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ABSTRACT 

Model sensitivities are a measure of how specific model 

results vary with selected model parameters (such as 

permeability and porosity). They are important for 

parameterizing numerical models, automatic history 

matching and uncertainty quantification of model 

predictions. However, the current way of evaluating model 

sensitivities using finite differencing does not scale well for 
large and highly nonlinear geothermal reservoir 

simulations.  

Alternatively model sensitivities may be generated by 

solving related linear problems forward or backward in 
time. The method of choice depends on the dimensionality 

of the parameter and observation spaces. The proposed 

linear methods were tested on one-dimensional transient 

two-phase flow problems, solved using the TOUGH2 
simulator. Results of the forward and backward propagating 

methods were compared with those found by using simple, 

but computationally expensive, finite differencing. 

1. INTRODUCTION 

Automatic history matching of a geothermal reservoir 

model is commonly done through solving a least squares 

minimisation problem. The aim is to calibrate a numerical 

model of a geothermal system using m parameters as model 
inputs. The model response d(m) should match the 

observed field measurements d* as closely as possible. 

Defining the residual by: 

              (1) 

then the least squares functional can be written as 
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The history matching task is to find the model parameters m 

that minimize F, i.e.: 
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In practice it is usually of benefit to weight observations 
and regularize the above inversion problem. Weighting can 

be based on some prior knowledge or ideas about 

measurement error. Inclusion of a regularization term may 

help to find a solution which honours the geology of the 
system. However, for the following discussion we do not 

include weighting and regularizing, but the method 

introduced can easily be extended to cover the more general 

formulation. 

Assuming continuous model parameters m and smooth 

enough model outputs, iTOUGH2 (Finsterle, 2007) and 

PEST (Doherty, 2013) offer robust implementations of the 
iterative Levenberg-Marquardt approach for finding an 

approximate solution to (3). During each iteration of the 

Levenberg-Marquardt method, the Jacobian matrix S is 

evaluated in terms of the updated model parameters m : 
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The matrix contains the sensitivities, i.e. the derivatives of 

N model generated observations with respect to the n 
adjustable model parameters. For field-scale history 

matching, calculation of model sensitivities is one of the 

most computer intensive tasks. 

Previously sensitivities for models implemented in 
TOUGH2 (Pruess et al., 1999) have been evaluated using 

finite differencing, which requires at least n+1 time-

consuming, nonlinear forward simulations (for n model 

parameters). As discussed previously (Bjarkason et al., 
2014), shorter computational times may be achieved by the 

use of analytic methods, including the chain rule, for 

calculating S. This allows the sensitivity matrix S to be 

found by solving a sequence of linear problems either 
forward or backward in time. 

A goal of this ongoing study is to test the applicability of 

the linear propagation methods to multiphase, 

multicomponent geothermal reservoir simulations. The 
intent is then to implement these methods to ease model 

development and uncertainty quantification. This paper 

discusses preliminary tests on three basic horizontal, one-

dimensional transient TOUGH2 simulations. All the tests 
were conducted using the pure water module EOS1. 

The modelled problems are all 1D and include a production 

injection doublet but were of increasing complexity in 

terms of the fluid state: a non-isothermal pure liquid flow 
problem, an initially liquid state flashing to two-phase, and 

an initially two-phase problem with cool liquid 

breakthrough. 

2. TOUGH2 SIMULATIONS 

TOUGH2 (Pruess et al., 1999) solves discretized heat and 

mass balance equations. The equations simply describe how 

the change in mass or energy in an element is equal to the 
net mass or energy that flowed in or out of the volume. Let 

the superscript k denote values at the end of the kth time-

step of duration Δtk, Fk
κij be the average flux of component κ 

over the interface area aij connecting blocks i and j (positive 
for flow from block i to block j), and Qk

κi be the total 

source/sink flow rate into block i (positive for injection, 

negative for production). The amount of component κ per 
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unit volume Mκi in element i of volume Vi is found 

according to (Pruess et al., 1999; O’Sullivan et al., 2013) 
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Rearranging, the implicit equations solved by TOUGH2 for 

all volumes i and components κ are: 

    
     

     
    

   

  
         

     
 

 

    (6) 

These nonlinear equations, solved at the kth time-step of a 

TOUGH2 simulation, can be represented using vector 

notation. For every time-step, TOUGH2 finds updated 

primary variables uk (such as pressures and temperatures 

for a single-phase or pressure and saturation for two-phase 

conditions) for all volumes by solving 

                 (7) 

Each element of the vector f k represent a residual f kκi, see 
equation (6). Note that the forward equations (7) for the kth 

time-step are a function of the new primary variables uk, 

primary variables for the previous time-step uk-1 and the 

model parameters m. Further, the forward residuals in (7) 
can be written as 

                               (8) 

Here the M's are column vectors of accumulated mass and 

energy, and FS represents the flux and source terms. 

For every time-step the nonlinear equations (7) are solved 

using Newton-Raphson iterations. For the pth Newton 

iteration the primary variables are updated according to 

                                         (9) 

where 
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In TOUGH2 the initial guess for every new time-step is 

uk,0=uk-1. The updating procedure is halted when all of the 

forward residuals meet one of the following convergence 
criteria (Pruess et al., 1999): 

  
   

   

   
   

     (11) 

or 

     
   

       (12) 

The tolerances ε1 and ε2 have default values of 10-5 and 1, 

respectively. With (11) or (12) realized for all components 

of each numerical block, then uk=uk,p and the simulation 
moves on to the next time-step. 

3. LINEAR PROPAGATION  

For the linearized approaches to calculating model 

sensitivities the important matrices are: 
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3.1 Direct Simulations 

Using the forward propagation or direct simulation method 
(Anterion et al., 1989; Bjarkason et al., 2014) we track 

forward in time solving (7) and 

    
  

  
 
 

        
  

  
 
   

 (14) 

for every time-step. Equation (14) is a linear matrix 
equation with n (the number of adjustable model 

parameters) right-hand sides. By solving (14) for  
  

  
 
 
 we 

obtain the model sensitivities of every primary variable at 

that time. Note that if the initial conditions are constant, 

then 
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However, this may not be the case for a production scenario 

for which the initial state is determined through a natural 
state simulation. 

The sensitivity matrix is subsequently found according to 

   
  

  
 

  

  
     

  

  
 
 

 

 (16) 

The linear propagation method outlined here is unlike 

simple finite differencing, which require at least n+1, time-

consuming, nonlinear forward simulations. Instead the 

forward propagation method solves only one nonlinear and 
n linear problems. Replacing n nonlinear tasks with 

corresponding linear ones should result in reduced 

computational effort. 

3.2 Adjoint Simulations 

Another method for finding S is to propagate backward in 

time (Bjarkason et al., 2014; Li et al., 2003). The 

backtracking approach involves solving linear matrix 

problems, where the coefficient matrix is the transpose or 
adjoint of the one found in (14). For this approach we first 

solve all the nonlinear forward equations (7) up to and 

including the last observational time-step Δtk, where k=Nt. 

Subsequently we solve a related adjoint problem for the 

Lagrange multipliers  k. The backtracking method starts 

by solving 

                   (17) 

and going back in time solves 

                            (18) 

for all previous times. The number of right-hand sides 

involved in equations (17) and (18) are equal to the number 
of individual observations N. Note, however, that in 

practice the number of right-hand sides is at most N, 

because a column of  k only becomes nonzero when the 

corresponding columns of Ck or  k+1 are nonzero. 
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The sensitivities are now found by 

   
  

  
 

  

  
         

 

 (19) 

Although these propagation methods have found favour in 

other scientific disciplines (Medina & Carrera, 2003; Oliver 

et al., 2008; Reuther et al., 1996), it is not at all trivial to 
see whether they will easily work for highly nonlinear 

geothermal simulations. Geothermal reservoir simulations 

involve notoriously ill-posed or badly conditioned forward 

matrices Ak and the forward problem itself may not able to 
be solved when modelling a system under great stresses. 

3.3 Implementation 

Our tests used the TOUGH2 forward code available along 

with the iTOUGH2 parameter estimation suite (Finsterle, 

2007). The preliminary tests were aimed at checking the 

suitability of the linear methods. For ease of 

implementation we calculated the sensitivity matrices after 

completion of the forward simulations using Python. The 
TOUGH2 forward code was edited in order to write out and 

store the necessary information for the backward and 

forward propagation methods. 

The TOUGH2 code already calculates the converged Ak 
and Bk matrices that are needed. They are evaluated, as part 

of a standard forward run, along with the forward residuals 

(8) before convergence and conclusion of a time-step. 

These matrices are calculated within TOUGH2 using finite 
differentiation, though this could be done using automatic 

differentiation in the future (Kim & Finsterle, 2003; Wong 

et al., 2015). 

For the accumulation matrices Bk we utilized the TOUGH2 

algorithm which calculates the forward Jacobian Ak in the 

following sequence: 

     
        

     
     

          (20) 

 
       

         

    (21) 

During our model runs we evaluated the matrices -Bk+1 and 

Ak using equations (20) and (21), respectively, and stored 

them for later use. However, in the final implementation 
primary variables could instead be stored and the required 

matrices calculated only when necessary. Observe that we 

could also have used the accumulation matrices calculated 

at the first Newton iteration at each time-step: 

       
            

        (22) 

since u
k,0=u

k-1. This interchangeability holds even for 
varying time-steps because the time component is only 

included in the flux and source terms (see (6)). 

The matrices Ck and Gk depend on the types of simulated 

observations and model parameters, respectively. The 
matrices Ck are calculated for each simulation. Evaluation 

of Gk is addressed as follows for the specified model 

experiments. 

For the tests conducted the only adjustable model 
parameters were logarithms of formation permeabilities. 

The permeabilities only appear in the forward residuals 

through the advective fluxes of each phase β described 

using Darcy's law (Pruess et al., 1999): 
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Here the subscripts ij designate averaged values over the 

interface between blocks i and j, and as before the 
superscript k denotes values at the kth time-step. Fk

βij is the 

flux of phase β, kij is the absolute permeability and Pk
i is the 

pressure of block i. ρk
β, krβ and νβ are the density, relative 

permeability and kinematic viscosity, respectively, 
belonging to phase β. gij is the component of gravity acting 

through the interface and Dij=Di
ij+Dj

ij, where Di
ij is the 

distance between the block centre i and the interface ij 

(O’Sullivan et al., 2013). 

In our simulations, we used harmonic weighting of the 

absolute permeabilities according to (O’Sullivan et al., 

2013)  
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where ki is the permeability of block i. All simulations used 
zero capillary pressures and linear relative permeability 

curves with residual liquid saturations of 0.5 and the 

relative permeabilities summing to 1. 

The flux of water (κ=w) is found by summing over the 
liquid (l) and gas (g) phases: 
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The advective energy (κ=e) flux is found similarly 
according to 

     
         

        
        

 

 

 (26) 

Here hβ stands for the specific enthalpy of phase β. 

Each adjustable model parameter mq considered here is the 

logarithm of a permeability kRTq,AXq, where RTq is the rock 

type associated with parameter mq and AXq is the principal 

axis which the permeability belongs to. Assuming a regular 
grid with block connections along the principal axes, G can 

be calculated using: 

 

    
  

    
 

   
 

    
 

                  

 
   

  
          

     
 

                   

 
   

  
              

 

 

         

   
   

 

   

   

  
         

   
 

   

   

  
          

(27) 

Here δnm is the Kronecker delta function, AXij is the 

principal axis along the connection between i and j, and RTi 
is the rock type of volume i. The first delta in equation (27) 

is to check whether the flux is along the same direction as 
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the adjustable permeability in question. The terms given in 

the square bracket result from differentiating the 

harmonically weighted permeabilities at the interface ij. 

The first term in the bracket is included if block i was 
assigned the parameter mq and the second term is included 

if this parameter was assigned to the neighbouring block j. 

4. SIMULATION EXPERIMENTS  

The following three subsections detail some of the main 
results of our preliminary study of using linear propagation 

methods to evaluate model sensitivities. The model setup 

used for all three simulation variants is depicted in Figure 1.  

 

Figure 1: The one-dimensional, horizontal model setup, 

showing boundaries of constant pressure P0=30 

bar. There are two formations with 

permeabilities k1 and k2. 

The model domain is one-dimensional with a length of 
1,500 m. The standard horizontal model for all simulations 

has 52 elements. The boundary conditions at 0 m and 1,500 

m were modelled as constant pressure boundary conditions 

using large volume blocks. For all simulations, the initial 
pressure over the entire domain was P0=30 bar. Aside from 

the constant pressure blocks, the elements are cubes of 

volume 27,000 m3 with nodal points at the geometric 

centres. 

There are two formations or rock types, as shown in Figure 

1, having different permeabilities and each zone spans 750 

m. During the simulations, water is injected at a constant 

injection rate qI=q and constant enthalpy hI into the first 

formation. The temperature of the injected water 

corresponds to 20°C and the injection point is at about 500 

m from the left boundary in Figure 1. Roughly 500 m away 
from the right boundary, fluid is produced at a constant 

production rate qP=-q. The injection formation has a 

permeability k1 and the production formation has a 

permeability k2. Hereafter we refer to these two formations 
as the injection and production formations, respectively. 

The simulation parameters used for all model runs are listed 

in Table 1. 

For our simulations we used the MOMOP option available 
when using iTOUGH2 (Finsterle, 2014). We set 

MOP2(1)=2 to ensure that primary variables were updated 

at every time-step. Moreover, the relative convergence 

tolerance ε1 was set to 10-8, see equations (11). The 
LUBAND direct solver method (Pruess et al., 1999) was 

selected for working out the linear Newton-Raphson 

updates (9). 

For all simulations we ran TOUGH2 for 10 constant time-
steps and took the pressure at the injection block PI and the 

pressure at the production block PP at the final time as 

observations. The pressure observations were measured in 

pascals (Pa). The adjustable model parameters were taken 
to be the base ten logarithms of the two formation 

permeabilities. This results in the model Jacobian or 

sensitivity matrix as 

Table 1: Simulation parameters for the two formations 

shown in Figure 1 and parameters common to 

both. 

 Parameter Value 

In
je

ct
io

n
 

fo
rm

a
ti

o
n

 Permeability, k1 1.5×10-14 m2 

Injection rate, qI 0.3 kg/s 

Injection enthalpy, hI 83.9 kJ/kg 

P
ro

d
u

ct
io

n
 

fo
rm

a
ti

o
n

 Permeability, k2 2.5×10-14 m2 

Production rate, qP -0.3 kg/s 

  

C
o
m

m
o

n
 

p
a

ra
m

et
er

s 

Rock grain density, ρR 2500 kg/m3 

Conductivity, K 2.5 W/(m∙K) 

Specific heat, CR 1.0 kJ/(kg∙K) 

Pore compressibility, cR 1.0×10-9 Pa-1 

Porosity, ϕ 0.1 

 

    
      
      

  

 
 
 
 
 

   
  

            

   
  

            

   
  

            

   
  

             
 
 
 
 

 (28) 

The forward and backward propagation methods were used 
to calculate the matrix S. To check the accuracy of our 

implementations, we compared the evaluated sensitivities 

with those found using iTOUGH2's forward and central 

finite difference methods (Finsterle, 2007). 

Note, since the observations are themselves primary 

variables of the injection and production elements, the 

matrices Ck are sparse with two entries which are 1 for the 

final time-step, and 

 
  

  
   (29) 

The partial derivatives in (29) are zero because the 

observation pressures do not depend explicitly on the model 

parameters. The pressures only depend implicitly on the 
permeabilties through (7). Therefore, we only required the 

summation terms in (16) or (19) to find the sensitivities. 

4.1 Non-Isothermal Liquid Only 

The first test case was a non-isothermal problem, where the 
water was exclusively in the liquid phase over the entire 

simulation. At the outset all elements had a temperature of 

200°C. 

The linear propagation methods were tested for various 
time-step sizes. Figure 2 illustrates the normalized 

differences between the elements of the Jacobian matrix 

(28) found using the two linear propagation methods. The 

results show that the two methods agree closely. Due to this 
good agreement only the forward propagation method was 

used to compare with the finite difference approaches. 
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Figure 2: Plot of the normalized difference between the 

model sensitivities found using the forward and 

backward propagation methods as a function of 

time for the liquid only problem. 

Figure 3 shows for a time step of 107 s (almost four months) 

the difference between the sensitivity matrices found by the 
linear forward propagation method and the ones evaluated 

using the two finite difference approaches. Comparisons 

were not made using longer time-steps (Δtk≥108 s), since 

the simulator would not converge within the maximum 
default number of Newton iterations without changing the 

time-step size. 

 

Figure 3: Absolute normalized differences between 

elements of the Jacobian matrix S using the 

linear forward propagation approach and finite 

differencing for various model parameter 

perturbations. The blue circles (•) denote 

deviations obtained when using iTOUGH2's 

forward finite differencing and the red triangles 

(▼) central finite differencing. All terms were 

normalized using the corresponding value of the 

forward propagation method. The results are for 

a liquid only simulation and a constant time-step 

Δtk=107 s. The black dashed line indicates the 

default perturbation setting in iTOUGH2 of 1%. 

The results in Figure 3 show that the forward propagation 

method is in good agreement with the finite differencing 

approaches. Supposing that the linear propagation method 
is close to the analytical solution, then for relatively large 

perturbations the central difference method should 

generally be expected to give smaller deviations than 

forward differences. That pattern can be seen in Figure 3 

and was found to be the case for most of our tests. This is 

due to the smaller truncation error of the central scheme, 

but for inversions it comes at the cost of having to run twice 

as many simulations. As expected, the comparison worsens 
for smaller perturbations due to finite precision round-off 

error. The typical results as given in Figure 3 indicate that 

the linear propagation methods give accurate model 

derivatives. However, these tests cannot quantify how close 
the results are to the true theoretical sensitivities. 

Figure 4 shows results, for a much smaller time-step, where 

the above pattern is not observed for all sensitivities. 

 

Figure 4: The same comparison as the one shown in 

Figure 3, but using a time-step Δtk=100 s. 

The results show a relatively large discrepancy between the 
calculated values for the elements S12 and S21. Nonetheless, 

the elements S11 and S22 compare favourably. The main 

reason is that the sensitivities S12 and S21 are so small that it 

makes them difficult to evaluate. This is because perturbing 

a permeability induces relatively large pressure changes in 

nearby elements, but has little to no effect far away. From 

Figure 4 it is hard to say which method is correct, only that 
the forward propagation method and the finite difference 

approach produce different results. 

 

Figure 5: Model sensitivities for liquid only flow and a 

time-step Δtk=100 s. The blue circles (•)and red 

triangles (▼) denote values obtained with 

iTOUGH2's forward and central finite 

differencing methods, respectively. The blue lines 

indicate the sensitivities found using either of the 

linear propagation methods. 
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Greater insight can be gained by looking at Figure 5, which 

shows the variability of sensitivities evaluated using finite 

differentiation. Figure 5 shows that even the larger 

sensitivities S11 and S22 suffer from machine rounding errors 
when evaluated using either finite difference method along 

with very small parameter perturbations. The presence of 

rounding errors is evident in the sign change of sensitivities 

as perturbations are varied. However, for larger 
perturbations the finite difference methods give values 

which agree with the forward and backward propagation 

approaches.  

In contrast it is clear from Figure 5 that the finite difference 
methods did not settle on an estimate of S12 or S21, even for 

large parameter perturbations. For very small perturbations 

the values of both sensitivities were usually found to be 

zero using finite differences, but that was not always the 

case as Figure 5 shows. Due to rounding errors the finite 

difference methods can clearly not determine the sign of 

either S12 or S21. For the larger perturbations these 

sensitivities hover about ±0.1 Pa. Looking at the finite 
difference results, setting both sensitivities to zero would 

likely be the best compromise. 

By comparison the linear propagation methods appeared to 

give fairly reasonable values for the model sensitivities. 
The linear forward and backward propagation methods 

gave the following sensitivity matrix for Δtk=100 s: 

    
      
      

                    

                     

Yet iTOUGH2's central difference method gave, using the 

default 1% parameter perturbation: 

                
                 

The evaluated S12 and S21 given in the two matrices above 

differ by many orders of magnitude. In our opinion the 
linear propagation methods gave much more reliable model 

sensitivities than the simpler finite difference approaches. 

These results emphasize that there is no all-purpose 

perturbation which can be used for black-box finite 
differentiation. This usually results in using trial and error 

to find a suitable perturbation, though the iTOUGH2 

default value may usually be suitable for large sensitivities. 

By contrast, the proposed linear propagation methods do 
not rely on having to pick a rather speculative parameter 

perturbation, which could impact the accuracy of the 

sensitivities. Inaccurately evaluated sensitivities can 

undermine the efficiency of model inversions using 
iTOUGH2 or PEST. The linear propagation approaches 

have the potential to mitigate inaccuracies in sensitivity 

evaluations. This aspect alone could speed up history 

matching. There is even greater room for improvement for 
steady state simulations, which commonly suffer from 

convergence issues. We are currently working on a steady 

state implementations of the linear propagation methods. 

4.2 Non-Isothermal Flashing 

The second simulation experiment begins with a system in 

a pure liquid state at 230°C. As fluid is extracted from the 

production zone, the water flashes to two-phase around the 

production well. Figure 6 shows the approximate onset of 
two-phase conditions at the production block. 

 

Figure 6: Saturation at the production well, for the 

flashing problem. The system became two-phase 

after a few hours of extraction. 

The purpose of this simulation experiment and the one 

discussed in the next subsection was to test the effects of 

phase transitioning on the linear propagation methods. This 
makes the methods more complicated because during a 

phase transition some of the primary variables switch from 

temperature to saturation. For this case a constant 

simulation time-step of 106 s was selected. Figure 7 shows 
the saturation profile across the simulation domain for three 

selected time-steps, including the final time. 

 

Figure 7: Vapour saturation over the simulation domain 

for the flashing flow problem. Four blocks 

changed to two-phase conditions by end of the 

simulation. 

Like the previously discussed flow problem Figure 8 shows 

that the two linear propagation methods give near identical 

results for this case. Figures 8 and 9 demonstrate that the 

reliability of the backward and forward propagation 

methods were unaffected by the phase transition. 

4.3 Two-Phase Initially 

The third and final simulation experiment was a problem 
with two-phase initial conditions. Initially the vapour 

saturation was 10% over the whole domain. As the cool 

injection fluid gets added to the system a liquid zone 

developed as illustrated in Figures 10 and 11. 
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Figure 8: Normalized differences between sensitivities 

found using the forward and backward 

propagation methods for the flashing problem. 

Only time-steps Δtk≥105 s produced two-phase 

conditions. 

 

 

Figure 9: Same as Figure 3, but for the flashing problem 

and a time-step of 106 s. 

A constant time-step of 106 s was chosen for this 

experiment. The selected time-step was long enough for 

phase changes to take place around the injection point, but 
small enough to allow for a constant time-step. Figure 11 

shows some simulation results at various times. 

Figure 12 compares the forward propagation method with 

the two finite difference methods. As shown, the forward 
propagation method does a good job of evaluating the 

sensitivity matrix. The same applies to the backtracking 

method. The linear tracking methods found the sensitivity 

matrix as  

    
      
      

                   

                       

Figure 12 shows that the forward propagation method and 

the finite differencing methods compare less favourably for 

element S21. Still, the difference is only about 0.5% between 

the S21 found using the forward propagation method and the 
one found using central differencing and the iTOUGH2 

default 1% perturbation. The reason for the less favourable 

comparison for S21 is due to its small absolute value of 

about 0.01, which is three orders of magnitude smaller than 

S12 and seven orders smaller than the other sensitivities. The 

finite differencing methods compare a bit better for the 

intermediate sensitivity S12. This result is consistent with 

the one discussed for the liquid only experiment, that finite 
differencing gives less accurate results for small 

sensitivities.

 

Figure 10: Saturation at the production and injection 

wells, for the initially two-phase problem. The 

injection block was single-phase after a few days. 

 

Figure 11: Vapour saturation over the simulation 

domain for the initially two-phase flow problem. 

 

Figure 12: Same as Figure 3, but for the flow problem 

with two-phase initial conditions and a time-step 

of 106 s. 
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As before a comparison was made between the forward and 

backward tracking linear methods, (Figure 13). It showed 

that there was only one model sensitivity for which the 

normalized difference was greater than 1%. The absolute 
value of the responsible sensitivity itself was evaluated to 

be about 10-53, by both linear propagation methods. The 

insignificance of the sensitivity and arithmetic error is the 

probable cause of the larger relative discrepancy. 

 

Figure 13: Normalized difference between sensitivities 

found using the forward and backward 

propagation methods for the initially two-phase 

problem. Only time-steps Δtk≥105 s gave phase 

transitions from two-phase to single-phase. 

As for the flashing test model, the phase transitions for the 
initially two-phase problem do not result in degradation of 

the linear propagation methods. The consistently good 

agreement between the forward and backward propagation 
methods (Figures 2, 8 and 13) shows that conditioning of 

the forward matrices Ak did not severely impact the results. 

Finally Table 3 gives a rough idea of the relative 

computational cost of the four methods that were tested for 
calculating model sensitivities. Note that the number of 

Newton iterations is counted as ITER-1, where ITER is the 

nonlinear Newton iteration counter in TOUGH2. As would 

be expected, the number of Newton iterations increases as 
the simulations become more complex. 

Table 3 shows the number of linear problem solves needed 

to calculate the model sensitivities. The number of linear 

solves for the forward (Dir) and backward (Adj) 
propagation methods was the same because the number of 

observations N equalled the number of model parameters n 

and all the observations were taken at the last simulation 

time. 

Notice that Table 3 denotes within the parenthesis the cost 

of each method if they were used to generate the sensitivity 

matrices for history matching. Within an inversion context 

the effective cost for the linear propagation methods and 
forward finite differences is discounted by one nonlinear 

forward solve, which at any rate is needed to calculate the 

objective function (2). The accounting assumes that the 

linear problems (14), (17) and (18) are solved separately for 
each right-hand side. For these small test problems, 

however, the cost of the forward and backward propagation 

methods could be nearly independent of number of right-

hand sides (N/n) by solving the linear problems using direct 
linear solvers. 

Table 3: Number of Newton-Raphson iterations (NR 

Iter) and the number of linear matrix solutions 

needed to evaluate the sensitivity matrix using 

the linear propagation methods (Dir/Adj), 

forward finite differencing (Fwd) and central 

differencing (Cntrl). The results are in all cases 

using forward simulations with ten fixed time-

steps of 10
6
 s. Shown are the number of linear 

matrix problems solved by each method. Note 

that the numbers within the parenthesis would 

be the cost per inversion iteration. 

 
NR 

Iter 

Number of Linear Solves 

 Dir/Adj Fwd Cntrl 

 NIT 

NIT +Nt×n 

(Nt×n) 

NIT×[n+1] 

(NIT×n) 

NIT×2n 

(NIT×2n) 

Liquid 22 
42 

(20) 

66 

(44) 

88 

(88) 

Flashing 33 

53 

(20) 

99 

(66) 

132 

(132) 

Initially 

Two-Phase 
36 

56 

(20) 

108 

(72) 

144 

(144) 

 

For these simple problems the results suggest that we can 

expect the forward propagation method to result in at least 
half the computational cost compared with using finite 

differences for history matching. For two-phase problems 

the savings can be even greater. Note however that this 

accounting omits any added memory cost of the linear 

propagation methods. 

5. CONCLUSIONS AND FUTURE WORK 

The numerical experiments indicated that either linear 

forward or backward propagation should be viable options 
for calculating derivatives of model outputs from 

geothermal reservoir simulations. Phase transitioning did 

not make the proposed linear propagation methods any less 

tractable for calculating derivatives of model outputs. The 
linear forward and backward propagation methods were 

found to be in good agreement with each other when 

evaluating model sensitivities for selected problems. They 

likewise gave results which were mostly consistent with 
using finite differentiation to evaluate model sensitivities. 

The finite difference methods were, however, found to be 

inconsistent and inaccurate for evaluating small 

sensitivities. The reliability of the finite difference methods 
rely heavily on the sound choice of model parameter 

perturbations. The forward and backward propagating 

methods offer in comparison a consistent way of finding 

model sensitivities without having to choose model 
parameter perturbations. 

Encouraged by our preliminary results we plan to test the 

forward and backward propagation methods for inverting 

larger simulation problems, with greater variability in block 
volume sizes and adaptive time-stepping. The tests should 

include proper measures of any computational savings 

made by employing the proposed methods. Additionally we 

aim to adapt the linear propagation methods to natural state 
modelling. 
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A. NOTATION 

In our mathematical notation, unless stated otherwise, bold 

faced lowercase letters x denote column vectors and bold 

faced uppercase letters X represent matrices. Other letters, 
whether they are upper- or lowercase, denote scalars. 
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