RECENT DEVELOPMENTS IN THE PYTOUGH SCRIPTING LIBRARY FOR TOUGH?2
SIMULATIONS

Adrian E. Croucher*

!Department of Engineering Science, University of Auckland, New Zealand

a.croucher@auckland.ac.nz

Keywords: Reservoir modelling, TOUGH2, Python

ABSTRACT

PyTOUGH, a Python scripting library for automating
TOUGH?2 simulations, was publicly released as free open-
source software in 2011. Since then, it has been used in a
wide variety of TOUGH2 modelling applications,
particularly for complex simulations which would be
difficult or impossible using traditional manual or graphical
workflows. It has also been incorporated into at least two
graphical interfaces for TOUGH?2.

This paper describes the considerable development
PyTOUGH has undergone since its initial release. Notable
new features for grid handling include generators for radial
and MINC TOUGH2 grids, grid embedding and reverse
engineering of rectangular grid geometry from TOUGH2
input. Support has been added for tilted geometries,
auxiliary TOUGH2 mesh and time history files, and output
from TOUGH+ and TOUGHREACT. New graphical
features include plotting block-centred flow vectors, well
tracks and rock types. In addition, PyTOUGH now offers
easier installation, an enhanced user guide, a more
permissive (LGPL) license and improved speed.

1. INTRODUCTION

The TOUGH?2 simulator (Pruess, 2004) is widely used for
modelling geothermal reservoirs, as well as other
subsurface fluid and heat flow problems. The PyTOUGH
library (Croucher, 2011; Wellmann et al., 2012) was
released as an open-source project in 2011, making it
possible to automate the pre-processing, running and post-
processing of TOUGH2 simulations via Python scripting.
This approach can save time and reduce the likelihood of
user errors in conventional TOUGH2 modelling, and opens
up a range of possibilities for more complex models which
had hitherto been, in practical terms, impossible to
implement.

In the four years since its initial release, PyTOUGH has
undergone continued development. This paper describes the
major new features which have been added over that time,
and provides a brief outline of the many smaller
enhancements which have also been included. Finally, some
notable recent applications of PyTOUGH are indicated.

2. MAJOR NEW FEATURES
2.1 Radial and MINC TOUGH?2 grid generation

TOUGH2 includes native capability for generating
rectangular, radial and MINC grids via its MESHMAKER
option. However, this option does not always provide the
flexibility that users need. For some applications it can also
entail running TOUGH2 twice, firstly to invoke
MESHMAKER and secondly to run the model, with the
TOUGH?2 input data file having to be edited before the
second run, making automation difficult.

The original PyTOUGH release already included a
rectangular grid generator, and in version 1.1 a radial grid
generator was added, in the form of the
t2grid.radial () method. On top of basic radial grid
generation capability it also offers flexible block naming
options, as well as the ability to model fractured reservoirs
using the “generalized radial flow” representation of Barker
(1988), also known as a “fractional dimension” model. In
this approach, the grid can be assigned any dimension
between 1 and 3, including non-integer values, to represent
a range of different fracture regimes around a well. The
dimension only modifies the block volumes and connection
areas in the TOUGH?2 grid.

More recently, PyTOUGH acquired the capability to create
TOUGH2 grids for fractured reservoirs based on the
“Multiple INteracting Continua” (MINC) concept of Pruess
and Narashimhan (1985). In this approach, additional
blocks representing the rock matrix are added to the
original model blocks, which now represent the fractures.

PyTOUGH's t2grid.minc() method offers flexible
options for naming the additional blocks and rocktypes
created. It can also easily perform MINC processing on
only part of the model grid, leaving the remainder
unmodified (useful for large grids in which MINC can
become expensive if applied to the entire grid). While this
can be done with MESHMAKER by changing the block
order and using inactive blocks, this again makes
automation difficult. Using PyTOUGH it is straightforward
to automate MINC processing, for example as part of an
inverse modelling process which includes MINC
parameters (such as fracture spacing) in the inversion.

2.2 TOUGHREACT support

TOUGHREACT (Xu et al., 2011) is a variant of TOUGH2
which includes modelling of chemical species in non-
isothermal flows. In general it uses the same input and
output data formats as standard TOUGH2, and is hence
implicitly supported by PyTOUGH.

However, there are some differences. The SAVE files, to
which the TOUGHREACT model state is written at the end
of a run, can contain permeability information as well as
porosity. They also use a different format for the timing
data at the bottom of the file, as the inclusion of chemical
species in the simulation may necessitate much larger
numbers of time steps.

TOUGHREACT can also produce additional TecPlot files
containing chemical output. PyTOUGH now includes a
toughreact_tecplot class for interacting with these
files, which works similarly to the t2listing class for
handling standard TOUGH2 output listing files.

Proceedings 37th New Zealand Geothermal Workshop
18 — 20 November 2015
Taupo, New Zealand

mailto:author_email@email.com

2.3 TOUGH+ support

TOUGH+ (Moridis et al., 2008) is intended as a successor
to TOUGH2, written in modern object-oriented Fortran
95/2003. However, its input files are backwards-compatible
with those for TOUGH2. Additional keywords and sections
may be present, and PyTOUGH does not yet support these.

TOUGH+ output files are still fixed-format text files,
similar to those produced by TOUGH2, but with different
formatting and with additional tables for extra quantities
calculated at each grid block.. In 2012, PyTOUGH added
support for TOUGH+ output in the t21isting class used
for handling the output from other varieties of TOUGH2.

2.4 TOUGH2 history files

As well as its main listing files, TOUGH2 can optionally
produce history files (named FOFT, COFT and GOFT) with
time series of results at particular blocks, connections or
generators. PyTOUGH now includes a t2historyfile
class for representing these files (although they are to some
extent made redundant by the history() method of
PyTOUGH's t21isting class).

PYyTOUGH supports the history files produced by all
varieties of TOUGH2, even though the TOUGH+ and
multi-processor TOUGH2-MP varieties both work quite
differently.

2.5 Reverse-engineering rectangular grid geometry

The grid in a TOUGH2 data file does not contain
information about any underlying geometrical grid, i.e.
positions and connectivities of block vertices in space. For
grid preparation and model post-processing, such auxiliary
geometry information is often needed.

PyTOUGH's mulgrid class supports grid geometry
described by MULgraph geometry files (O'Sullivan and
Bullivant, 1995). This class can be used for a wide variety
of geometric grid operations, e.g. grid generation, rotation,
refinement and surface fitting, as well as post-processing.
However, this is of little use to users who have created
TOUGH2 grids using other means and do not have a
MULgraph geometry file available.

For a general unstructured TOUGH?2 grid, it is not possible
to reverse-engineer a geometric description. However, it is
possible for rectangular grids, and as such grids are
commonly used, this is a useful exception.

In version 1.4, PyTOUGH's t2grid class added a
rectgeo() method which creates a mulgrid geometry
from a rectangular TOUGH2 grid. Grids must contain block
centre co-ordinates and have a complete bottom layer.
However, grids that have been translated or rotated, have
incomplete upper layers (representing topography) or have
inactive boundary condition blocks on the top or sides are
supported.

In general, TOUGH2 grids do not necessarily follow the
block naming conventions supported by the MULgraph
geometry format. However, now such grids can still make
use of PYTOUGH's grid geometry capabilities by means of
block name mappings. The rectgeo() method produces
a block name mapping which can be passed into various
PYyTOUGH functions (e.g. for post-processing), allowing
other naming conventions to be supported.

2.6 New post-processing features

From its initial release PyTOUGH included functionality
for producing 2-D plots of model grids, rock type
information and model results, via the Python library
Matplotlib. These plots over horizontal model layers and
vertical slices can be exported to a variety of raster and
vector image formats for production-quality output. The
ability to script the creation of plots can greatly streamline
the reporting process, particularly if the same set of plots
has to be produced multiple times with updated models or
datasets.

This 2-D post-processing capability has been enhanced by
adding the ability to plot well tracks and flow arrows on
plots. Flow arrows may represent either the raw fluxes
through block faces output from TOUGH2, or block-
centred average fluxes computed by assuming
approximately tri-linear variation in flux variables over
each block and performing least-squares fitting to the face
fluxes, similar to the process described by Painter et al.
(2012). This technique works for both structured and
unstructured grids. An example of a PyTOUGH layer plot
with block-averaged flow vectors is shown in Fig. 1.

In addition, it is now possible to display colour-coded rock
types on 2-D PyTOUGH plots. In some applications,
models contain large numbers of rock types, but many are
variants of a smaller subset of basic types (e.g. based on
geological rock units). PyTOUGH plots offer the option of
grouping related rock types together for increased clarity.
An example of a PyTOUGH slice plot with well tracks and
grouped rock types is shown in Fig. 2.

Temperature in layer 12

200

175

2

rmperature [* C)

2
=
C

4000

-
9000 9500 10000
x (m}

Figure 1: Example PyTOUGH layer plot output,
showing temperature shading and contours, and
block-averaged mass flux vectors

Proceedings 37th New Zealand Geothermal Workshop
18 — 20 November 2015
Taupo, New Zealand

Rock type in vertical slice along = axis

elevation (m)
|
=
3

-1000

Rock type

1000 2000 3000 4000 5000
«(m) +2.77626

Figure 2: Example PyTOUGH vertical slice plot output,

showing well tracks and grouped rock types

3. OTHER ENHANCEMENTS

Some of the other enhancements made to various aspects of
PyTOUGH since its initial release are briefly listed below.

3.1 Grid geometry

Tilted grids: PyTOUGH's mulgrid class now
supports the tilting parameters in the MULgraph
geometry format, used to create non-horizontal
layered TOUGH2 grids.

Block naming: more flexible block naming
options are now included. Users can specify the
character set used to create block names, allowing
mixtures of upper-case, lower-case and non-
alphabetic characters, which can be necessary for
creating unique block names in very large
models.

Layer refinement: a simple function has been
added for refining selected grid layers by a
specified factor.

Grid reduction: the mulgrid.reduce()
method makes it easy to extract part of a model
grid, corresponding to a set of specified columns.

Compound columns: support for columns with
more than four sides has been added to the
mulgrid methods for fitting surface elevation
and other scattered data to the grid columns, as
well as exporting grid geometry, rock data and
model output to VTK files suitable for 3-D
visualization with Paraview or similar software.

Grid export: mulgrid geometries may now be
exported to Exodusll, a commonly used mesh and
data-storage format, for interaction with other
software.

3.2 TOUGH?2 grids

Auxiliary mesh files: TOUGH?2 grids can now be
read in from the auxiliary MESH file (or the
TOUGH2-MP binary MESHA and MESHB files)
instead of the main input data file.

Grid embedding: a t2grid.embed() method
class has been added for embedding one
TOUGH?2 grid inside another. This can be used,
for example, to embed a radial model around a
well within one block of a larger reservoir model.

Block re-ordering: a demote_block()
method has been added for moving a block to the
end of the block list, mainly to make it easier to
apply boundary conditions via inactive blocks.

3.3 TOUGH?2 data files

Conversions between TOUGH2 and
AUTOUGH?2: automatic conversions in both
directions are now possible, handling not only the
slightly different formats (e.g. additional sections)
but also conversion of 'MOP' and other
parameters.

Extra precision input: AUTOUGH2 now has an
option for reading input from auxiliary ‘extra
precision' files. Higher-precision floating point
input can be useful in some situations, e.g. for
inverse modelling when small changes in input
parameters need to be resolvable. PyTOUGH's
t2data class now supports reading and writing
these extra precision files.

3.4 TOUGH?2 output

Table skipping: support has been added for
skipping the parsing of specified tables from
TOUGH2 output. This can speed up post-
processing if e.g. the large connection tables are
not needed for a particular post-processing task.

Output formats: support has also been added for
more of the many subtly different varieties of
standard TOUGH2 output. There are small (but
significant) format variations between output
from different EOS modules, and also between
TOUGH2 and iTOUGH?2.

3.5 Speed improvements

Grid searching: mulgrid methods for
determining the column a 2-D point lies inside,
and the node nearest to a 2-D point, have been
made much more efficient by using optional
quadtree and k-d tree data structures respectively.

Reading TOUGH?2 data files: low-level changes
to the t2data class have resulted in some speed
increases in reading in TOUGH2 input data files.

Slice plots: the mulgrid.slice_plot()
method now uses a form of particle-tracking
algorithm to determine the trajectory of the slice
across the grid columns.

3.6 Bug fixes

Fixes have been made for approximately 100 minor bugs
since PyTOUGH's v.1.0 release. These and all other
changes to the code may be viewed via the logs of the Git
version control system on the PyTOUGH website
(https://github.com/acroucher/PyTOUGH).

Proceedings 37th New Zealand Geothermal Workshop
18 — 20 November 2015
Taupo, New Zealand

https://github.com/acroucher/PyTOUGH

3.6 Installation

Installation of the PyTOUGH library has been simplified by
the addition of a setup script. Regardless of computing
platform (Linux, MS Windows, Mac OS etc.), running this
Python script will install the software, with no further
actions (e.g. setting environment variables) needed.

3.7 Documentation

The PyTOUGH user guide PDF has been substantially
revised. Hyperlinks to referenced sections and external
URLSs have been added throughout. The text has been made
more easily searchable, code examples are now syntax-
highlighted, and there is a comprehensive index.

The wiki section on the PyTOUGH website has been
expanded with lists of relevant conference and journal
papers, tutorial material and example scripts.

3.8 Licensing

The PyTOUGH license has been changed from the GNU
GPL to LGPL. This change allows commercial closed-
source software to link to PyTOUGH more easily.

4. APPLICATIONS
4.1 Modelling applications

PyTOUGH has been used to assist with a range of
published reservoir modelling studies, in locations as
diverse as Lihir Island (O'Sullivan et al., 2011), Ohaaki
(Clearwater et al., 2012), Mita in Guatemala (Feather and
Malate, 2013), Rotorua (Ratouis et al., 2014), Waiotapu
(Kaya et al., 2014a), Taupo-Reporoa Basin (Kaya et al.,
2014b) and Habanero (Ayling et al., 2015).

O'Sullivan et al. (2013) described a number of other
applications of PyTOUGH. In addition, Wellmann et al.
(2014) coupled PyTOUGH with the inverse modelling
software iTOUGH2 to perform uncertainty analysis on
structural geological data.

4.2 Software applications

PyTOUGH is used to implement some of the TOUGH2
capability in the Leapfrog Geothermal software
(http://www.leapfrog3d.com).

TIM (Yeh et al.,, 2013), a new graphical interface for
TOUGH2, makes extensive use of PyTOUGH.

ACKNOWLEDGEMENTS

Some of the development of PyTOUGH was carried out to
assist with work funded by Contact Energy.

REFERENCES

Ayling, B.F., Hogarth, R.A and Rose, P.E.:. Tracer testing at
the Habanero EGS site, central Australia.
Geothermics, in press (2015).

Barker, J.: A generalized radial flow model for hydraulic
tests in fractured rock. Water Resources Research
24(10), 1796-1804 (1988).

Clearwater, E.K., O'Sullivan, M.J., Brockbank, K. and
Mannington, W.1.: Modelling the Ohaaki geothermal
system. Proc. TOUGH Symposium 2012, Berkeley,
California, September 17-19 (2012).

Croucher, A.E. : PyTOUGH: a Python scripting library for
automating TOUGH2 simulations. Proc. 33 Nz
Geothermal Workshop, Auckland, NZ (2011).

Feather, B.M. and Malate, R.C.M. (2013). Numerical
modelling of the Mita geothermal field, Cerro Blanco,
Guatematala. Proc. 38"™ Workshop on Geothermal
Reservoir Engineering, Stanford University, Stanford,
California, February 11-13 (2013).

Kaya, E., O'Sullivan, M.J. and Hochstein, M.P... A three
dimensional numerical model of the Waiotapu,
Waikite and Reporoa geothermal areas, New Zealand.
J. Volcanology Geoth. Res. 283, 127-142 (2014a).

Kaya, E., O'Sullivan, M.J. and Yeh, A.: Three dimensional
model of the deep geothermal resources in the Taupo-
Reporoa Basin, New Zealand. J. Volcanology Geoth.
Res. 284, 46-60 (2014b).

Moridis, G, Kowalsky, M. and Pruess, K.
TOUGH+HYDRATE v1.0 user's manual. Lawrence
Berkeley National Laboratory report LBNL-161E
(2008).

O'Sullivan, J., Croucher, A.E., O'Sullivan, M.J., Stevens, L.
and Esberto, M.: Modelling the evolution of a mine
pit in a geothermal field at Lihir Island, Papua New
Guinea. Proc. 33 NZ Geothermal Workshop,
Auckland, NZ (2011).

O'Sullivan, J., Dempsey, D., Croucher, A.E., Yeh, A. and
O'Sullivan, M.J.: Controlling complex geothermal
simulations using PyTOUGH. Proc. 38" Workshop on
Geothermal Reservoir Engineering, Stanford
University, Stanford, California, February 11-13
(2013).

O’Sullivan, M. and Bullivant, D.: A graphical interface for
the TOUGH2 family of flow simulators. Proc.
TOUGH Workshop 1995, Lawrence Berkeley
National Laboratory, University of California,
Berkeley (1995).

Painter, S.L, Gable, C.W. and Kelkar, S.: Pathline tracing
on fully unstructured control-volume grids. Comput.
Geosci. 16, 1125-1134 (2012).

Pruess, K. : The TOUGH codes- a family of simulation
tools for multiphase flow and transport processes in
permeable media. Vadose Zone Journal 3(3), 738-746
(2004).

Pruess, K. and Narashimhan, T.N.: A practical method for
modeling fluid and heat flow in fractured porous
media. Soc. Pet. Eng. J. 25(1), 14-26 (1985).

Ratouis, T.M.P., O'Sullivan, M.J. and O'Sullivan, J.: An
Updated Numerical Model of Rotorua Geothermal
Field. Proc. 39™ Workshop on Geothermal Reservoir
Engineering, Stanford University, Stanford,
California, February 24-26 (2014).

Wellmann, J.F., Croucher, A.E. and Regenauer-Lieb, K.:
Python scripting libraries for subsurface fluid and
heat flow simulations with TOUGH2 and SHEMAT.
Computers & Geosciences 43, 197-206 (2012).

Proceedings 37th New Zealand Geothermal Workshop
18 — 20 November 2015
Taupo, New Zealand

http://www.leapfrog3d.com/

Wellmann, J.F., Finsterle, S. and Croucher, A.E.: Integrating
structural geological data into the inverse modelling
framework of iTOUGH2. Computers & Geosciences,
65, 95-109 (2014).

Yeh, A., Croucher, A.E. and O'Sullivan, M.J... TIM — yet
another graphical tool for TOUGH2. Proc. 35" NZ
Geothermal Workshop, Auckland, NZ (2013).

Xu, T., Spycher, N., Sonnenthal, E., Zhang, G., Zheng, L.
and Pruess, K.: TOUGHREACT Version 2.0: A
simulator for subsurface reactive transport under non-
isothermal multiphase flow conditions. Computers
and Geosciences 37(6), 763-774 (2011).

Proceedings 37th New Zealand Geothermal Workshop
18 — 20 November 2015
Taupo, New Zealand

	Main Menu
	NZGW 2015 Programme
	Author Index
	ABSTRACT
	1. Introduction
	2. Major new features
	2.1 Radial and MINC TOUGH2 grid generation
	2.2 TOUGHREACT support
	2.3 TOUGH+ support
	2.4 TOUGH2 history files
	2.5 Reverse-engineering rectangular grid geometry
	2.6 New post-processing features

	3. Other enhancements
	3.1 Grid geometry
	3.2 TOUGH2 grids
	3.3 TOUGH2 data files
	3.4 TOUGH2 output
	3.5 Speed improvements
	3.6 Bug fixes
	3.6 Installation
	3.7 Documentation
	3.8 Licensing

	4. Applications
	4.1 Modelling applications
	4.2 Software applications

	ACKNOWLEDGEMENTS
	REFERENCES

