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ABSTRACT

The Wairakei geothermal field in New Zealand has experienced
a significant amount of production related subsidence in the last
50 years. Therefore, the region has been subject to a signifi-
cant amount of data collection and rock characterization work.
However, the rock properties associated with mechanical defor-
mation are often overly simplified in numerical simulations of
subsidence. We seek to calibrate an advanced elastic-plastic con-
stitutive relationship (Modified Cam-clay) to rock data from K
triaxial tests on core samples from geotechnical reports of the
field. We do this by setting up radially symmetric finite element
simulations using the software ABAQUS to closely match the
triaxial laboratory tests. The parameterized Cam-clay models
will be applied as future work in our development of a more re-
alistic numerical subsidence model of the Wairakei geothermal
field.

1. INTRODUCTION/BACKGROUND
1.1 Subsidence at Wairakei/Tauhara

Geothermal exploitation of the Wairakei geothermal field has
clearly been the cause of major ground subsidence (Hatton
(1970)). In fact, there has been more fluid-withdrawal related
subsidence in parts of the Wairakei field than any other devel-
opment (geothermal or otherwise) in the world (Allis (2000)).
Hatton (1970) is credited with the first publication documenting
subsidence in the Wairakei geothermal field. However, Hatton
stated that the first indications of subsidence were seen as early
as 1956 when elevation discrepancies were found from several
benchmark points in the area. One such comparison (benchmark
A97) indicated nearly 8 cm of subsidence had occurred in the
eastern Wairakei field since the previous 1950 levelling survey.
The rate of subsidence of the Wairakei field continued to increase
through the 60s and 70s reaching a peak of about 50 cm/year in
1978 (Koros, et al. (2014)). Allis (2000) reported that the total
subsidence at the center of the Wairakei subsidence bowl was ap-
proximately 14 m in 1997 and that it could reach 20 m by 2050.
A levelling survey performed from 2004 - 2009 found that sub-
sidence rates within main Wairakei bowl (centred in Wairakei
Thermal Valley) declined to a maximum of 5 cm/yr (see Brom-
ley, et al. (2013)) resulting in a total subsidence of 15 m (Allis,
et al. (2009)).

1.2 Previous Modelling Work

There have been a number of studies seeking to characterise
the subsidence in Wairakei through numerical modelling. Many
can trace their roots back to Geertsma’s (1973) derivation of
an expression for 1D subsidence in a theoretical half-space.
Geertsma’s formulation relies on the successful characterisation

of the compaction coefficient, a material parameter related to
the elastic properties of the material. Herd (1985) was perhaps
the first to create a numerical subsidence model for Wairakei
and utilised the finite element method. That work consisted of
2D simulations that included the pumice breccia overburden and
Huka Falls formation with increasing effective stress as a result
of production. Allis and Zhan (2000) utilised a quasi-1D col-
umn model to simulate the subsidence history of Wairakei. Their
work coupled solid mechanics to fluid flow through Biot’s ef-
fective stress formulation in a finite element code developed by
Schrefler and co-workers (Lewis and Schrefler (1998) and Schre-
fler and Zhan (1993)). They used a simplified 2 layer model
similar to Herd (1985) and varied the linear elastic rock prop-
erties to match the subsidence history. Lawless, et al. (2001)
and White, et al. (2005) also developed subsidence models of
the Wairakei field using the software package, Plaxis. They per-
formed 2D simulations that accounted for different geological
strata in the area. They adjusted material properties within geo-
logical units in order to match the subsidence history of the field.
Yeh and O’Sullivan (2007) linked the solid mechanics package,
ABAQUS, to the reservoir simulator, Tough2, in order to per-
form 3D subsidence simulations of the Wairakei field. They ex-
pressed a need to improve the shallow pressures of the Tough2
reservoir model in order to accurately match the time evolution
of the subsidence. All the authors mentioned in this section ex-
pressed a desire for more rock property characterisation data in
order to better calibrate the solid constitutive behaviour.

1.3 Experimental Rock Characterisation

In order to quantify the rock properties in the area, an extensive
program of drilling, coring, and scientific investigations was
undertaken from 2007-2009 by Contact Energy, Ltd. (Bromley,
et al (2010); Bromley, et al (2013)). An approximate total of
4 km of core samples were collected for testing. K triaxial
testing was performed to determine material stiffness. Other
mechanical tests performed were point load stength, pocket pen-
etrometer strength, shear vane undrained strength, density, water
content, porosity, Atterberg limits, particle size distribution,
smectite content, relative clay abundance, and scanning electron
microscopy.

The laboratory-derived stress strain curve is one of the most
useful results for calibrating numerical solid constitutive mod-
els to data. The setup and results of the laboratory Ko tri-
axial tests are reported in Laboratory testing of core from the
Wairakei-Tauhara geothermal field — Factual Procedures Report
and Interpretive Procedures Report, Appendices 8 and 9 (Pender
(2010a,b;2013)).
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1.4 Current Modelling Effort

This work seeks to calibrate an elastic-plastic solid constitutive
model (Modified Cam-clay) in ABAQUS to core data from Ko
triaxial test data. The results from these calibrations are applied
in a pseudo 1D subsidence model being developed by Koros and
co-workers (Koros, et al (2014); Koros, et al (2015)). These
works are part of a more recent effort at the University of Auck-
land to model subsidence at Wairakei. The ultimate goal of the
current modelling effort is to incorporate subsidence into the
reservoir-scale 3D simulations. Currently, we are seeking to un-
derstand and implement as many of the known rock properties
as possible from the before mentioned subsidence reports in 1D
subsidence models to maximise the utility of the simple 1D case.
This includes investigating the application of a constitutive rela-
tionship for cohesive soil, modified Cam clay, to the behaviour
of very weak rock.

In this work, we present the governing balance equations for
a thermal-poroelastic stress analysis, then present the basics
of plasticity theory. Plasticity theory builds to a particular
model designed for clays, but appropriate for very soft rocks,
the modified Cam-clay model. Finally, we will present our
calibration of the Cam-clay model to one triaxial test from the
Wairakei/Tauhara area performed by Pender, et al (2009a,b). We
then perform a parameter study on the model parameters that
require calibration to determine their effect on the stress-strain
response of the compressed material. This is an important study
required for our future 1D and 3D subsidence modelling efforts.
This paper finishes with a summary and conclusions.

2. BALANCE EQUATIONS FOR ROCK MATRIX

In this work, inertial forces in the solid rock matrix were ignored.
The linear momentum balance from Bonet and Wood (2008) is
written as:

dive+ f=0 (1)

where the vector div o is the spatial divergence of the Cauchy
stress tensor and f a vector of body forces (both external and
density related). Note that boldface fonts are used to express
matrix and vector quantities. We use standard engineering con-
vention here so that stress is positive in tension and negative in
compression. The Cauchy stress can be split into two compo-
nents to represent the effect of pore fluid pressure on the solid
matrix (Lewis and Schrefler (1998); Ingebritsen, Sanford, and
Neuzil (2006)):

=0 —apl 2)

where o’ is Biot’s effective stress tensor, « is a constant between
0 and 1, p is the pore fluid pressure, and I is the identity tensor.
The constant o was set to 1 in this work as per the analysis of
Pender et al. (2013). The effective stress is defined in terms of
strain by Hooke’s law:

o =C°: (e —er) 3)

where C° is the fourth order material constitutive tensor, € is the

strain tensor, “:" represents the double contraction of two ten-
sors, and e is the thermal strain tensor given by

er = (%) (AT)I @)

where [ is the volumetric coefficient of thermal expansion of
the solid and AT is the change in temperature from the refer-
ence state. For completeness, the fourth order elasticity tensor

can be defined (in indicial notation):
o 2
Cijri = (K — §G> 0i0k1 + G (0:0j1 + 0:d58)  (5)

where §;; is the Kronecker delta equal to 1 when ¢ = j and 0
when i # j, K is the bulk modulus, and G is the shear modulus.

The triaxial tests from Pender, et al (2010a,b) were run in such
a way that the pore fluid pressure and temperature could be
taken as uniform and constant throughout the domain during a
test. Therefore, we ignore heat and mass transfer in this work,
but still consider pressure and temperature effects in a thermal
poroelastic stress analysis by applying equations (TJ) - ().

3. MODIFIED CAM-CLAY CONSTITUTIVE MODEL

Cam-clay is the name given to a particular elastic-plastic model
for describing soil behaviour. The model was originally de-
veloped by Roscoe and Schofield (1963). However, Roscoe
and Burland (1968) developed the more commonly used ver-
sion termed modified Cam-clay. A companion paper (Koros, et
al. (2015)) shows that the soft layers of the Wairakei/Tauhara
field that are predominantly responsible for subsidence can be
considered as clay-like materials. Therefore, that work pro-
vides the justification for use of the Cam-clay constitutive model.
This section seeks to introduce plasticity and outline the relevant
modified Cam-clay details for this work.

3.1 Elasticity and Plasticity

Elastic materials exhibit a one to one relationship between stress
and strain, called Hooke’s Law. The law is named after Robert
Hooke who first published the force-extension relationship in
1675 (Wood (1990)). The relationship (seen graphically in Fig-
ure[T) can be linear (I(@)) or nonlinear (I(b)), but the important
feature is that upon unloading, the material returns to an initial
stress and strain free state with no net energy dissipation (Wood
(1990)).

(2) (b)

Figure 1: Example of linear (1(a)) and nonlinear (1(b)) elas-
tic stress-strain relationships (after Wood (1990)).

Many materials are not well described by an elastic relationship.
The theory of plasticity offers a necessary extension to elastic
theory and is concerned with the analyses of stresses and strains
in a material in the plastic region as well as the elastic region.
Figure ] shows an example of an elastic-plastic material during
loading and subsequent unloading/loading cycles. After initial
loading, the stress is removed from the material at point A. The
material unloads along a different path and then reloads along
the unloading path if loading is resumed. Notice that at point
B, the stress has been removed, but some strain/deformation re-
mains. The distance from the origin to point B represents the
plastic strain.
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Figure 2: An example of loading/unloading behaviour of an
elastic-plastic material.

The term yield is used to describe the onset of plastic
strain/deformation. Tresca is credited with proposing the first
yield condition in the 1860s (Chen and Han (1995)). A yield
condition is a requirement for plasticity theory. Perhaps the most
common yield condition is the von Mises condition or J2 con-
dition, which is related to the second invariant of the deviatoric
stress tensor:

Jo = [(01—02)2+(02—03)2+(03—J1)2] (6)

| =

where o; are the principal stresses of the Cauchy stress tensor.
‘When the second stress invariant exceeds a critical value of Js,
yielding occurs and is controlled by an appropriate flow rule
from a plastic potential function.

The flow rule is simply a function that determines the plastic
strain tensor after yielding occurs. The flow rule can be derived
from a plastic potential function:

—an (99
ckpfdA<aa) )

where €” is the plastic strain tensor, dA is a positive scalar of
proportionality which is only nonzero when plastic deformation
occurs, and g is the plastic potential function similar to the strain
energy density function of elasticity theory. If g is related to the
yield condition, the flow rule is called an associated flow rule.
If g is not related to the yield condition, the flow rule is called a
nonassociated flow rule.

Figure [2] shows that work hardening occurs after the onset of
yield. Notice how the stress increases from point A to point
C. A rule that characterises work hardening is the last major
component required for plasticity theory. Hardening is typically
conceptualised in principal stress space. Figure |3| displays the
2D principal stress space. The dashed line ellipse in the centre
represents the initial yield surface or the yield stress (oyo) by
the von Mises condition of equation (6). When a material is
deformed plastically, the yield surface expands (isotropic hard-
ening) and/or translates (kinematic hardening) as seen by the
updated yield surface (oy) given by the solid line ellipse. The
transition from the dashed line ellipse to the solid line ellipse
could be representative of the stress/strain progression from
point A to point C' in Figure[2] All material behaviour inside the
current yield surface (solid line) is elastic in nature.

g1

Figure 3: Initial (dashed line) and subsequent (solid line)
yield surfaces for a work hardened material due to a com-
bination of isotropic and kinematic hardening.

In this section, we have outlined the four fundamentals of plas-
ticity theory as described by Wood (1990) and Chen and Han
(1995). Those fundamentals are elasticity theory, yield proper-
ties, plastic potential and flow rule, and hardening rule. The next
section will seek to develop the relevant details of these funda-
mentals for the modified Cam-clay plasticity model.

3.2 Development of the Modified Cam-clay Model
3.2.1 Elastic Behaviour

The next two sections closely follow Chapter 5 in Wood (1990).
However, the reader may notice some sign convention differ-
ences as we adopt standard engineering sign convention (posi-
tive = tension, negative = compression) and Wood uses the op-
posite. Linear elasticity is typically used for the elastic portion
of the elastic-plastic modified Cam-clay model. The modified
Cam-clay model is typically described in terms of effective stress
quantities. Those quantities are p’ (effective mean stress) and g
(deviator stress or von Mises stress). The effective mean stress is
defined as the average of the trace of the effective stress tensor:

/

P =3 (o1 +05 +0h) ®)

The deviator stress is given by:

q:\/gS:S:\/?)Jz 9

where S is the standard deviatoric stress tensor given by:
1
S=0-— gtr(a)l (10)

Also of importance is the specific volume — the volume com-
posed of a unit volume of solid particles with their surrounding

voids:
_Vr 1

Vs 1-n
where Vr is the total volume of solids and voids combined, Vg
is the volume of solids, n is porosity, and e is the void ratio.

=1+e (11)

The basic volumetric material behaviour of the Cam-clay model
can be summarised in a plot of the mean effective stress vs
specific volume as shown in Figure ] This figure is analo-
gous to the traditional stress-strain plot as shown in Figure [2]
The line of steeper descent marked by slope A is called the
normal consolidation/virgin compression line. It describes the
plastic behaviour of the material and is linked to the material’s
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hardening behaviour. The parameter NV is a constant for a par-
ticular soil and represents the specific volume when In(p’) = 0
(or p" = 1). The parallel lines of a lesser slope x represent
unloading-reloading lines and the elastic behaviour of the ma-
terial. The equations of the unloading-reloading lines are (in
general):

V=V, —rsln() (12)
because
/
din(p’) _ 1 (13)
dp’ P’

The equation can be recast in incremental form when & is taken
as a constant as:
6 /
Ve = k"L (14)
p
where the superscript e indicates that the material is elastic.
Lastly, by definition

ey = -3 (15)

where the negative is due to the sign difference between engi-
neering and geomechanics sign conventions and ¢, is the volu-
metric strain given by

€y = tr(e) (16)

Finally, equation can be rewritten in terms of incremental
volumetric strain: ,
é

e = KVI; : (17
This equation is consistent with the volumetric deformation of
linear elasticity and fundamental to the development of the Cam-
clay model. The parameter « is called the logarithmic bulk mod-
ulus and is defined on a natural log scale. Therefore, in linear
stress-strain space, the Cam-clay model will present hardening
behaviour in the elastic portion of the stress strain curve. That
is, the slope of the stress-strain line will increase with increasing
strain. This is not necessarily a requirement, as linear elasticity
can also be used in the elastic portion of the stress strain curve.
Similarly to equation (I7), an expression exists relating the shear
strain increment to the deviator stress:

9

3G (18)

€
deq =
where €, is the second invariant of the deviatoric strain tensor,
defined in the same way as the deviator stress from equations (9)

and (I0).

>In(p’)

ln(%l) IH(P62)

Figure 4: Normal compression line and loading/unloading
line in V — In (p’) space.

3.2.2 Plastic Behaviour

Having developed the elastic volumetric behaviour of the mod-
ified Cam-clay model, our discussion now moves to the plastic
behaviour associated with yield. The increment of total strain
can be decomposed into elastic and plastic components where
each of those can be decomposed into volumetric and deviatoric
components. Figure [3] displays the Cam-clay yield surface (or
locus) at a specific loading point as the dashed ellipse in p’ — ¢
or equivalently de,, — de4 space. The modified Cam-clay model
has an associated flow rule, so the plastic potential (g) is related
(equivalent in this case) to the yield function f. The equation of
the yield ellipse is given by:

g=f=¢-M1[p (vo—p)] =0 (19)
where M controls the shape and p{ controls the size of the el-
lipse. Notice that the ellipse passes through the origin. The as-
sumption is that clay materials cannot support tension. There-
fore, anything left of the g axis is negative mean effective stress
and in tension. Tensile behaviour represents failure in a Cam-
clay material. After yield, the new yield surface is represented
by the solid ellipse, with an updated p{,. Expansion of the yield
surface always occurs in the normal direction to the previous
yield surface (as seen in Figure[5). When yielding has occurred,
the incremental increase of p{ can be computed through the fol-
lowing relation:

opy ([ MP—n*\ op 2n dq
o\ M2 42 -t M24+n2) p (20)

Do D 4
where n = q/p’.
q (6eq) M
7 - = N
4 \
7 Mp)) \
2 \
. v
P6/2 Ph (02)

Figure 5: Elliptical yield loci for the modified Cam-clay
model in the p’ — ¢ space.

The magnitude of the volumetric plastic strain increase during
yielding can be determined in a similar manner to the previous
section where equation (I7) gave the increment of volumetric
elastic strain. Figure ] shows that the irrecoverable change in
volume over that loading history from pg; to pgs is simply the
difference between the two V values of the loading/unloading
lines:

AVP = Vi1 — Vi2 (21)
The equations for the intersection of the loading/unloading lines
with the normal consolidation line at those p(, values can be writ-
ten as:

Vi1 (po1) = N — An(po1) = Vir — w1In(poq) (22)
and
Vi (po2) = N — An(poz) = Viz — k5 In(poa) (23)
Substitution of these expressions into (2I) gives:
AV = N —Aln(poz) + £ 1n(pps) (24)
N + Mn(po1) — £1n(po1)
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Solving in the limit and dividing by the specific volume yields
the plastic strain increment:

/
5el = (A — k) g’; 0 (25)
0

Because the expansion of the yield surface is always normal in
Figure[5] the deviatoric strain increment can be found by:

6 9g/op)  M?—n’
ocq  0g/dq 2n

(26)

The theoretical development of modified Cam-clay is complete
at this point. To finish we present two matrix system of equa-
tions that can be used to relate the increment of effective mean
stress and deviatoric stress to the increment of elastic and plastic
volumetric and deviatoric strains (from Wood (1990)):

des] [k 0 5p’
= =15 veel 5 @7
and
{55@’} _ A=K [M2 —n? 2n ] [6;0’]
seb| T Vp (M2 +n2) | 20 4An*/(MP —n?)| | g
(28)

3.2.3 The Critical State Line

The Cam-clay model is based on the critical state condition.
That is, under deformation, clay-like materials tend toward an
ultimate condition in which plastic shear deformation continues
indefinitely without changes in volume or effective stress, i.e.,

op' _ 0q _ 0V _
ey Oeq  Ogq 0 @9

This happens at a critical (subscript c) stress ratio:

qc
o =n.— M (30)
where n and M are the same as the previous section and M is

the slope of the critical state line in Figure[3]

When plastic deformations occur, the yield locus can either
expand or contract to result in either softening or hardening
behaviours, respectively. Figure [6] shows this behaviour. The
original yield surface of a hypothetical material is represented
by the solid line ellipse in the centre. If a material is loaded
from point D to just beyond point E to yield, the value of 1 is
below M and the material will harden by enlarging the ellipse
and p,. The material tends toward the stress state where the
critical state line and the yield surface intersect at point F'. The
path represented by DEF is said to be wet of critical. In the
softening case, a material is loaded from A to yield at point B.
Since, 7 is greater than M in this scenario, the material softens
to approach the critical state line/yield surface intersection point
at C. The parth ABC is said to be dry of critical. The stress
strain behaviour of each of these scenarios can be seen in Figure

m

q
F
//—_ -~
//B N
/ Y4 N\
y/ad ¢ N \
v A\ \
\
\
\ /
A D P

Figure 6: Evolution of the Cam-clay yield surface for both
hardening and softening behaviour based on the critical state
concept.

€
AD !
Figure 7: Stress-strain response of Cam-clay material for
both hardening and softening behaviour based on the crit-
ical state concept.

3.3 Modified Cam-clay in ABAQUS

The critical state material model implemented in ABAQUS is
stated in the manual as being an extension of the modified Cam-
clay material model and is called through the keyword syntax:
*CLAY PLASTICITY in the input file. The yield surface equa-
tion used in ABAQUS is:

1 p/ 2 t/ 2
A () e

where [ is a factor that determines the yield surface shape on
the wet side of the ellipse. That is, the side of the yield surface
ellipse that is below the critical state line. The case of § = 1
corresponds to the modified Cam-clay model described earlier
and was used in this work. The ABAQUS manual states that in
most cases B < 1. The other factor a determines the size of the
yield surface. ABAQUS offers three different options for a. The
first two are exponential hardening rules that require the syntax:
HARDENING=EXPONENTIAL to follow the clay plasticity key-
word. In either case, the parameter a is computed by

1-JP
A—kKJP

where eo is the initial value of the void ratio on the normal
consolidation line from Figure [] (not equivalent to the inter-
cept N). The parameter ao is the initial size of the yield sur-
face and can be specified by the user. If the intercept N is
known, the user can specify an additional syntax on the same
line: INTERCEPT=<e;> where e is found from the definition
of the void ratio N = 1 4 e;. This is then used to compute ag
from the following relationship:

a=aoexp |(1+eo) (32)

a0 = - ex e1 + eg _Klnp() (33)
0T QP A—K
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The parameter J? is related through the natural logarithm to the
volumetric plastic strain €5, i.e.,

el =InJ? (34)

Additionally, the user can omit exponential hardening rules, by
using the syntax HARDENING=TABULAR. This requires the ex-
tra keyword to be added on the next line: *CLAY HARDENING.
With this option, a is computed by:

3

(35)

—
+
™

where the user specifies a table of p’ values and equivalent vol-
umetric plastic strains €9 for as many data points as available.
The table must start at ¢, = 0, so the initial p’ is equivalent
to the mean effective yield stress of the material. Lastly, in the
yield function, ¢’ is defined as t' = ¢/g" where g’ is a function
of an additional factor that affects the shape of the yield surface
in principal stress space. The modified Cam-clay ellipse is re-
covered when g’ = 1, so that value was used in this work. In
this work, we have tested both the tabular hardening rule and the
exponential hardening rule with the intercept defined. The next
section will outline the calibration procedure for each hardening
rule tested.

4. CALIBRATION OF NUMERICAL MODEL

In this study, we focused on a single core specimen recorded in
the triaxial test data from Pender (2009a,b) — test 80. The sam-
ple came from a depth of about 180 m in well THM 18. The
specimen was chosen because it was from a formation that po-
tentially contributed to surface subsidence and the test showed a
significant reduction in deformation resistance after yield.

4.1 Simulation Set Up

Simulations were set up in ABAQUS to be as near as possible
to the actual Ko triaxial tests performed. Figure [§] shows the
meshed finite element geometry with boundary conditions. The
simulations were 2D axially symmetric with the symmetry line
running along the left hand side of the geometry. The bottom and
right surfaces were fixed from normal displacement and vertical
displacement Ad was specified on the top surface. The specimen
was dimensioned to be 3.04 cm wide x12.0cm tall to corre-
spond to the cylinder dimensions used in the test. The geometry
was discretised into 100 elements (10 x 10). The temperature in
the domain was fixed to 15° C and the pore fluid pressure was
fixed to be 710 kPa. The final axial strain reported for the exper-
iment (see Figure[9) was slightly less that 3% which corresponds
to about 0.36 cm vertical displacement. The simulation was run
in 15 quasi-static simulations with Ad = 0.03 cm/step. This
lead to a total displacement of 0.45 cm and a strain of nearly
4%.

JLAd

12.0 cm

3.04 cm

Figure 8: Geometry with boundary conditions for Ky triax-
ial test simulations.

3000000

+ + Data
e—e EXxp
25000001 «—e Tab

2000000

1500000+

1000000

Vertical effective stress(Pa)

500000+

—0.01 0.00 0.01 0.02 0.03 0.04 0.05
Axial Strain

Figure 9: Stress-strain response from K triaxial test (Pen-
der (2009a,b)) and calibrated numerical simulations.

Two different versions of the modified Cam-clay constitutive
model were parameterised and tested in this study. The tabular
hardening option and the exponential hardening option with the
intercept of the normal consolidation line defined. Figure[9]dis-
plays the calibrated axial stress-strain response for each method.
It should be noted here that the purpose of this study was to
determine if the modified Cam-clay work hardening framework
could be used to represent some of the soft rock behaviour from
the Wairakei-Tauhara area. Clearly, the framework does suffi-
ciently capture the axial behaviour in a laboratory K test. The
next sections will detail the calibration process for each harden-
ing model utilised.

4.2 Exponential Hardening

The exponential hardening model requires the use of the
ABAQUS elastic model *POROUS ELASTIC. The input pa-
rameters for that model are the logarithmic bulk modulus (k)
and the Poisson’s ratio (v). We found that it was necessary to
manually adjust x to achieve a good fit to the test data. Poisson’s
ratio was reported by Pender (2009) and fixed at that value. The
additional plastic parameters required were the slope of the criti-
cal state line M, the plastic bulk modulus or slope of the normal
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consolidation line A, and the intercept of the normal consolida-
tion line e;. M can be found by solving equation (26). The
increment of volumetric plastic strain can be found to be:

del, = de1 + dez + dez = dey (36)

because for an axially symmetric problem de2 = des. Further,
for a K triaxial test, the deformation in the radial direction is
zero. Therefore, deo = de3 = 0. The increment in deviatoric
plastic strain for an axially symmetric problem can be computed
by (Britto and Gunn (1987)):

2
del = 3 (de1 — de2) 37
where €2 = 0, so the ratio:
deh 3
5cf T 2 (38)

We estimate the parameter 1 from the yield stress point of the
stress strain curve. At yield the maximum principal stress is ap-
proximately 2400 kPa and the minimum principal stress is ap-
proximately 1400 kPa. Solving equation (9) for ¢ gives a value
of about 1000 kPa. Solving equation gives p’ ~ 1700 kPa.
Solving equation (30) gives 7 = 0.588. We can then solve for
M by rearranging equation (26):

M =+/3n+n?~144 (39)
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Figure 10: Stress strain curves for o} and o5 for K triaxial
test 80 from Pender, et al (2009a).

Pender (personal communication, 4 September 2015) estimated
the initial void ratio to be 0.688 and from that found the slope of
A, the normal consolidation line, to be 0.244. The final param-
eter ey, related to the intercept of the normal consolidation line,
was estimated to match the yield stress of the material. The final
material parameters used for the exponential hardening model
are presented in Table[T]

Table 1: Material parameters for exponential hardening
model.

Parameter H Value ‘

K 0.008

v 0.08
M 1.44

A 0.244
el 4.2

4.3 Tabular Hardening

The tabular hardening ABAQUS model requires the use of the
elastic model *ELASTIC with inputs of the material parameters
Young’s modulus (£) and Poisson’s ratio (v). As with the ex-
ponential hardening model, Poisson’s ratio was reported at 0.08.
The constrained elastic modulus (M ©) was found by Pender to
be 206 MPa (Figure[T0) and is related to Young’s modulus by:

Me(1+v)

E=aroa—w

~ 203 MPa (40)

The additional clay plasticity parameters to determine were M
(equation ) and the table of hardening parameters p’ and &%.
The first value of p for the hardening table corresponds to the
mean effective yield stress as ABAQUS requires the first plastic
volumetric strain to be zero. In order to simplify the use of the
table, we chose to specify one additional pair of points. The sec-
ond volumetric plastic strain value would be chosen to roughly
correspond to the final test strain (4.0%). This meant that the
total unknown parameters to calibrate for this model were three
(3): M, py,, and p';, where the subscripts y and f stand for yield
and final respectively.

As the stress-strain curve experiences significant softening at
yield, the values of pj, and p} needed to be very close. We
chose M initially to be 0.8 and increased it incrementally until
a good fit was obtained. The final parameters used in the tabular
hardening model are presented in Table[2}

Table 2: Material parameters for tabular hardening model.

Parameter || Value
FE 203 MPa
v 0.08
M 1.6
v, 2.4 MPa
P 2.5 MPa
52( ) 0.0
£0(f) 04

5. PARAMETER STUDY

In order to improve our understanding of the effects each mate-
rial parameter has on the simulation, it is necessary to perform
a parameter study. In this study, the baseline material parame-
ters were taken as similar values to the model calibrations in the
previous section, but were changed slightly to have less signifi-
cant figures and for small aesthetic purposes on the stress-strain
plots. Then each parameter was increased and decreased in turn
with the results plotted on the same plot as the baseline parame-
ter. This enabled a direct comparison of the changes’ effects on
the stress-strain curve and will provide a useful future reference
as we move on in subsidence model calibration.

5.1 Exponential Hardening

In the exponential hardening model, the five (5) parameters in-
vestigated with their baseline values and the high and low values
tested are presented in Table 3] Figures[ITH{T5]display the stress-
strain curves with varying x, v, M, e1, and A in that order. In
Figure changing the elastic logarithmic bulk modulus « af-
fected the elastic portion of the stress strain curve only. Recall
that « is defined as the slope of the loading/unloading line on
the In(p") — V plot, so a lower & results in a stiffer elastic re-
sponse of the material. In Figure [T2} the Poisson’s ratio v was
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varied. Poisson’s ratio has little effect on the stress-strain be-
haviour in these triaxial tests. Interestingly a higher v seems to
result in a slightly softer elastic response. In Figure[T3] the slope
of the critical state line M was varied. A higher M results in
a larger yield surface ellipse (recall Figure[5) which results in a
higher yield stress by increasing the height of the yield surface
ellipse. In Figure[T4] the intercept e1 of the critical state line in
e — In(p’) space was varied. This intercept directly changes the
intersection of the loading/unloading line with the critical state
line and thus directly changes the yield stress. This behaviour is
clearly seen in the figure. Further, since the space in semi-natural
log, small changes in e; can lead to much larger changes in the
stress. Similarly in Figure [T5] the slope of the critical state line
A was varied. Small changes in A have very similar effect to the
stress strain response as changes in the intercept of the critical
state line.

Table 3: Material parameters for exponential hardening
model.

Param || High | Base | Low
K 0.005 | 0.003 | 0.001
v 0.35 0.2 0.05
M 24 1.4 0.4
e1 3.0 29 2.8
A 0.16 | 0.15 0.14
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Figure 11: Axial stress-axial strain curves for varying ~ with
exponential hardening model.
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Figure 12: Axial stress-axial strain curves for varying v with
exponential hardening model.

6000000 T T T T

5000000 BHE M=0.4

4000000+

3000000

2000000

Vertical Effective Stress (Pa)

1000000f

0.000 0.005 0.010 0.015 0.020 0.025
Axial Strain

Figure 13: Axial stress-axial strain curves for varying M
with exponential hardening model.
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Figure 14: Axial stress-axial strain curves for varying e; with
exponential hardening model.
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Figure 15: Axial stress-axial strain curves for varying A with
exponential hardening model.

5.2 Tabular Hardening

In the tabular hardening model, the five (5) parameters inves-
tigated with their baseline values and the high and low values
tested are presented in Table[d] Figures[I6]20]display the stress-
strain curves with varying E, v, M, py, and p’ in that order.
In Figure changing E has obviously affected the slope of
the elastic portion of the stress-strain curve, thus affecting the
amount of elastic strain at the onset of yield. This strain car-
ries over into the plastic portion of the stress-strain curve. The
slopes of the plastic behaviour appear unchanged. In Figure[T7}
changing Poisson’s ratio v affects the stress development in the
horizontal direction. This has the effect of stiffening the axial be-
haviour when increased (due to increased lateral support against
deformation) and vice versa when decreased. This in turn has
a similar effect to £ in the axial stress-strain curve, in that dif-
ferences in elastic strain carry over to the plastic portion but the
slope of the plastic curve does not appear affected. In Figure[I8]
the slope of the critical state line M was changed. This seems
to have a dramatic effect on the yield process as lower M values
cause yield to occur at lower stress/strain values than higher M
values. This is consistent with the Cam-clay yield surface ellipse
seen in Figure[5as a reduction in M reduces the height of the el-
lipse, which in turn would reduce the yield stress and change the
hardening behaviour of the material. In Figure[I9] the mean ef-
fective yield stress pj, was varied. Obviously, a higher pj, results
in a higher yield stress and vice versa. This also affects the slope
of the plastic portion of the curve as a higher yield stress with the
same p} will reduce the slope and vice versa. Lastly, in Figure
, the final mean effective stress p} was varied. The curves are
identical, but the stress at the final strain has changed. This has
the effect of only changing the slope of the plastic portion of the
stress-strain curve.

Table 4: Material parameters for tabular hardening model.

Param High Base Low
E 1000 MPa | 500 MPa | 250 MPa
v 0.35 0.2 0.05
M 2.5 1.5 0.5

p; 0.49 MPa | 0.25 MPa | 0.10 MPa
P} 026 MPa | 0.5MPa | 1.0MPa
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Figure 16: Axial stress-axial strain curves for varying F£ with
tabular hardening model.
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Figure 17: Axial stress-axial strain curves for varying v with
tabular hardening model.
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Figure 18: Axial stress-axial strain curves for varying M
with tabular hardening model.
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Figure 19: Axial stress-axial strain curves for varying p;,
with tabular hardening model.
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Figure 20: Axial stress-axial strain curves for varying p’f
with tabular hardening model.

6. SUMMARY/CONCLUSIONS

In this work, we have outlined the theoretical development of
the modified Cam-clay constitutive model. We then sought to
parameterise and apply the Cam-clay model to simulate the Ko
triaxial test of a single well core from well THM 18. The purpose
of this was to determine if the Cam-clay work hardening plas-
ticity model could provide a suitable framework for represen-
tation of the plastic behaviour of samples within the Wairakei-
Tauhara subsidence zone. The model does appear to capture the
behaviour (see Figure [9). Since the goal is to apply the model
to the soft zones in 1D and 3D subsidence models of the field,
we then performed a parameter study on the Cam-clay parame-
ters to better understand the exact effects each parameter has on
the confined stress-strain behaviour. It is the subject of ongoing
future work to determine the appropriate plasticity parameters
based on triaxial and collected data from the Wairakei-Tauraha
geothermal field and apply those parameters to numerical subsi-
dence models.
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