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ABSTRACT

The “Geothermal Supermodels” project is a four-year New
Zealand-based research programme focusing on developing
next-generation integrated geothermal modelling tools. A
major part of this programme is the development of a new
open-source geothermal reservoir flow simulator, featuring
modern modular object-oriented code design, parallelized
assembly and solution of equations, leverage of established
numerical libraries, improved input and output and
improved convergence of natural state models.

This paper describes the software design of this new
simulator, the software development workflow (which
includes integrated unit testing and automated generation of
documentation) and progress to date on implementation,
together with preliminary output from a test problem.

1. INTRODUCTION

The “Geothermal Supermodels” project is a four-year
research programme based in New Zealand, aiming to
develop next-generation integrated geothermal modelling
tools. These include a new flow simulator, geophysical and
geochemical codes, together with the linkages between
them (Burnell et al., 2015).

This paper focuses on the flow simulator component of the
project, discussing currently-available simulators suitable
for geothermal reservoir modelling, and outlining the
specification for a new simulator. Details are given of the
software design, development workflow and progress to
date on implementation, as well as preliminary results from
a demonstration problem.

2. FLOW SIMULATOR REQUIREMENTS
2.1 Thermodynamic and numerical requirements

Fluid flows in geothermal systems are difficult to model
numerically, largely because of the highly non-linear
processes taking place. Fluids may undergo large changes
in temperature, often resulting in phase transitions and
zones of multi-phase flow. Numerical simulators for
modelling these systems must not only be capable of
representing this complex thermodynamic behaviour, but
must also be based on numerical methods robust enough to
cope with the additional computational challenges posed by
geothermal problems.

Of the few software packages available that meet these
requirements, probably the best-known and most widely
used for geothermal reservoir modelling is the TOUGH2
simulator (Pruess, 2004). It is capable of modelling multi-
phase, multi-component flows at temperatures up to around
350°C, and its algorithms for handling phase changes are

robust in most situations. It is based on an “integrated finite
difference” (or finite volume) numerical method which,
while being of relatively low order accuracy, is reliable and
applicable to unstructured meshes, which are often useful
for modelling e.g. complex domains or areas of local
refinement.

The TOUGH2 code dates back to the 1980s, and its
longevity and the shortage of competing codes in the
geothermal modelling sector are indications of the level of
difficulty involved in modelling geothermal systems, and of
the robustness of the numerical formulation TOUGH2 uses.

However, in recent years the need to solve larger and more
demanding problems has become increasingly common. As
a result, new simulation software requirements have
emerged and the limitations of older software like
TOUGH2 have become more apparent. Some of these
requirements are detailed below.

2.2 Additional requirements

2.2.1 Large models

Present-day geothermal reservoir models regularly call for
numbers of grid blocks in the range 10* - 10°, still small
compared with models used for example by the petroleum
industry, but probably not envisaged when software like
TOUGH2 was written. Progressing to larger, more detailed
models is not practical without code able to run in parallel
on multi-processor desktop machines or larger compute
clusters.

Parallel versions of TOUGH2 have been developed, e.g.
TOUGH2-MP (Zhang et al, 2003) and TOUGH+ (Moridis
et al., 2008), but in our view retro-fitting parallel capability
to existing serial code is not only very difficult, but usually
not as successful as code designed and written in parallel
from the start. In addition, the multi-processor versions of
TOUGH?2 are still hampered by other design limitations of
the original code (see below).

2.2.2 Complex production scenarios

Simulations of geothermal production scenarios requires
the ability to model complex arrangements of wells
(generators) whose flow rates are influenced by reservoir
conditions, flow rates in other wells and management
constraints. Makeup wells need to be added, as needed, into
the model. None of this is possible with TOUGH?2 in its
standard form. Variants such as AUTOUGH2 (Yeh et al.,
2012) do include some capability for it, but the convenience
and flexibility of these extra options is again limited by the
original code design.

2.2.3 Input and output

The input for TOUGH2 (even in its more recent

incarnations) comes from a fixed-format text file. The
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fixed-width formats are relatively easily machine-readable
(and writeable) but can easily lead to subtle errors when
edited manually.

Output from TOUGH2 is also in the form of formatted text
files. Particularly for large models, this make the output
files large in size and slow to post-process. Furthermore,
there is little standardization of the particular output
formats between different versions of TOUGH2 or even
between different equation-of-state modules, which makes
machine reading for post-processing unnecessarily difficult.

More efficient and effective options for input and output
formats, which avoid these problems, are now available and
will be described below.

2.2.4 Thermodynamic formulation

TOUGH2 (and most other simulators used for non-
isothermal  subsurface modelling) wuse the IFC-67
thermodynamic formulation for calculating the properties
of water. However, this has now been superseded by the
IAPWS-97 formulation (Wagner et al., 2000), which is
faster and more accurate. In some situations the differences
in results between the two formulations can be significant.
Ideally, it would be useful to have both available, with
IAPWS-97 for general use and IFC-67 for backwards
compatibility and benchmarking purposes.

2.2.5 Convergence of natural state models

One of the most problematic aspects of geothermal
reservoir modelling is obtaining a stable natural state
solution, usually by trying to run the natural state TOUGH2
model with adaptive time stepping until the time step size is
large. In many cases a large time step size is, in practice,
difficult to reach. Sometimes this may be a result of
complex rock structures in the model or the movement of
boiling zones or air/water interfaces through the mesh.

In other cases, however, it can arise from subtle
inconsistencies in the way thermodynamic properties are
calculated by TOUGH2 during phase transitions
(O'Sullivan et al., 2013). Hence, there is room for
improvement in the way these calculations are carried out.
Some such improvements have recently been added to the
AUTOUGH2 simulator.

Additionally, the solution of the linear equations (formed
during each iteration of the solution of the governing non-
linear equations at each time step) can fail, particularly as
the model approaches a steady state and the linear equations
become increasingly ill-conditioned. Improved linear
equation solvers and preconditioners for difficult problems
are an area of active research and some are available via
commonly-used numerical libraries (see below). Use of
such libraries, rather than using built-in solvers, would
allow access to these new methods.

2.2.6 Extended modelling capability

For some problems, extended modelling capability is
needed, beyond that provided by a flow simulator like
TOUGH?2 in its basic form. For example, some models may
require the simulation of rock mechanics or the movement
of chemical species. For deeper models, supercritical
capability may be need to handle very high temperatures
and pressures.

Ideally, it should be possible to add such extra capability to
the simulator using a modular approach, as has been used in
multi-physics codes such as MOOSE (Podgorney et al.,
2010). Unfortunately the main TOUGH2 code was written
in an era when this was not yet possible, at least within the
limitations of the Fortran 77 language it was written in.
More modern languages and coding paradigms make it
easier to develop clear, modular code. However, this is not
something that can easily be retro-fitted to existing
software. Adding significant extra capability to TOUGH2
has generally involved ‘forking' the entire code (i.e. creating
a separate version with the extra capability added), e.g.
chemical transport via TOUGHREACT (Xu et al., 2006) or
supercritical capability via the supercritical version of
AUTOUGH?2 (Croucher and O'Sullivan, 2008).

2.2.7 Licensing

TOUGH2 (although not TOUGH+) is distributed with
source code, which has enabled users to understand how the
code works and have confidence in the algorithms used. It
has also enabled users to modify the code as needed to
solve particular problems.

However, there are no requirements in the TOUGH2
license for users to share modifications with the original
developers. This has contributed to the fragmentation of the
code into multiple independently forked versions.

Many newer scientific software projects use open-source
“copyleft” licenses (e.g. GNU GPL or LGPL) which allow
users to make modifications, but require these to be shared
with the original developers, discouraging fragmentation.
Using a standardized open-source license makes the code
accessible to industry users, academic researchers and
students alike, and makes the terms easier for users to
interpret.

2.3 Other simulators

Other simulators have been more recently developed with
capabilities approaching the requirements listed above for
geothermal simulation. These include DuMu* (Flemisch et
al., 2007), OpenGeoSys (Kolditz et al., 2012), PFLOTRAN
(Mills et al., 2007) and OOMPFS (Franz, 2015).

However, while these codes can simulate multi-phase
flows, most do not have the simulation of high-temperature
geothermal systems as an explicit goal, and hence do not
appear to have the phase-changing capabilities needed. For
the same reason, they generally do not have off-the-shelf
ability for simulating complex production scenarios.

The exception is OOMPFS, which was developed
specifically for geothermal applications, but unfortunately
is at present neither parallelized nor open-source. Hence,
the decision was taken to develop a new geothermal flow
simulator.

3. SOFTWARE DESIGN

From the requirements laid out above, it was clear that the
new flow simulator would need a modern modular, object-
oriented code architecture. Parallel capability would also
need to be built in to the basic design, rather than added
later.

We also wanted to make use of existing software libraries
for numerical computation. We chose to base our simulator
on the PETSc library (Balay et al., 2015), a highly-regarded
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and long established open-source library for scientific
computation, first released in 1995. The PETSc library is
callable from the C/C++, Fortran and Python programming
languages and includes parallelized vector and matrix data
structures, together with parallel tools for linear and non-
linear equation solution, data management on structured
and unstructured distributed meshes, and more. PETSc is
used by a number of well-known simulators including
PFLOTRAN, which has demonstrated good scalability on
very large simulation problems (up to 10° unknowns and
60,000 processors).

For the choice of programming language, we needed a
language that would allow the kind of modular object-
oriented code architecture described above, without
compromising performance (i.e. computation speed). Many
recent codes, e.g. DuMux, OpenGeoSys and OOMPFS use
the C++ language. However, the flexibility of C++ means
that special measures (e.g. extensive use of templates) need
to be taken to achieve good performance.

The latest revisions of the Fortran language standard,
Fortran 2003 and 2008, include substantial new support for
object-oriented programming. This means it is now possible
to take advantage of Fortran's high numerical efficiency in
an object-oriented setting. Like the developers of
PFLOTRAN, we chose to use Fortran 2003 as the language
for our project.

4. SOFTWARE DEVELOPMENT

We have adopted a test-driven software development
process, which integrates unit testing (i.e. testing of
individual subroutines) into the code development cycle.
This is done using the FRUIT library for Fortran unit
testing (http://sourceforge.net/projects/fortranxunit/),
supplemented by a Python interface called FRUITPy that
we developed and released as a standalone open-source
project (https://github.com/acroucher/FRUITPY).

We use GNU Make as the software build system, as it is
easy to integrate this with PETSc, and the Git tool for
software  version  control.  Automatic  software
documentation (for developers, rather than users) is
generated by a relatively new tool called FORD
(https://github.com/cmacmackin/ford), which is aimed
specifically at Fortran code documentation.

5. SOFTWARE IMPLEMENTATION
5.1 Numerical formulation

The code uses a finite volume numerical formulation
similar to that used by TOUGH?2, solving for cell-averaged
primary thermodynamic variables and computing fluxes
between cells using a simple two-point approximation and
upstream weighting. However, the code is flexible enough
to permit experimentation with other formulations.

Time stepping is handled in a modular fashion, abstracted
out of the remainder of the code, to permit the use of
different numerical time stepping schemes. Currently the
standard backward Euler scheme (as used by TOUGH?2) is
implemented, as well as the BDF2 method, which is a
variable-stepsize multistep method with stability properties
and computational cost similar to backward Euler, but
second-order accuracy. In future we plan to investigate the
use of exponential Euler time stepping methods (Pope,
1963), as well as schemes for the direct solution of steady-
state problems without time stepping.

5.2 Mesh handling and data structures

The PETSc library recently introduced support for
unstructured meshes distributed over multiple processors,
via a new DMPlex class. This is used for storing mesh data,
handling parallel mesh partitioning, and creation of parallel
vectors and matrices on the model mesh.

By default, our code will require a geometric mesh to be
specified. This is in contrast with TOUGH2 which only
requires the finite volume mesh data (volumes, connection
areas and connection distances) to be input. However, in
most cases an auxiliary geometric mesh is needed for
preparation of the finite volume mesh data and for post-
processing. In addition, a geometric mesh is needed for
some types of extended modelling capability, e.g. rock
mechanics.

Over the mesh, three main parallel vectors are defined for
storing the solution (primary thermodynamic variables in
each cell), fluid properties and rock properties respectively.
Fluid properties in each cell are calculated by the equation
of state from the primary variables before each evaluation
of the mass and energy balance equations. Rock properties
in each cell can vary with time and be independently
specified, or initialized from rock types as in TOUGH2.

Evaluation of the mass and energy balance equations in
each cell is carried out using object-oriented local-level
data structures, which contain pointers into the global
parallel data vectors. Indexing into these vectors is handled
by the DMPlex class.

5.3 Thermodynamics and equations of state

An abstract thermodynamics class is defined and sub-
classed to implement the specific IFC-67 and IAPWS-97
thermodynamic ~ formulations.  This  ensures  both
formulations have a consistent interface, and aside from
selecting the desired formulation (based on input data) no
further code is needed to handle multiple formulations.

Similarly, an abstract equation of state (EOS) class is
defined and sub-classed for specific equations of state. The
aim of this approach is to ensure as much code re-use, and
hence consistency, as possible between different EOS
modules. To date only pure water EOS modules (isothermal
and non-isothermal) have been implemented.

5.4 Phase transitions

As in TOUGHZ2, phase transitions are handled using
variable switching, though at the time of writing this is not
yet fully implemented. As noted above, if a high degree of
consistency is not maintained when re-calculating fluid
properties after the transition, the non-linear equation solver
may fail to converge, and this is one of the factors impeding
the progress of TOUGH?2 steady state solutions.

In TOUGH?Z, the equation of state module also calculates
fluid properties in phases which are not physically present,
as a way of simplifying the calculation of fluxes between
cells with different phase conditions. This is a reasonable
approach for sub-critical fluid, but becomes cumbersome
for transitions to and from supercritical fluid, in which there
is only one possible phase. To address this, we are
considering a modified flux calculation which would avoid
the need for calculating fluid properties in absent phases.
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5.5 Sources and sinks

Currently only simple constant-rate sources and sinks have
been implemented. In future we plan to introduce
something along the lines of a higher-level “source
manager” object to handle the complex source and sink
configurations needed for modelling production scenarios,
in which generation rates may be influenced by reservoir
conditions, other sources or sinks, or management
constraints. This would avoid the need for the proliferation
of generator types introduced into AUTOUGH2 for
handling specific situations.

5.6 Boundary conditions

Flux (i.e. Neumann) boundary conditions are most easily
modelled, as in TOUGH2, using sources and sinks. For
Dirichlet boundary conditions (e.g. specifying pressure and
temperature), TOUGH2 requires the use of extra cells that
are either “inactive” or have large volume to prevent their
properties from changing during the simulation. However,
this can complicate pre- and post-processing, because the
physical geometric mesh does not contain such cells.

The PETSc DMPIex class facilitates the use of “ghost cells”
for the application of Dirichlet boundary conditions (and
are also used for parallel communication between cells on
different processors). As these are created internally, they
need not be part of the model input. Instead, boundary
conditions can be specified explicitly and independently of
the mesh definition.

5.7 Solution of linear and non-linear equations

At each time step, regardless of the time-stepping method
used, the updated primary thermodynamic variables at the
end of the time step are computed by solving the non-linear
mass and energy balance equations. We use the PETSc
SNES (Scalable Non-linear Equation Solver) class to solve
the equations in parallel. This can use a standard Newton-
Raphson method, with or without line searching, or other
techniques as desired.

At each iteration the Jacobian matrix (the derivatives of the
mass and energy balance equations with respect to the
primary variables) must be evaluated. The PETSc SNES
can optionally calculate the Jacobian itself using finite
differencing, and at present we are using this option. In the
longer term we plan to investigate computing the Jacobian
analytically, as has been done in some other codes such as
FEHM (Zyvoloski, 2007), to improve convergence of the
non-linear equation solution.

Finally, at each iteration the solution is updated by solving
a set of linear equations. For typical problems this is where
a simulator will spend most of its computational time. By
default the SNES uses the PETSc KSP suite of scalable
linear equation solvers, which offers a range of solvers and
preconditioners for solving sets of linear equations in
parallel.

5.8 Input and output

High-level input for the new simulator is in the form of a
text file in JSON format. JSON (http://www.json.org) is a
lightweight open standard data-interchange format, often
used for storing software configuration data. It can
represent simple data types or hierarchies of more complex
objects. It can be read and edited manually via a text editor
or manipulated in code via libraries available for most

programming languages. For parsing JSON input from
Fortran our code uses the open-source FSON library
(https://github.com/josephalevin/fson). Using JSON for
input avoids many of the problems associated with a
custom fixed-format file such as that used by TOUGH?2, as
well as the need to write any parsing code.

Particularly for large problems, it is desirable to be able to
read some data from auxiliary files specified in the main
input, possibly in other formats. For example, mesh data
can be read in from separate files in mesh formats
supported by PETSc's DMPlex class (currently Exodusll
and GMSH).

For output, we plan to support multiple different formats
including VTK (used for 3D visualization) and HDF5, the
latest version of the Hierarchical Data Format. This is a
standardized format designed to store and organize large
datasets efficiently, and PETSc has built-in ability to read
and write HDF5.

6. DEMONSTRATION PROBLEM

We present here results from running the new simulator on
a simple test problem, to demonstrate some of its current
capabilities. The model domain for the problem is a one-
dimensional vertical column, 1 km deep, starting from
isothermal hydrostatic conditions at a temperature of 20°C.
Atmospheric pressure and temperature boundary conditions
are applied at the top, and hot water with enthalpy 376.9
kJ/kg (corresponding to approximately 90°C temperature)
is injected at 10 kg/s at the bottom.

Here we calculate the changing pressure and temperature
profiles for this problem on a simple grid of 10 cells, with
side length 100 m in each direction, using both the new
code and TOUGH2 for comparison. For our code, we
selected the IFC-67 thermodynamic formulation and
backward Euler time stepping, for consistency with
TOUGH2.

The initial hydrostatic conditions for both simulators are
computed using TOUGH2, by removing the source term
and running to a steady state (time 10 s). Figures 1 and 2
show the modelled pressures and temperatures for the
injection simulation at times 10” s, 10® s and 10° s. The
results from the two simulators are identical, within the
precision limitations of the fixed-format TOUGH2 output,
showing the column of initially cold water heating up as the
hot water is injected, and the pressure profile altering as a
result of the lower density of the warmed fluid.
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Figure 1: Modelled temperature vs. elevation for 1-D
vertical hot-water injection problem at three
different times, with TOUGH2 results shown for
comparison
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Figure 2: Modelled pressure vs. elevation for 1-D
vertical hot-water injection problem at three
different times, with TOUGH2 results shown for
comparison

7. CONCLUSIONS

Most of the important components of the new flow
simulator are now in place. It is able to simulate simple
non-isothermal problems on 3-D unstructured meshes,
running in serial or parallel, and produce results identical to
those from TOUGH2 when comparable program options
are selected. We are confident that the groundwork has
been laid for a new simulator that meets the requirements
for next-generation geothermal reservoir modelling.
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