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ABSTRACT

Model sensitivities are a measure of how specific model
results vary with selected model parameters (such as
permeability and porosity). They are important for
parameterizing numerical models, automatic history
matching and uncertainty quantification of model
predictions. However, the current way of evaluating model
sensitivities using finite differencing does not scale well for
large and highly nonlinear geothermal reservoir
simulations.

Alternatively model sensitivities may be generated by
solving related linear problems forward or backward in
time. The method of choice depends on the dimensionality
of the parameter and observation spaces. The proposed
linear methods were tested on one-dimensional transient
two-phase flow problems, solved using the TOUGH2
simulator. Results of the forward and backward propagating
methods were compared with those found by using simple,
but computationally expensive, finite differencing.

1. INTRODUCTION

Automatic history matching of a geothermal reservoir
model is commonly done through solving a least squares
minimisation problem. The aim is to calibrate a numerical
model of a geothermal system using m parameters as model
inputs. The model response d(m) should match the
observed field measurements d” as closely as possible.
Defining the residual by:

r(m) =d(m) - d* 1)

then the least squares functional can be written as
1 *112 1 T
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The history matching task is to find the model parameters m
that minimize F, i.e.:

@)

m"iln F(m) (3)

In practice it is usually of benefit to weight observations
and regularize the above inversion problem. Weighting can
be based on some prior knowledge or ideas about
measurement error. Inclusion of a regularization term may
help to find a solution which honours the geology of the
system. However, for the following discussion we do not
include weighting and regularizing, but the method
introduced can easily be extended to cover the more general
formulation.

Assuming continuous model parameters m and smooth
enough model outputs, iTOUGH2 (Finsterle, 2007) and
PEST (Doherty, 2013) offer robust implementations of the
iterative Levenberg-Marquardt approach for finding an
approximate solution to (3). During each iteration of the
Levenberg-Marquardt method, the Jacobian matrix S is
evaluated in terms of the updated model parameters m :

dT1 dT1
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The matrix contains the sensitivities, i.e. the derivatives of
N model generated observations with respect to the n
adjustable model parameters. For field-scale history
matching, calculation of model sensitivities is one of the
most computer intensive tasks.

Previously sensitivities for models implemented in
TOUGH2 (Pruess et al., 1999) have been evaluated using
finite differencing, which requires at least n+1 time-
consuming, nonlinear forward simulations (for n model
parameters). As discussed previously (Bjarkason et al.,
2014), shorter computational times may be achieved by the
use of analytic methods, including the chain rule, for
calculating S. This allows the sensitivity matrix S to be
found by solving a sequence of linear problems either
forward or backward in time.

A goal of this ongoing study is to test the applicability of
the linear propagation methods to  multiphase,
multicomponent geothermal reservoir simulations. The
intent is then to implement these methods to ease model
development and uncertainty quantification. This paper
discusses preliminary tests on three basic horizontal, one-
dimensional transient TOUGH2 simulations. All the tests
were conducted using the pure water module EOS1.

The modelled problems are all 1D and include a production
injection doublet but were of increasing complexity in
terms of the fluid state: a non-isothermal pure liquid flow
problem, an initially liquid state flashing to two-phase, and
an initially two-phase problem with cool liquid
breakthrough.

2. TOUGH2 SIMULATIONS

TOUGH2 (Pruess et al., 1999) solves discretized heat and
mass balance equations. The equations simply describe how
the change in mass or energy in an element is equal to the
net mass or energy that flowed in or out of the volume. Let
the superscript k denote values at the end of the k™ time-
step of duration A7, F,'i,-j be the average flux of component «
over the interface area a;; connecting blocks i and j (positive
for flow from block i to block j), and Q% be the total
source/sink flow rate into block i (positive for injection,
negative for production). The amount of component x per
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unit volume M,; in element i of volume V; is found
according to (Pruess et al., 1999; O’Sullivan et al., 2013)

V; _
ATLR(M;I& - M) = —Z aijFé; + Qk; (5)

J

Rearranging, the implicit equations solved by TOUGH?2 for
all volumes i and components « are:

Atk
f;fi=M;}fi—M;'§i1+7 E aiiFé; — Qi [=0  (6)
L -
7

These nonlinear equations, solved at the k™ time-step of a
TOUGH2 simulation, can be represented using vector
notation. For every time-step, TOUGH2 finds updated
primary variables u¥ (such as pressures and temperatures
for a single-phase or pressure and saturation for two-phase
conditions) for all volumes by solving

@k uttm) =0 U]

Each element of the vector f ¥ represent a residual £k see
equation (6). Note that the forward equations (7) for the k™
time-step are a function of the new primary variables u*,
primary variables for the previous time-step u“! and the
model parameters m. Further, the forward residuals in (7)
can be written as

= Mk, m) — M(u*=',m) + FS(u*,m) (8)

Here the M's are column vectors of accumulated mass and
energy, and FS represents the flux and source terms.

For every time-step the nonlinear equations (7) are solved
using Newton-Raphson iterations. For the p™ Newton
iteration the primary variables are updated according to

Ak,p—l (uk,p _ uk,p—l) — —f"(uk'”‘l,u"_l,m) (9)

where

Lo
Ak'p 1 = [m] (10)

In TOUGH?2 the initial guess for every new time-step is
u“®=u*, The updating procedure is halted when all of the
forward residuals meet one of the following convergence

criteria (Pruess et al., 1999):

k,p
f :
K]L(’p < & (11)
Mm‘
or
15| < &1 (12)

The tolerances ¢, and ¢, have default values of 10 and 1,
respectively. With (11) or (12) realized for all components
of each numerical block, then u*=u*? and the simulation
moves on to the next time-step.

3. LINEAR PROPAGATION

For the linearized approaches to calculating model
sensitivities the important matrices are:

K k

e o
ouk ’ ouk-1

_of or

“om’ T ouk

(13)
Gk

3.1 Direct Simulations

Using the forward propagation or direct simulation method
(Anterion et al., 1989; Bjarkason et al., 2014) we track
forward in time solving (7) and

k k-1
A¥ a_“] — _Gk_ Bk a_"] (14)
om om

for every time-step. Equation (14) is a linear matrix
equation with n (the number of adjustable model

k
parameters) right-hand sides. By solving (14) for [:—;‘J we

obtain the model sensitivities of every primary variable at
that time. Note that if the initial conditions are constant,
then

ou?®
[_ -0 (15)
om

However, this may not be the case for a production scenario

for which the initial state is determined through a natural
state simulation.

The sensitivity matrix is subsequently found according to

k

T dm” om

dr or du
[l
om

(16)

The linear propagation method outlined here is unlike
simple finite differencing, which require at least n+1, time-
consuming, nonlinear forward simulations. Instead the
forward propagation method solves only one nonlinear and
n linear problems. Replacing n nonlinear tasks with
corresponding linear ones should result in reduced
computational effort.

3.2 Adjoint Simulations

Another method for finding S is to propagate backward in
time (Bjarkason et al., 2014; Li et al., 2003). The
backtracking approach involves solving linear matrix
problems, where the coefficient matrix is the transpose or
adjoint of the one found in (14). For this approach we first
solve all the nonlinear forward equations (7) up to and
including the last observational time-step 47, where k=N..
Subsequently we solve a related adjoint problem for the
Lagrange multipliers W% The backtracking method starts
by solving

[AN]TPNe = —[CNe]T n
and going back in time solves
[Ak]T(I]k — _[Ck]T _ [Bk+1]T(I]k+1 (18)

for all previous times. The number of right-hand sides
involved in equations (17) and (18) are equal to the number
of individual observations N. Note, however, that in
practice the number of right-hand sides is at most N,
because a column of ¥* only becomes nonzero when the
corresponding columns of C* or ¥&+1 are nonzero.
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The sensitivities are now found by

d
~ LT

Although these propagation methods have found favour in
other scientific disciplines (Medina & Carrera, 2003; Oliver
et al., 2008; Reuther et al., 1996), it is not at all trivial to
see whether they will easily work for highly nonlinear
geothermal simulations. Geothermal reservoir simulations
involve notoriously ill-posed or badly conditioned forward
matrices A* and the forward problem itself may not able to
be solved when modelling a system under great stresses.

3.3 Implementation

Our tests used the TOUGH2 forward code available along
with the iTOUGH2 parameter estimation suite (Finsterle,
2007). The preliminary tests were aimed at checking the
suitability of the linear methods. For ease of
implementation we calculated the sensitivity matrices after
completion of the forward simulations using Python. The
TOUGH?2 forward code was edited in order to write out and
store the necessary information for the backward and
forward propagation methods.

The TOUGH2 code already calculates the converged A
and B matrices that are needed. They are evaluated, as part
of a standard forward run, along with the forward residuals
(8) before convergence and conclusion of a time-step.
These matrices are calculated within TOUGH2 using finite
differentiation, though this could be done using automatic
differentiation in the future (Kim & Finsterle, 2003; Wong
et al., 2015).

For the accumulation matrices BX we utilized the TOUGH?2
algorithm which calculates the forward Jacobian A* in the
following sequence:

oMu*,m)  ofF+t

Ak = — _pk+1 20

a G o B (20)
_, OFS(u*m

P L

During our model runs we evaluated the matrices -B*** and

A using equations (20) and (21), respectively, and stored
them for later use. However, in the final implementation
primary variables could instead be stored and the required
matrices calculated only when necessary. Observe that we
could also have used the accumulation matrices calculated
at the first Newton iteration at each time-step:

aM(uk+1,0’ m)

_pk+1 —
B - ukt10

(22)

since u"°=u*, This interchangeability holds even for
varying time-steps because the time component is only
included in the flux and source terms (see (6)).

The matrices C and G* depend on the types of simulated
observations and model parameters, respectively. The
matrices C* are calculated for each simulation. Evaluation
of G* is addressed as follows for the specified model
experiments.

For the tests conducted the only adjustable model
parameters were logarithms of formation permeabilities.
The permeabilities only appear in the forward residuals

through the advective fluxes of each phase g described
using Darcy's law (Pruess et al., 1999):

keg\© [PF - P
Fgi; = =k <V_> Do - Pij9ij (23)
B ij ij

Here the subscripts ij designate averaged values over the
interface between blocks i and j, and as before the
superscript k denotes values at the k™ time-step. F/;,, is the
flux of phase g, kj; is the absolute permeability and P¥is the
pressure of block i. pfy, k,; and v, are the density, relative
permeability and kinematic  viscosity, respectively,
belonging to phase . gjj is the component of gravity acting
through the interface and D;=Dj +D,J, where Dj; is the
distance between the block centre i and the interface ij
(O’Sullivan et al., 2013).

In our simulations, we used harmonic weighting of the
absolute permeabilities according to (O’Sullivan et al.,
2013)

[ J
by _ Dy Dy (24)

where k; is the permeability of block i. All simulations used
zero capillary pressures and linear relative permeability
curves with residual liquid saturations of 0.5 and the
relative permeabilities summing to 1.

The flux of water (x=w) is found by summing over the
liquid (1) and gas (g) phases:

WlJ Z FBU Flu gu (25)

The advective energy (x=e) flux is found similarly
according to

Fj = z hgFfi; = hiFfj + hgFgi; (26)
B

Here h; stands for the specific enthalpy of phase 5.

Each adjustable model parameter m, considered here is the
logarithm of a permeability Kgrqaxq, Where RTq is the rock
type associated with parameter mg and AXq is the principal
axis which the permeability belongs to. Assuming a regular
grid with block connections along the principal axes, G can
be calculated using:

e _ Lk otk
Kiq —

amq‘m

ln(lO) z a; #
Y a[logm(kRTq AXq)]
(27)
= Tln(lo)z a;;F, KU Saxq,axij
f -

j
D} ki D} ku6
D k RTqRTL'l'D k; RTq,RTj

Here J.n is the Kronecker delta function, AXij is the
principal axis along the connection between i and j, and RTi
is the rock type of volume i. The first delta in equation (27)
is to check whether the flux is along the same direction as
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the adjustable permeability in question. The terms given in
the square bracket result from differentiating the
harmonically weighted permeabilities at the interface ij.
The first term in the bracket is included if block i was
assigned the parameter m, and the second term is included
if this parameter was assigned to the neighbouring block j.

4. SIMULATION EXPERIMENTS

The following three subsections detail some of the main
results of our preliminary study of using linear propagation
methods to evaluate model sensitivities. The model setup
used for all three simulation variants is depicted in Figure 1.

Injection Production
L frar
Py o ko Py

I [
0m 195 m 750 m 1005 m 1500 m

Figure 1: The one-dimensional, horizontal model setup,
showing boundaries of constant pressure Py=30
bar. There are two formations with
permeabilities k; and k.

The model domain is one-dimensional with a length of
1,500 m. The standard horizontal model for all simulations
has 52 elements. The boundary conditions at 0 m and 1,500
m were modelled as constant pressure boundary conditions
using large volume blocks. For all simulations, the initial
pressure over the entire domain was Py=30 bar. Aside from
the constant pressure blocks, the elements are cubes of
volume 27,000 m® with nodal points at the geometric
centres.

There are two formations or rock types, as shown in Figure
1, having different permeabilities and each zone spans 750
m. During the simulations, water is injected at a constant
injection rate q,=q and constant enthalpy h, into the first
formation. The temperature of the injected water
corresponds to 20°C and the injection point is at about 500
m from the left boundary in Figure 1. Roughly 500 m away
from the right boundary, fluid is produced at a constant
production rate gp=-g. The injection formation has a
permeability k; and the production formation has a
permeability k,. Hereafter we refer to these two formations
as the injection and production formations, respectively.
The simulation parameters used for all model runs are listed
in Table 1.

For our simulations we used the MOMOP option available
when using iTOUGH2 (Finsterle, 2014). We set
MOP2(1)=2 to ensure that primary variables were updated
at every time-step. Moreover, the relative convergence
tolerance & was set to 10% see equations (11). The
LUBAND direct solver method (Pruess et al., 1999) was
selected for working out the linear Newton-Raphson
updates (9).

For all simulations we ran TOUGH2 for 10 constant time-
steps and took the pressure at the injection block P, and the
pressure at the production block Pp at the final time as
observations. The pressure observations were measured in
pascals (Pa). The adjustable model parameters were taken
to be the base ten logarithms of the two formation
permeabilities. This results in the model Jacobian or
sensitivity matrix as

Table 1: Simulation parameters for the two formations
shown in Figure 1 and parameters common to

both.
Parameter Value
cc Permeability, k; 1.5x107% m?
c .2
S g Injection rate, q, 0.3 kg/s
L E
s Injection enthalpy, h, 83.9 ki/kg
S c Permeability, k, 2.5x10 m?
2.9
o = .
= Production rate, -0.3 kg/s
3 E Jp g
— O
D_ S
Rock grain density, pg 2500 kg/m?®
c g Conductivity, K 2.5 W/(m'K)
O =
£ % Specific heat, Cr 1.0 K/(kgK)
O
g Pore compressibility, cg 1.0x10° Pa™
Porosity, ¢ 0.1
aP° aP°
S = [511 512] _ d[log1o(k1)] 9[logio(k2)] (28)
S21 S22 app° P30

[8log10 (k)] 9MlogroCk)]]

The forward and backward propagation methods were used
to calculate the matrix S. To check the accuracy of our
implementations, we compared the evaluated sensitivities
with those found using iTOUGH2's forward and central
finite difference methods (Finsterle, 2007).

Note, since the observations are themselves primary
variables of the injection and production elements, the
matrices C* are sparse with two entries which are 1 for the
final time-step, and

or

om "~ 0 (29)
The partial derivatives in (29) are zero because the
observation pressures do not depend explicitly on the model
parameters. The pressures only depend implicitly on the
permeabilties through (7). Therefore, we only required the
summation terms in (16) or (19) to find the sensitivities.

4.1 Non-Isothermal Liquid Only

The first test case was a non-isothermal problem, where the
water was exclusively in the liquid phase over the entire
simulation. At the outset all elements had a temperature of
200°C.

The linear propagation methods were tested for various
time-step sizes. Figure 2 illustrates the normalized
differences between the elements of the Jacobian matrix
(28) found using the two linear propagation methods. The
results show that the two methods agree closely. Due to this
good agreement only the forward propagation method was
used to compare with the finite difference approaches.
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Figure 2: Plot of the normalized difference between the
model sensitivities found using the forward and
backward propagation methods as a function of
time for the liquid only problem.

Figure 3 shows for a time step of 10” s (almost four months)
the difference between the sensitivity matrices found by the
linear forward propagation method and the ones evaluated
using the two finite difference approaches. Comparisons
were not made using longer time-steps (4/=108 s), since
the simulator would not converge within the maximum
default number of Newton iterations without changing the
time-step size.
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Figure 3: Absolute normalized differences between
elements of the Jacobian matrix S using the
linear forward propagation approach and finite
differencing for wvarious model parameter
perturbations. The blue circles (¢) denote
deviations obtained when using iITOUGH2's
forward finite differencing and the red triangles
(v) central finite differencing. All terms were
normalized using the corresponding value of the
forward propagation method. The results are for
a liquid only simulation and a constant time-step
A4£=10" s. The black dashed line indicates the
default perturbation setting in iTOUGH2 of 1%.

The results in Figure 3 show that the forward propagation
method is in good agreement with the finite differencing
approaches. Supposing that the linear propagation method
is close to the analytical solution, then for relatively large
perturbations the central difference method should
generally be expected to give smaller deviations than
forward differences. That pattern can be seen in Figure 3

and was found to be the case for most of our tests. This is
due to the smaller truncation error of the central scheme,
but for inversions it comes at the cost of having to run twice
as many simulations. As expected, the comparison worsens
for smaller perturbations due to finite precision round-off
error. The typical results as given in Figure 3 indicate that
the linear propagation methods give accurate model
derivatives. However, these tests cannot quantify how close
the results are to the true theoretical sensitivities.

Figure 4 shows results, for a much smaller time-step, where
the above pattern is not observed for all sensitivities.
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Figure 4: The same comparison as the one shown in
Figure 3, but using a time-step 47=100 s.

The results show a relatively large discrepancy between the
calculated values for the elements S;, and S,;. Nonetheless,
the elements S;; and S,, compare favourably. The main
reason is that the sensitivities S;, and S,; are so small that it
makes them difficult to evaluate. This is because perturbing
a permeability induces relatively large pressure changes in
nearby elements, but has little to no effect far away. From
Figure 4 it is hard to say which method is correct, only that
the forward propagation method and the finite difference
approach produce different results.
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Figure 5: Model sensitivities for liquid only flow and a
time-step 47#=100 s. The blue circles (s)and red
triangles (v) denote values obtained with
iTOUGH2's forward and central finite
differencing methods, respectively. The blue lines
indicate the sensitivities found using either of the
linear propagation methods.
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Greater insight can be gained by looking at Figure 5, which
shows the variability of sensitivities evaluated using finite
differentiation. Figure 5 shows that even the larger
sensitivities S;; and Sy, suffer from machine rounding errors
when evaluated using either finite difference method along
with very small parameter perturbations. The presence of
rounding errors is evident in the sign change of sensitivities
as perturbations are varied. However, for larger
perturbations the finite difference methods give values
which agree with the forward and backward propagation
approaches.

In contrast it is clear from Figure 5 that the finite difference
methods did not settle on an estimate of S;, or S,;, even for
large parameter perturbations. For very small perturbations
the values of both sensitivities were usually found to be
zero using finite differences, but that was not always the
case as Figure 5 shows. Due to rounding errors the finite
difference methods can clearly not determine the sign of
either S;, or S,.. For the larger perturbations these
sensitivities hover about £0.1 Pa. Looking at the finite
difference results, setting both sensitivities to zero would
likely be the best compromise.

By comparison the linear propagation methods appeared to

give fairly reasonable values for the model sensitivities.

The linear forward and backward propagation methods

gave the following sensitivity matrix for 4=100 s:

s = [511 512] _[-33x10* —64x107°] .
S21 S22 20x107% 3.3 x10*

Yet iTOUGHZ2's central difference method gave, using the
default 1% parameter perturbation:

g=[33x10* -23 ] Pa
0.64 3.3 x 10*
The evaluated S;, and S,; given in the two matrices above
differ by many orders of magnitude. In our opinion the
linear propagation methods gave much more reliable model
sensitivities than the simpler finite difference approaches.

These results emphasize that there is no all-purpose
perturbation which can be used for black-box finite
differentiation. This usually results in using trial and error
to find a suitable perturbation, though the iTOUGH2
default value may usually be suitable for large sensitivities.
By contrast, the proposed linear propagation methods do
not rely on having to pick a rather speculative parameter
perturbation, which could impact the accuracy of the
sensitivities. Inaccurately evaluated sensitivities can
undermine the efficiency of model inversions using
iTOUGH2 or PEST. The linear propagation approaches
have the potential to mitigate inaccuracies in sensitivity
evaluations. This aspect alone could speed up history
matching. There is even greater room for improvement for
steady state simulations, which commonly suffer from
convergence issues. We are currently working on a steady
state implementations of the linear propagation methods.

4.2 Non-Isothermal Flashing

The second simulation experiment begins with a system in
a pure liquid state at 230°C. As fluid is extracted from the
production zone, the water flashes to two-phase around the
production well. Figure 6 shows the approximate onset of
two-phase conditions at the production block.

0.03 ‘
— Producer
5 0.021 i
=
o
3
I
w
5
g
g o001 4
1 L 1
10° 10° 10° 10° 10°

Time [s]

Figure 6: Saturation at the production well, for the
flashing problem. The system became two-phase
after a few hours of extraction.

The purpose of this simulation experiment and the one
discussed in the next subsection was to test the effects of
phase transitioning on the linear propagation methods. This
makes the methods more complicated because during a
phase transition some of the primary variables switch from
temperature to saturation. For this case a constant
simulation time-step of 10° s was selected. Figure 7 shows
the saturation profile across the simulation domain for three
selected time-steps, including the final time.

0.10 r ‘
—e 1.010° s
o0gl] --- 5.0:10° s ]
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©
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c
=
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"
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0 250 500 750 1000 1250 1500

Horizontal Position [m]

Figure 7: Vapour saturation over the simulation domain
for the flashing flow problem. Four blocks
changed to two-phase conditions by end of the
simulation.

Like the previously discussed flow problem Figure 8 shows
that the two linear propagation methods give near identical
results for this case. Figures 8 and 9 demonstrate that the
reliability of the backward and forward propagation
methods were unaffected by the phase transition.

4.3 Two-Phase Initially

The third and final simulation experiment was a problem
with two-phase initial conditions. Initially the vapour
saturation was 10% over the whole domain. As the cool
injection fluid gets added to the system a liquid zone
developed as illustrated in Figures 10 and 11.
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Figure 8: Normalized differences between sensitivities
found using the forward and backward
propagation methods for the flashing problem.
Only time-steps 47>10° s produced two-phase

S1, and seven orders smaller than the other sensitivities. The
finite differencing methods compare a bit better for the
intermediate sensitivity S;,. This result is consistent with
the one discussed for the liquid only experiment, that finite

differencing gives less accurate results for small
sensitivities.
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Figure 10: Saturation at the production and injection
wells, for the initially two-phase problem. The
injection block was single-phase after a few days.
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Figure 9: Same as Figure 3, but for the flashing problem
and a time-step of 10°%s.

A constant time-step of 10° s was chosen for this
experiment. The selected time-step was long enough for
phase changes to take place around the injection point, but
small enough to allow for a constant time-step. Figure 11
shows some simulation results at various times.

Figure 12 compares the forward propagation method with
the two finite difference methods. As shown, the forward
propagation method does a good job of evaluating the
sensitivity matrix. The same applies to the backtracking
method. The linear tracking methods found the sensitivity
matrix as
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Figure 12 shows that the forward propagation method and
the finite differencing methods compare less favourably for
element S,,. Still, the difference is only about 0.5% between
the S, found using the forward propagation method and the
one found using central differencing and the iTOUGH2
default 1% perturbation. The reason for the less favourable
comparison for S,; is due to its small absolute value of
about 0.01, which is three orders of magnitude smaller than
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Figure 11: Vapour saturation over the simulation
domain for the initially two-phase flow problem.
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Figure 12: Same as Figure 3, but for the flow problem
with two-phase initial conditions and a time-step
of 10°s.
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As before a comparison was made between the forward and
backward tracking linear methods, (Figure 13). It showed
that there was only one model sensitivity for which the
normalized difference was greater than 1%. The absolute
value of the responsible sensitivity itself was evaluated to
be about 10", by both linear propagation methods. The
insignificance of the sensitivity and arithmetic error is the
probable cause of the larger relative discrepancy.
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Figure 13: Normalized difference between sensitivities
found using the forward and backward
propagation methods for the initially two-phase
problem. Only time-steps 47>10° s gave phase
transitions from two-phase to single-phase.

As for the flashing test model, the phase transitions for the
initially two-phase problem do not result in degradation of
the linear propagation methods. The consistently good
agreement between the forward and backward propagation
methods (Figures 2, 8 and 13) shows that conditioning of
the forward matrices A* did not severely impact the results.

Finally Table 3 gives a rough idea of the relative
computational cost of the four methods that were tested for
calculating model sensitivities. Note that the number of
Newton iterations is counted as ITER-1, where ITER is the
nonlinear Newton iteration counter in TOUGH2. As would
be expected, the number of Newton iterations increases as
the simulations become more complex.

Table 3 shows the number of linear problem solves needed
to calculate the model sensitivities. The number of linear
solves for the forward (Dir) and backward (Adj)
propagation methods was the same because the number of
observations N equalled the number of model parameters n
and all the observations were taken at the last simulation
time.

Notice that Table 3 denotes within the parenthesis the cost
of each method if they were used to generate the sensitivity
matrices for history matching. Within an inversion context
the effective cost for the linear propagation methods and
forward finite differences is discounted by one nonlinear
forward solve, which at any rate is needed to calculate the
objective function (2). The accounting assumes that the
linear problems (14), (17) and (18) are solved separately for
each right-hand side. For these small test problems,
however, the cost of the forward and backward propagation
methods could be nearly independent of number of right-
hand sides (N/n) by solving the linear problems using direct
linear solvers.

Table 3: Number of Newton-Raphson iterations (NR
Iter) and the number of linear matrix solutions
needed to evaluate the sensitivity matrix using
the linear propagation methods (Dir/Adj),
forward finite differencing (Fwd) and central
differencing (Cntrl). The results are in all cases
using forward simulations with ten fixed time-
steps of 10° s. Shown are the number of linear
matrix problems solved by each method. Note
that the numbers within the parenthesis would
be the cost per inversion iteration.

NR Number of Linear Solves
" piradj  Fwd  Cntrl
N Nir +Nxn  Npipx[n+1]  Nigpx2n
T (Nxn) (Npxn) — (Nyrx2n)
Liquid 22 42 66 88
iqui
| (20) (44) (88)
Flashi 33 53 99 132
ashin
’ (20) (66) (132)
Initially 36 56 108 144
Two-Phase (20) (72) (144)

For these simple problems the results suggest that we can
expect the forward propagation method to result in at least
half the computational cost compared with using finite
differences for history matching. For two-phase problems
the savings can be even greater. Note however that this
accounting omits any added memory cost of the linear
propagation methods.

5. CONCLUSIONS AND FUTURE WORK

The numerical experiments indicated that either linear
forward or backward propagation should be viable options
for calculating derivatives of model outputs from
geothermal reservoir simulations. Phase transitioning did
not make the proposed linear propagation methods any less
tractable for calculating derivatives of model outputs. The
linear forward and backward propagation methods were
found to be in good agreement with each other when
evaluating model sensitivities for selected problems. They
likewise gave results which were mostly consistent with
using finite differentiation to evaluate model sensitivities.
The finite difference methods were, however, found to be
inconsistent and inaccurate for evaluating small
sensitivities. The reliability of the finite difference methods
rely heavily on the sound choice of model parameter
perturbations. The forward and backward propagating
methods offer in comparison a consistent way of finding
model sensitivities without having to choose model
parameter perturbations.

Encouraged by our preliminary results we plan to test the
forward and backward propagation methods for inverting
larger simulation problems, with greater variability in block
volume sizes and adaptive time-stepping. The tests should
include proper measures of any computational savings
made by employing the proposed methods. Additionally we
aim to adapt the linear propagation methods to natural state
modelling.
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A.NOTATION

In our mathematical notation, unless stated otherwise, bold
faced lowercase letters x denote column vectors and bold
faced uppercase letters X represent matrices. Other letters,
whether they are upper- or lowercase, denote scalars.
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