOUGH2 (Croucher and O'Sullivan, 2008). 

2.2.7 Licensing 
TOUGH2 (although not TOUGH+) is distributed with 
source code, which has enabled users to understand how the 
code works and have confidence in the algorithms used. It 
has also enabled users to modify the code as needed to 
solve particular problems. 

However, there are no requirements in the TOUGH2 
license for users to share modifications with the original 
developers. This has contributed to the fragmentation of the 
code into multiple independently forked versions. 

Many newer scientific software projects use open-source 
“copyleft” licenses (e.g. GNU GPL or LGPL) which allow 
users to make modifications, but require these to be shared 
with the original developers, discouraging fragmentation. 
Using a standardized open-source license makes the code 
accessible to industry users, academic researchers and 
students alike, and makes the terms easier for users to 
interpret. 

2.3 Other simulators 
Other simulators have been more recently developed with 
capabilities approaching the requirements listed above for 
geothermal simulation. These include DuMux (Flemisch et 
al., 2007), OpenGeoSys (Kolditz et al., 2012), PFLOTRAN 
(Mills et al., 2007) and OOMPFS (Franz, 2015). 

However, while these codes can simulate multi-phase 
flows, most do not have the simulation of high-temperature 
geothermal systems as an explicit goal, and hence do not 
appear to have the phase-changing capabilities needed. For 
the same reason, they generally do not have off-the-shelf 
ability for simulating complex production scenarios. 

The exception is OOMPFS, which was developed 
specifically for geothermal applications, but unfortunately 
is at present neither parallelized nor open-source. Hence, 
the decision was taken to develop a new geothermal flow 
simulator. 

3. SOFTWARE DESIGN 
From the requirements laid out above, it was clear that the 
new flow simulator would need a modern modular, object-
oriented code architecture. Parallel capability would also 
need to be built in to the basic design, rather than added 
later. 

We also wanted to make use of existing software libraries 
for numerical computation. We chose to base our simulator 
on the PETSc library (Balay et al., 2015), a highly-regarded 
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and long established open-source library for scientific 
computation, first released in 1995. The PETSc library is 
callable from the C/C++, Fortran and Python programming 
languages and includes parallelized vector and matrix data 
structures, together with parallel tools for linear and non-
linear equation solution, data management on structured 
and unstructured distributed meshes, and more. PETSc is 
used by a number of well-known simulators including 
PFLOTRAN, which has demonstrated good scalability on 
very large simulation problems (up to 109 unknowns and 
60,000 processors). 

For the choice of programming language, we needed a 
language that would allow the kind of modular object-
oriented code architecture described above, without 
compromising performance (i.e. computation speed). Many 
recent codes, e.g. DuMux, OpenGeoSys and OOMPFS use 
the C++ language. However, the flexibility of C++ means 
that special measures (e.g. extensive use of templates) need 
to be taken to achieve good performance. 

The latest revisions of the Fortran language standard, 
Fortran 2003 and 2008, include substantial new support for 
object-oriented programming. This means it is now possible 
to take advantage of Fortran's high numerical efficiency in 
an object-oriented setting. Like the developers of 
PFLOTRAN, we chose to use Fortran 2003 as the language 
for our project. 

4. SOFTWARE DEVELOPMENT 
We have adopted a test-driven software development 
process, which integrates unit testing (i.e. testing of 
individual subroutines) into the code development cycle. 
This is done using the FRUIT library for Fortran unit 
testing (http://sourceforge.net/projects/fortranxunit/), 
supplemented by a Python interface called FRUITPy that 
we developed and released as a standalone open-source 
project (https://github.com/acroucher/FRUITPy). 

We use GNU Make as the software build system, as it is 
easy to integrate this with PETSc, and the Git tool for 
software version control. Automatic software 
documentation (for developers, rather than users) is 
generated by a relatively new tool called FORD 
(https://github.com/cmacmackin/ford), which is aimed 
specifically at Fortran code documentation. 

5. SOFTWARE IMPLEMENTATION 
5.1 Numerical formulation 
The code uses a finite volume numerical formulation 
similar to that used by TOUGH2, solving for cell-averaged 
primary thermodynamic variables and computing fluxes 
between cells using a simple two-point approximation and 
upstream weighting. However, the code is flexible enough 
to permit experimentation with other formulations. 

Time stepping is handled in a modular fashion, abstracted 
out of the remainder of the code, to permit the use of 
different numerical time stepping schemes. Currently the 
standard backward Euler scheme (as used by TOUGH2) is 
implemented, as well as the BDF2 method, which is a 
variable-stepsize multistep method with stability properties 
and computational cost similar to backward Euler, but 
second-order accuracy. In future we plan to investigate the 
use of exponential Euler time stepping methods (Pope, 
1963), as well as schemes for the direct solution of steady-
state problems without time stepping. 

5.2 Mesh handling and data structures 
The PETSc library recently introduced support for 
unstructured meshes distributed over multiple processors, 
via a new DMPlex class. This is used for storing mesh data, 
handling parallel mesh partitioning, and creation of parallel 
vectors and matrices on the model mesh. 

By default, our code will require a geometric mesh to be 
specified. This is in contrast with TOUGH2 which only 
requires the finite volume mesh data (volumes, connection 
areas and connection distances) to be input. However, in 
most cases an auxiliary geometric mesh is needed for 
preparation of the finite volume mesh data and for post-
processing. In addition, a geometric mesh is needed for 
some types of extended modelling capability, e.g. rock 
mechanics. 

Over the mesh, three main parallel vectors are defined for 
storing the solution (primary thermodynamic variables in 
each cell), fluid properties and rock properties respectively. 
Fluid properties in each cell are calculated by the equation 
of state from the primary variables before each evaluation 
of the mass and energy balance equations. Rock properties 
in each cell can vary with time and be independently 
specified, or initialized from rock types as in TOUGH2. 

Evaluation of the mass and energy balance equations in 
each cell is carried out using object-oriented local-level 
data structures, which contain pointers into the global 
parallel data vectors. Indexing into these vectors is handled 
by the DMPlex class. 

5.3 Thermodynamics and equations of state 
An abstract thermodynamics class is defined and sub-
classed to implement the specific IFC-67 and IAPWS-97 
thermodynamic formulations. This ensures both 
formulations have a consistent interface, and aside from 
selecting the desired formulation (based on input data) no 
further code is needed to handle multiple formulations. 

Similarly, an abstract equation of state (EOS) class is 
defined and sub-classed for specific equations of state. The 
aim of this approach is to ensure as much code re-use, and 
hence consistency, as possible between different EOS 
modules. To date only pure water EOS modules (isothermal 
and non-isothermal) have been implemented. 

5.4 Phase transitions 
As in TOUGH2, phase transitions are handled using 
variable switching, though at the time of writing this is not 
yet fully implemented. As noted above, if a high degree of 
consistency is not maintained when re-calculating fluid 
properties after the transition, the non-linear equation solver 
may fail to converge, and this is one of the factors impeding 
the progress of TOUGH2 steady state solutions. 

In TOUGH2, the equation of state module also calculates 
fluid properties in phases which are not physically present, 
as a way of simplifying the calculation of fluxes between 
cells with different phase conditions. This is a reasonable 
approach for sub-critical fluid, but becomes cumbersome 
for transitions to and from supercritical fluid, in which there 
is only one possible phase. To address this, we are 
considering a modified flux calculation which would avoid 
the need for calculating fluid properties in absent phases. 
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5.5 Sources and sinks 
Currently only simple constant-rate sources and sinks have 
been implemented. In future we plan to introduce 
something along the lines of a higher-level “source 
manager” object to handle the complex source and sink 
configurations needed for modelling production scenarios, 
in which generation rates may be influenced by reservoir 
conditions, other sources or sinks, or management 
constraints. This would avoid the need for the proliferation 
of generator types introduced into AUTOUGH2 for 
handling specific situations. 

5.6 Boundary conditions 
Flux (i.e. Neumann) boundary conditions are most easily 
modelled, as in TOUGH2, using sources and sinks. For 
Dirichlet boundary conditions (e.g. specifying pressure and 
temperature), TOUGH2 requires the use of extra cells that 
are either “inactive” or have large volume to prevent their 
properties from changing during the simulation. However, 
this can complicate pre- and post-processing, because the 
physical geometric mesh does not contain such cells. 

The PETSc DMPlex class facilitates the use of “ghost cells” 
for the application of Dirichlet boundary conditions (and 
are also used for parallel communication between cells on 
different processors). As these are created internally, they 
need not be part of the model input. Instead, boundary 
conditions can be specified explicitly and independently of 
the mesh definition. 

5.7 Solution of linear and non-linear equations 
At each time step, regardless of the time-stepping method 
used, the updated primary thermodynamic variables at the 
end of the time step are computed by solving the non-linear 
mass and energy balance equations. We use the PETSc 
SNES (Scalable Non-linear Equation Solver) class to solve 
the equations in parallel. This can use a standard Newton-
Raphson method, with or without line searching, or other 
techniques as desired. 

At each iteration the Jacobian matrix (the derivatives of the 
mass and energy balance equations with respect to the 
primary variables) must be evaluated. The PETSc SNES 
can optionally calculate the Jacobian itself using finite 
differencing, and at present we are using this option. In the 
longer term we plan to investigate computing the Jacobian 
analytically, as has been done in some other codes such as 
FEHM (Zyvoloski, 2007), to improve convergence of the 
non-linear equation solution. 

Finally, at each iteration the solution is updated by solving 
a set of linear equations. For typical problems this is where 
a simulator will spend most of its computational time. By 
default the SNES uses the PETSc KSP suite of scalable 
linear equation solvers, which offers a range of solvers and 
preconditioners for solving sets of linear equations in 
parallel. 

5.8 Input and output 
High-level input for the new simulator is in the form of a 
text file in JSON format. JSON (http://www.json.org) is a 
lightweight open standard data-interchange format, often 
used for storing software configuration data. It can 
represent simple data types or hierarchies of more complex 
objects. It can be read and edited manually via a text editor 
or manipulated in code via libraries available for most 

programming languages. For parsing JSON input from 
Fortran our code uses the open-source FSON library 
(https://github.com/josephalevin/fson). Using JSON for 
input avoids many of the problems associated with a 
custom fixed-format file such as that used by TOUGH2, as 
well as the need to write any parsing code. 

Particularly for large problems, it is desirable to be able to 
read some data from auxiliary files specified in the main 
input, possibly in other formats. For example, mesh data 
can be read in from separate files in mesh formats 
supported by PETSc's DMPlex class (currently ExodusII 
and GMSH). 

For output, we plan to support multiple different formats 
including VTK (used for 3D visualization) and HDF5, the 
latest version of the Hierarchical Data Format. This is a 
standardized format designed to store and organize large 
datasets efficiently, and PETSc has built-in ability to read 
and write HDF5. 

6. DEMONSTRATION PROBLEM 
We present here results from running the new simulator on 
a simple test problem, to demonstrate some of its current 
capabilities. The model domain for the problem is a one-
dimensional vertical column, 1 km deep, starting from 
isothermal hydrostatic conditions at a temperature of 20°C. 
Atmospheric pressure and temperature boundary conditions 
are applied at the top, and hot water with enthalpy 376.9 
kJ/kg (corresponding to approximately 90°C temperature) 
is injected at 10 kg/s at the bottom. 

Here we calculate the changing pressure and temperature 
profiles for this problem on a simple grid of 10 cells, with 
side length 100 m in each direction, using both the new 
code and TOUGH2 for comparison. For our code, we 
selected the IFC-67 thermodynamic formulation and 
backward Euler time stepping, for consistency with 
TOUGH2. 

The initial hydrostatic conditions for both simulators are 
computed using TOUGH2, by removing the source term 
and running to a steady state (time 1014 s). Figures 1 and 2 
show the modelled pressures and temperatures for the 
injection simulation at times 107 s, 108 s and 109 s. The 
results from the two simulators are identical, within the 
precision limitations of the fixed-format TOUGH2 output, 
showing the column of initially cold water heating up as the 
hot water is injected, and the pressure profile altering as a 
result of the lower density of the warmed fluid. 
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Figure 1: Modelled temperature vs. elevation for 1-D 
vertical hot-water injection problem at three 
different times, with TOUGH2 results shown for 
comparison 

 

Figure 2: Modelled pressure vs. elevation for 1-D 
vertical hot-water injection problem at three 
different times, with TOUGH2 results shown for 
comparison 

7. CONCLUSIONS 
Most of the important components of the new flow 
simulator are now in place. It is able to simulate simple 
non-isothermal problems on 3-D unstructured meshes, 
running in serial or parallel, and produce results identical to 
those from TOUGH2 when comparable program options 
are selected. We are confident that the groundwork has 
been laid for a new simulator that meets the requirements 
for next-generation geothermal reservoir modelling. 
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