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ABSTRACT

State-of-the-art software used for numerical modelling of
non-isothermal, two-phase flow in geothermal systems does
not allow for the accurate tracking of the water table over
time. Current approaches use either a fixed water table or an
air/water model where the location of the water table is
inferred from the air mass fraction in shallow blocks — an
approach which often suffers from convergence issues and
whose accuracy is dependent on grid resolution.

The present paper first describes the current approaches used
in geothermal and groundwater contexts, and then discusses
two new methods for tracking the movement of the water
table, based around the TOUGH2 code. The methods use a
fully saturated, water-only, model where the top surface of
the grid moves at each time step as required from a mass
balance calculation (derived either through iteration or a flux
approximation).

Further development and extension of the two methods, plus
other mass balance approximation methods, will be explored
in order to extend water table tracking to two-phase, non-
isothermal flow.

1. INTRODUCTION

TOUGH2 (Pruess et al. 1999) is the worldwide standard
code used to model the movement of mass and heat in
geothermal reservoirs. Different equations of state (EOS) are
used to describe the dependence of fluid properties on
temperature and pressure, as well as the interaction between
the components moving throughout the system (e.g. air,
water, CO,).

Most geothermal reservoir models, in order to avoid the
complexity of non-isothermal air/water interaction, choose
to ignore the vadose zone, and set the water table as a fixed
top surface of the model, where ambient temperature and
pressure conditions are assumed, with a “wet” atmosphere
so water can move in and out of the model. Some recent
examples of this type of model are (Romagnoli et al. 2010)
and (Feather and Malate 2013). For some systems this can
be an appropriate assumption as the water table may be
shallow enough so that air movement and heat transfer
through the vadose zone can be ignored. The temperature of
the water table may indeed be close to the ambient
temperature and the position of the water table may not be
changing significantly over time. The setting of the top of
the model at the water table allows model complexity and
the simulation time to be greatly reduced. However, there
are several situations where this approximation is not
satisfactory, e.g.:

(i)  Modelling areas where the water table is deep and the
temperature may be above ambient,

(if)  Capturing the behaviour of surface features,

(iii) Modelling environmental effects such as subsidence.

Thus to understand situations where deep production
influences the shallow water table movement, a more
sophisticated model is required, particularly one that
explicitly includes the vadose zone and can deal with a
moving water table.

Several models developed at the University of Auckland
have included the movement of the water table, for example:
Wairakei (Mannington et al. 2000), Ohaaki (Clearwater et
al. 2014) and Rotorua (Ratouis et al. 2014). For Wairakei an
air/water equation of state (EOS) was used whereas for
Ohaaki a CO,/water EOS was used and for Rotorua both an
air/water and a CO,/NaCl/water EOS were used.

For these models the top of the model is located at the
topographical land surface and ambient atmospheric
conditions are assumed (with a “dry” atmosphere containing
air and water vapour). Thus air and water vapour can move
into the model, and water or air and water vapour can flow
out. For this type of model the unsaturated zone is included,
and the water table can move freely. However, thin layers
must be used in the shallow part of the model in order to
accurately resolve the location of the water table.

By including the vadose zone these air/water models
represent the shallow zone much more accurately than the
fixed water table models and hence are able to provide better
understanding of changes in surface flow. However, their
accuracy is dependent on grid resolution. Grid refinement
leads to increased model complexity and a very large
computational run-time, and the gas/water models often
experience convergence and performance issues (O'Sullivan
et al. 2013).

Convergence issues with air/water or CO2/water models
have recently been investigated and the run-times improved
(O'Sullivan et al. 2014), (O'Sullivan et al. 2013). However,
an accurate numerical method that can accurately track the
movement of the water table in a geothermal reservoir
model is still required.

2. TRACKING MOVING INTERFACES

Many scientific and engineering problems involve a moving
interface between two fluids of different densities (including
phase-change fronts). The methods used to resolve these free
surface flows are complicated as they address complex
phenomena such as fluids folding over themselves, droplets
forming or explosions. Because flow through a geothermal
reservoir is slow and the water table is likely to be relatively
smooth in shape, the problem of tracking the movement of
the water table above a geothermal reservoir should be more
straightforward. One can look towards current developments
in groundwater modelling as a starting point and later for
dealing with non-isothermal flow and boiling the more
complicated methods used in aeronautics, implosion,
underwater explosions and other problems may be
appropriate.

The main issue in moving from groundwater problems to a
geothermal problem is that the groundwater flow is
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isothermal and the single-phase flow equations are directly
solved in terms of pressure head and water table elevation.
Whereas a TOUGH2 simulation of a geothermal problem
solves for pressure, temperature (or vapour saturation) and
mass and energy fluxes, and may involve two-phase flow.
The water table can then be located from a transition from
two-phase conditions to all-liquid conditions. The mass
flows near this point can be used to deduce the movement of
the water table.

The intention of the research described in this paper is to
improve the ability of TOUGH2 to track the water table.
Therefore, a change to another type of discretisation or to a
meshless method is not envisaged, instead the focus lies in
developing new ideas easily incorporated into the current
TOUGH2 solution structure

2.1 Eularian Frameworks

TOUGH?2 is based on a Eularian framework where mass and
energy difference approximations are applied to a fixed grid.
In the case of the finite volume method used in TOUGH?2,
the primary variables (pressure and temperature) are
calculated at block centres while fluxes are calculated at
block boundaries.

As mentioned in Section 1, the simplest way to track a phase
change interface within a fixed grid structure is to use mesh
refinement, but this approach can become very
computationally costly, especially for tracking an interface
that moves large distances, as many layers of the grid must
then be refined. At best, utilising this technique only results
in a layer-by-layer representation of the movement of the
water table, rather than continuous, accurate tracking.

(Keating and Zyvoloski 2009) modified the numerical
simulator FEHM (Zyvoloski 2007) to allow continuous
tracking of the water table within a Eularian framework.
FEHM is a multi-phase flow simulator using a conservation
of mass and energy to solve for the pressure of each
component (e.g. water and air). Keating and Zyvoloski’s
technique uses a simplified air/water method which avoids
discontinuities in the saturation/pressure relationship (i.e.
convergence problems associated with grid blocks switching
across the phase-change boundary), while still giving a
saturation dependent result. This is achieved by solving a
multi-phase mass conservation equation, but assuming
constant air pressure.

For a block containing the water table they introduce a
pseudo liquid saturation which measures how “full” the
block is of water. The mass balance equation is solved for
water pressure, p,,, the sole primary variable. Then the water
pressure is used to derive pressure head and then the pseudo
saturation is calculated as follows. First the head is
calculated assuming an approximate hydrostatic pressure
profile in the block:

h=p—w+z
Py

Here h is pressure head (which determines the water table
level), p density and g gravity. Pressure head and the
elevation ranges within a grid block, z, and z;, are then used
to calculate saturation:

h— z
Slz z

Z1 — 2

Here S, is the pseudo liquid saturation, which is then entered
back into the mass balance equation, both in the
accumulation term and in calculating the effective
permeability for horizontal flow between partly full blocks.

The intention of Keating and Zyvoloski was to create a
method of solving for the water table that was more
numerically stable than usual groundwater simulators (i.e.
avoiding “dry cells” such as those used in MODFLOW 2000
(Harbaugh et al. 2000) and utilising a NR iterative scheme
rather than Picard iteration). Comparisons of their approach
with the equivalent MODFLOW simulations show improved
accuracy of the water table location and better convergence
properties. Keating and Zyvoloski also compare their
method with FEHM equivalent air/water two-phase methods
and show that their water table tracking method more
accurately represents the pressure near the water table, as
well as being more efficient and stable. A drawback to their
method is that a problem-dependent parameter needs to be
utilised in order to scale permeability in partially saturated
cells, although their examples show the same value for this
parameter works for most problems.

2.2 Lagrangian and Mixed Frameworks

Lagrangian and mixed approaches allow meshes (either the
mesh the governing equations are solved on or a reference
mesh) to deform and move as the interface moves. These
methods have advantages of being easy to implement as the
whole domain does not need to be re-meshed at each time
step, but can be difficult to implement in non-homogenous
domains, and may create undesirable aspect ratios in some
elements.

(Knupp 1996) utilized a moving coordinate system for the
solution of free-surface (fully saturated only) groundwater
flow problems. The finite volume method was utilised to
discretize the free-surface flow equations, with backwards
time differencing. In this case, pressure head is the primary
unknown and so once the solution at each time step
converges, the new water table elevation is easily calculated.
After each time step, Knupp applies grid movement within
each column (no horizontal movement of the nodes are
made), and rock properties are vertically interpolated from
the original stratigraphic domain on to the new block
centres. Although the method attempts to have the grid fit
the stratigraphy, and only nodes near the water table are
moved, the modified model stratigraphy does not exactly
match the original, especially when blocks are deformed
over large vertical distances and the stratigraphy is very
heterogeneous. Knupp’s moving mesh algorithm is
implemented in the groundwater modelling code SECO-3D
(Roache 1993)..

(Crowe et al. 1999) presented a method which again solves
the free-surface flow equations for groundwater flow whilst
tracking the water table. However, their method is aimed at
more accurately approximating heterogeneous and complex
stratigraphy. Crowe et al., solve a standard finite element
discretization (nodes situated at boundaries) of the free-
surface groundwater equations, giving directly a solution for
pressure head and water table elevation. At each time step,
nodes that lie on the water table are moved to a new
elevation, creating a new vertical spacing in the top layer of
elements. If the new vertical spacing is more than ¥ that of
regular grid spacing, Az, a new layer is added with the
original stratigraphy at the corresponding elevation applied.
This layer adding approach gives a maximum layer
extension of 5/4 Az. When the maximum layer extension
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occurs, an error is introduced if there is a difference in rock
properties between the previous and current water table
surface layers.

Once nodes are moved, numerical convergence is tested for
by calculating a residual between the head at the node and
the elevation of the node. Once this residual is within a
defined tolerance the simulation moves on to the next time
step. One problem encountered by Crowe et al., with their
method was a convergence issue when the water table
moved through units that had a large contrast in rock
properties. Although they offered a numerical solution to
this issue, they found the best way to obtain a convergent
solution for all problems was manual intervention and
manipulation of rock properties to reduce the contrast.

3. NUMERICAL METHOD

The ultimate goal is to have a non-isothermal, multiphase,
saturated/unsaturated model which tracks the water table as
part of the TOUGH2 solution process. In order to achieve
this goal, simple models and numerical algorithms are being
explored first, and are built upon as they are tested and
validated. The methods described here assume one
dimensional, isothermal conditions and thus density and
other water properties are not changing with time, energy
conservation does not need to be considered, and there are
no horizontal flows. The water table surface is set at the top
of the model, and the methods used do not take into account
the vadose zone or capillary effects. The methods are
focused on sub-surface fluid movement so surface flows and
run-off are not considered and it is assumed that the
infiltration rate is known. The water table is assumed to
correspond to a sharp discontinuity in fluid properties.
Hence, the governing equations described in this work are
those for a liquid saturated, isothermal model.

The new numerical methods described here employ a very
similar algorithmic procedure to Crowe et al., and use a
layer building technique to update the grid, but because of
the difference in governing equations and discretization
method, they incorporate different numerical strategies.

3.1 Governing Equations

TOUGH?2 solves mass and energy balance equations using
an integrated finite difference technique. For this method,
the region of interest is divided into blocks or elements
where the ith block has a volume V; and connection area a;;
to the adjacent jth block. As time is incremented, the mass
and energy flux in and out of each element is calculated. The
difference equations are fully implicit as mass and energy
fluxes are evaluated at the new time step. Mobilities and
enthalpies are upstream weighted, and interface
permeabilities and conductivities are harmonically weighted.
Because the problems considered in this project so far are
isothermal, the governing equations given below are for
isothermal all-liquid conditions. The discretized mass
balance (grid shown in Figure 1) can be written as:

Vi(Amit = Ap ) = Z aij Pt Aty + Qi tAt, Q)

J

Here A,,; denotes the mass of fluid per unit volume of
reservoir in block i and At, the duration of the nth time
step. A,,; is defined for isothermal liquid conditions by:

Am = @p 2

Here ¢ is porosity and p density. The mass flux F,’,;}fjl, from

block i to block j evaluated at the end of the (n + 1)th time
step, is given by the discrete version of Darcy’s Law:

I\ [p L pntl

FtL (_) S 70 e 3

mij v i dij pl] gl] ( )

Here k is permeability, v is viscosity, P pressure and g
gravity. The distance between block centres, d;;, is the sum
of distances d; and d; from the centres of the ith and jth
block to their connecting interface, respectively.

Similarly, Q71 is the mass production or injection from or
into block i evaluated at the end of the (n + 1)th time step.

Both approaches to tracking the water table (described in
Sections 3.2 and 3.2 below) are based on the calculation of
the mass flow into or out of the top surface of the model (the
water table surface). The correct position of the water table
is one where fluid is no longer moving into or out of the top
surface of the water table block. For a given time step this
position is found when the sum of fluxes across the top
surface, F'¥1, is zero. The top surface of the grid (the water
table elevation for the previous time step) is then moved to
lie at the correct water table position for the current time
step.

Engt
| P
¢ A
h"
P,
. Pi o0
hinJrl
n L] 14
FWF;} leg.l
[ ] I} L] Ij

Figure 1: Left, TOUGH2 mass balance on block i at time
t=n. Right, mass balance on moving water table block i
at time t=n+1.

3.2 Method 1 - Iterative Method

For this method, the top surface of the grid (the water table
elevation) is iteratively moved and the time step re-run until
the correct position is found for the current time step. The
correct position moves the water table surface so a new
volume is created in which there is no flux across the top
surface of the water table block. The following derivation
describes how one can calculate the correct volume required
for a time step without interfering with the TOUGH2 code.

Using the left image in Figure 1 as an example, a standard
TOUGH2 mass balance on water table block i at time step
At can be written as (from equation (1):

n+Lk gn+lLk _ yyngyn
Vit Ay Vit An;
_ n+1,k
= Qoi FmOi
n+1,k
+ Q" Aty

At, — a;; FFTY*AL,  (4)

jPmij

For this method, we iteratively adjust V;"*%* and re-solve

equation (4) until F,’,fg}"‘ = 0 (i.e. the image on the right in
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Figure 1). Because the new volume is fed back into
TOUGH?2 to be re-solved for iteration k+1 of time step At,
TOUGH?2 is actually solving the following:

n+1,k sn+1k n+1,k ,n _ n+1,k
VARV AR = ag Fe A, ®)

— a i FrTYEAL, + QAL

J* mij
The iterative process starts with a standard solve of the
TOUGH?2 time step, with
Vin+1,0 — Vin (6)

Thus, equation (5) becomes:

VAL —yRAY = ag PRt AL, O]

moi

— ;i Fpt P Aty + Qi AL,

mij mi

As described earlier, we want to solve for Fn’ggg'k =0.
Hence, we really wish to solve:

prrgTLL g ®)
=0~ ay P At QU Aty
In which
AR AR 1O )
And
AR® = p+Et — pp (10)

As shown in Figure 1.

Substituting equation (9) into equation (8) results in:

n gn+1,1 nin
Vi Ami = V" Ami

= —Ap; " agiA® (11)
— ayFpittAt, + QAL

By comparing equations (7) and (11), we find an equation
describing AL :

n+1,1

Frt]
AR® =—A’”°l At (12)

n-i:l,l n

mi
To proceed past one iteration, and iterate towards a volume
V"M% which results in Fs'=0, we resolve equation (5)
using TOUGH2. The volume Vi"“"‘ is now the new updated
volume found from equation (12). Again (similarly as for
equation (8)), what we really want to solve rather than
equation (5), is:

k k
LAY S A L
=0—a;F" A, (13)

J* mij

+ QMY AL,
With
Vin+1'k = Vin + aOiAh(k) (14)

Substituting equation (14) into (5) we get:

Vin+1,kA:Ln-il:1.k _ VinA%i

= agAR®AY; + ag FEYEAL,  (15)

— ayFpii Aty + Qi ALy,
Comparing equation (15) and equation (13), the first two
terms on the RHS of equation (15) should balance out.
When they do, the volume is correct, the water table surface
is in the correct position, and the next time step can be
solved. If the terms do not balance out, Ah**D may be
calculated using:

aoiF"H'kAtn

ARGHD) = moi (16)
aoiA:;:EI'k
And
ARUAHD = pittkl _pn a7

The procedure is then iterated by applying A****** to block
volumes and connection distances, and re-solving the time
step.

The steps of the method are as follows:

1. New TOUGH2 time step. The top surface of the model is
set at the water table surface, hi*, k = 0.

2. Solve one TOUGH2 time step, At,, , k = k + 1.

3. Extract the mass flow through the water table surface,
F™ LK from the TOUGH2 results.

moi

4. Evaluate Ah(™ using Equation (12)

5. Use the value for AR and equation (10) to move the
water table surface to h!*“**'. Update the block
volumes, connection distances and block centre locations
in the TOUGH? file. Block properties for this updated
model are taken from the initial input data file and grid,
so that the original stratigraphy and parameters are
preserved.

6. Repeat Step 2 and Step 3 using the updated volume.

7. Evaluate:

7.1 agAR®AY, — ag Ft AL, < tol: stay with this
solution, ready to move on to the next TOUGH2

time step. Go to Step 1.

7.2 ag AR AT, — ag FrEV* AL, £ tol: the elevation

of the water table block is wrong and block volumes
need to be adjusted. Continue to Step 8.

8. Use equations (16) and (17) to find Ah®*1 and move the
water table surface to A" *'. Update the block

volumes, connection distances and block centre locations
in the TOUGH2 file. Go to Step 6.

Step 6 — Step 8 are repeated until the convergence criteria in
Step 7.2 is met. A diagram of this workflow is shown in
Figure 2. This method has been implemented in 1-D (see
Section 4) with good results.
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Figure 2: Algorithm for Method 1 - Iterative Method

3.2 Method 2 - Flux Approximation Method

This method essentially takes one step of the above iterative
method. It assumes the flux out the top surface of the model

at the first iteration, Fre ", is related to the required change

of height of the water table block by equation (12). In this
case, equation (8) (the mass balance we want TOUGH2 to
solve) becomes:
VMATEY — VAL = 0 — ay Pt At +Qptt AL, (18)
Where

Vi = VM — agAh (19)
And

Ah = R — R

Substituting (19) into (18):

VAR = Amy) = —agAhARE — a; i FptlAt,

o) 20
+ QnitAty, (20)

If we then ignore the moving boundary, a TOUGH2 mass
balance for the original volume V" is (as for equation (7)):

VI(AREE = ARy ) = aoiFpelt Aty — ay Fintt Aty (21)
+QmttAt,

By comparing equation (21) to (20), it is clear that the Ah
term can be approximated by the flux across the top surface:

agARATEY = —a; FRilAL, (14)
The fluid storage calculation in this method assumes

negligible change in density between time steps. Hence, the
fluid properties at the previous time step are used:

n+l _ gn
Ami "'Ami

This approximation allows equation (2) to be substituted
into (14):

aoiAh(p?pin = Atn+1aijF‘rrrlL-(')—il (15)

Rearranging (15) to make the change in block height the
subject (as this is the variable required to update the
TOUGH?2 input file block parameters) results in:

N s (16)

Ah
oo

There are two assumptions made for this method. One, there
is a negligible change of density between time steps, and
two, the flux across the top surface can be used to find the
change in height of the top block. These assumptions
remove the need for an iterative approach as used in Method
1, meaning there is no convergence issue and it is
computationally faster. If the time step At, is chosen
appropriately, each time step will capture small changes in
mass flow (and hence changes in the top surface flux), and
so errors arising from these assumptions will be small. For
the isothermal cases considered here, this is a viable method.
However, for two-phase flow these assumptions may
produce large errors in the location of the water table.

4. EXAMPLE -GRAVITY DRAINAGE

To demonstrate the methods described in Section 3, a simple
example of gravity drainage of water down a column of soil
is considered. For comparison, the equivalent air/water EOS
model in TOUGH?2 is also used to solve the problem.

4.1 Model set-up

The numerical simulations were carried out using
AUTOUGH2 ((Bullivant 1990) and (Yeh et al. 2012)) a
version of TOUGH2 (Pruess et al. 1999) developed at the
University of Auckland. The moving water table simulations
use EOS1 (water only) and the air/water model uses EOS3.
The model grid consists of one vertical column with a total
height of 0.92m. There are two rock-types, coarse and fine
sand. The fine sand overlays the coarse sand, and each fills
half the column, i.e. a depth of 0.46m. Two grid resolutions
are used: Grid 1 is discretised into 46 layers, each of which
is 0.02m thick, whereas Grid 2 is coarser, with 23 layers,
each of which is 0.04m thick. Because of the discretization
used with Grid 2, the fine sand fills the column from the
surface down to 0.48m.

The properties of the sands are given in Table 1, and the grid
structure and rock-type assignment are shown in Figures 3
and 4, respectively.

Proceedings 36th New Zealand Geothermal Workshop
24 - 26 November 2014
Auckland, New Zealand



Table 1: Formation properties for the drainage model

fine sand coarse sand

Rock grain density (kg/m?) 2.08E+03 2.08E+03
Porosity 3.00E-01 3.40E-01
Pegmeability (isotropic) 7.27E-11 1.89E-10
(m%)

Heat conductivity (W/m K) 3.00E+00 3.00E+00
Specific heat (J/kg K) 8.30E+02 8.30E+02
E 0.4 E 0.4

* (m) % (m)

Figure 3: Left, Gravity drainage model Grid 1. Right,
Gravity drainage model Grid 2.
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Figure 4: Rock-type allocation. Left, Gravity drainage
model Grid 1. Right, Gravity drainage model Grid 2.

4.1.1 Boundary and initial conditions — moving water
table grids

For the moving water table models, the side boundaries are
closed. A constant atmospheric pressure boundary condition
is applied to the top block in the computational model, ie at
the water table. This is implemented by connecting a large
volume block filled with water with a very small connection
distance to the top grid block. The pressure of the large
volume block is atmospheric pressure (101.325kPa).
Initially the water table is set at the top of the column,
although throughout the simulation the water table moves

and the computational grid is changed. Thus, the atmosphere
boundary block moves with the water table.

Initially, all blocks are fully saturated with water and
pressure is at hydrostatic equilibrium. This was achieved by
using a hand calculation for head at each block centre, using
the density of water at 25°C.

4.1.2 Boundary and initial conditions — air/water grids

In the air/water model the side boundaries are also closed.
The large atmosphere block at the top of the grid is filled
with air and water vapour at atmospheric pressure. As for
the moving water table models, initially all grid blocks are
fully saturated with water and pressure is at hydrostatic
equilibrium.

Because the moving water table methods assume a sharp
transition of density across the water table, and the air water
model is being used as a comparison, no capillary effects
were included in the air/water model.

The relative permeability function (shown in Figure 5) is
linear with coefficients chosen such that liquid was fully
mobile and gas very immobile (in TOUGH2 terms, RP = 0,
0.999, 0.001, 0.9991). Keeping the gas immobile was
necessary in order to create a sharp transition of saturation
across the air/water interface. The choice of relative
permeability function creates the relatively sharp transition
in saturation seen in Figure 7.

12
1
z
3 08
k Rel Liquid
E qui
T 0.6 —+kRelGas —
o
a
=
T 04
L]
[y
02
0 v . . . .
i 02 04 06 0.8 1

Liquid Saturation

Figure 5: Relative permeability function for the
air/water model.

4.1.3 Simulation — all models

Drainage begins when the simulation starts. At the
beginning of the simulation, the pressure at the base of the
model is set to atmospheric by attaching a large atmosphere
block filled with water at 101.325kPa (similar to that
attached to the top grid block) to the bottom grid block. This
allows the fluid to begin draining out of the bottom block of
the column.

The simulation was run for 150 seconds at a time step of no
larger than 0.16 seconds. Over the 150 seconds simulated,
the column water table level drained down to -0.73m in Grid
1, and -0.68m in Grid 2. For the air/water model, air from
the atmosphere boundary block moves downwards into the
column replacing water as it drains out the bottom. For the
moving water table models, the atmosphere boundary block
stays attached to the water table grid block as that block
moves downwards.
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4.2 Model results.

Results for elevation of the water table versus time using
Grid 1 are shown in Figure 6, and the Grid 2 results are
shown in Figures 8 and 9. The location of the water table in
the air/water model is determined by first finding the
bottom-most layer in which gas saturation is more than
0.001. Then a hydrostatic pressure profile is calculated
upwards from the centre of this block and the level where
atmospheric pressure is reached is set as the water table
location.
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Figure 6: Gravity drainage model results — Grid 1.
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Figure 7: Gravity drainage model results, Grid 2.

For the Grid 1 the results from all three methods look very
similar. The fine resolution of the grid enables the air/water
method to give a good match to the other methods. The Flux
Approximation (Method 2) solution is very close to that of
the Iterative Method (Method 1) solution. At each time step,
the Method 2 result differs to that of the final solve of
Method 1 (which takes ~2 extra iterations to converge to a
tolerance of 1.0e-15) by at most 6.0e-4. The air/water
method follows the moving water table methods closely, and
the result at 150 s has a difference of 1.0e-3 to the moving
boundary solutions for Grid 1 and 3.0e-3 for Grid 2.
However, due to the shape of the air/water solution, results
are inaccurate at certain times during the simulation. The
Grid 2 results (Figures 8 and 9) display this - the air/water
method results are stepped and the size of the steps changes
depending on the grid resolution.
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Figure 8: Vapour saturation vs depth for the air/water
model using Grid 2 at times 0.0s, 32.0s and 55.2s.

The step-wise shape in the air- water model solution is due
to saturation changes. Pressure in the water table block
remains constant while air saturation increases - this is the
flat part in each step of the air/water solution. The vertical
part of each step of the air/water solution corresponds to
when the vapour saturation in the current water table block
increases beyond 0.001, and the water table is assumed to
move down to the next layer. The value of 0.001 is arbitrary
and was chosen by observing plots of the vapour saturation
over time (as seen in Figure 7). The step-wise shape of the
air/water solution shows how the air/water method is limited
in terms of accuracy by the grid resolution. A detailed plot
over the time period 85s — 110s is shown in Figure 9. The
time at which the step has just dropped down, and the water
table has moved to a new layer, are when the air/water
model solution is least accurate. Then, as the pressure stays
constant and the air saturation increases, the air/water
solution nears the moving water table method solutions,
until it drops again and the cycle repeats.
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Figure 9: Gravity drainage model results detail, Grid 2.

Note also that the air/water method result fluctuates over
time around the solutions from the other methods. Using the
results shown in Figure 9 as an example, the point on the flat
top of the step of the air/water solution, where the moving
water table methods intersect the step, varies over the three
steps shown in Figure 9. This may be a feature of the
relative permeability used (which has no influence on the
behavior of the other models as they are single phase).

Quantitative analysis and comparison of the computational
speed between all three methods has not been undertaken,
but the Flux Approximation Method is much quicker than
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the Iterative Method (each time step is run once for Method
2, compared to an average of 3 times for Method 1). For this
isothermal case, the air/water simulation speed is similar to
the speed of the moving water table methods.

Larger, more complex models need to be investigated in
order to ascertain which of the two moving boundary
methods yields the best results. The accuracy of the Flux
Approximation Method is not surprising for this simple,
isothermal case, but it needs to be tested on more
challenging non-isothermal problems. The limitations of
both methods also need to be considered further. The Flux
Approximation Method assumes constant fluid density,
which cannot be assumed in a non-isothermal simulation,
while the Iterative Method is very computationally costly,
and it is not clear yet how to extend the method to 2D or 3D
simulations including horizontal flow.

5. CONCLUSIONS AND FURTHER WORK

Numerical methods for tracking the water table in a
TOUGH2 simulation were presented and results for simple
isothermal problems show the methods to be working
effectively. These methods are not limited in accuracy by the
thickness of the model layers, as is currently the case in
standard approaches to capturing the movement of a water
table.

Work is continuing in understanding the computational error
associated with the Flux Approximation Method, and
reducing the computational expense associated with Iterative
Method in 2-D and 3D problems. Further development and
extension of both the Ilterative and Flux Approximation
methods, plus other solution methods, will be explored in
order to extend water table tracking to two-phase, non-
isothermal flow.
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