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ABSTRACT 
State-of-the-art software used for numerical modelling of 
non-isothermal, two-phase flow in geothermal systems does 
not allow for the accurate tracking of the water table over 
time. Current approaches use either a fixed water table or an 
air/water model where the location of the water table is 
inferred from the air mass fraction in shallow blocks – an 
approach which often suffers from convergence issues and 
whose accuracy is dependent on grid resolution.  

The present paper first describes the current approaches used 
in geothermal and groundwater contexts, and then discusses 
two new methods for tracking the movement of the water 
table, based around the TOUGH2 code. The methods use a 
fully saturated, water-only, model where the top surface of 
the grid moves at each time step as required from a mass 
balance calculation (derived either through iteration or a flux 
approximation). 

Further development and extension of the two methods, plus 
other mass balance approximation methods, will be explored 
in order to extend water table tracking to two-phase, non-
isothermal flow.  

1. INTRODUCTION  
TOUGH2 (Pruess et al. 1999) is the worldwide standard 
code used to model the movement of mass and heat in 
geothermal reservoirs. Different equations of state (EOS) are 
used to describe the dependence of fluid properties on 
temperature and pressure, as well as the interaction between 
the components moving throughout the system (e.g. air, 
water, CO2). 

Most geothermal reservoir models, in order to avoid the 
complexity of non-isothermal air/water interaction, choose 
to ignore the vadose zone, and set the water table as a fixed 
top surface of the model, where ambient temperature and 
pressure conditions are assumed, with a “wet” atmosphere 
so water can move in and out of the model. Some recent 
examples of this type of model are (Romagnoli et al. 2010) 
and (Feather and Malate 2013). For some systems this can 
be an appropriate assumption as the water table may be 
shallow enough so that air movement and heat transfer 
through the vadose zone can be ignored. The temperature of 
the water table may indeed be close to the ambient 
temperature and the position of the water table may not be 
changing significantly over time. The setting of the top of 
the model at the water table allows model complexity and 
the simulation time to be greatly reduced. However, there 
are several situations where this approximation is not 
satisfactory, e.g.: 

(i) Modelling areas where the water table is deep and the 
temperature may be above ambient,  

(ii) Capturing the behaviour of surface features,  
(iii) Modelling environmental effects such as subsidence. 

Thus to understand situations where deep production 
influences the shallow water table movement, a more 
sophisticated model is required, particularly one that 
explicitly includes the vadose zone and can deal with a 
moving water table. 

Several models developed at the University of Auckland 
have included the movement of the water table, for example: 
Wairakei (Mannington et al. 2000), Ohaaki (Clearwater et 
al. 2014) and Rotorua (Ratouis et al. 2014). For Wairakei an 
air/water equation of state (EOS) was used whereas for 
Ohaaki a CO2/water EOS was used and for Rotorua both an 
air/water and a CO2/NaCl/water EOS were used.  

For these models the top of the model is located at the 
topographical land surface and ambient atmospheric 
conditions are assumed (with a “dry” atmosphere containing 
air and water vapour). Thus air and water vapour can move 
into the model, and water or air and water vapour can flow 
out. For this type of model the unsaturated zone is included, 
and the water table can move freely. However, thin layers 
must be used in the shallow part of the model in order to 
accurately resolve the location of the water table.  

By including the vadose zone these air/water models 
represent the shallow zone much more accurately than the 
fixed water table models and hence are able to provide better 
understanding of changes in surface flow. However, their 
accuracy is dependent on grid resolution. Grid refinement 
leads to increased model complexity and a very large 
computational run-time, and the gas/water models often 
experience convergence and performance issues (O'Sullivan 
et al. 2013). 

Convergence issues with air/water or CO2/water models 
have recently been investigated and the run-times improved  
(O'Sullivan et al. 2014), (O'Sullivan et al. 2013). However, 
an accurate numerical method that can accurately track the 
movement of the water table in a geothermal reservoir 
model is still required.  

2. TRACKING MOVING INTERFACES 
Many scientific and engineering problems involve a moving 
interface between two fluids of different densities (including 
phase-change fronts). The methods used to resolve these free 
surface flows are complicated as they address complex 
phenomena such as fluids folding over themselves, droplets 
forming or explosions. Because flow through a geothermal 
reservoir is slow and the water table is likely to be relatively 
smooth in shape, the problem of tracking the movement of 
the water table above a geothermal reservoir should be more 
straightforward. One can look towards current developments 
in groundwater modelling as a starting point and later for 
dealing with non-isothermal flow and boiling the more 
complicated methods used in aeronautics, implosion, 
underwater explosions and other problems may be 
appropriate. 

The main issue in moving from groundwater problems to a 
geothermal problem is that the groundwater flow is 
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isothermal and the single-phase flow equations are directly 
solved in terms of pressure head and water table elevation. 
Whereas a TOUGH2 simulation of a geothermal problem 
solves for pressure, temperature (or vapour saturation) and 
mass and energy fluxes, and may involve two-phase flow. 
The water table can then be located from a transition from 
two-phase conditions to all-liquid conditions. The mass 
flows near this point can be used to deduce the movement of 
the water table.  

The intention of the research described in this paper is to 
improve the ability of TOUGH2 to track the water table. 
Therefore, a change to another type of discretisation or to a 
meshless method is not envisaged, instead the focus lies in 
developing new ideas easily incorporated into the current 
TOUGH2 solution structure 

2.1 Eularian Frameworks 
TOUGH2 is based on a Eularian framework where mass and 
energy difference approximations are applied to a fixed grid. 
In the case of the finite volume method used in TOUGH2, 
the primary variables (pressure and temperature) are 
calculated at block centres while fluxes are calculated at 
block boundaries.   

As mentioned in Section 1, the simplest way to track a phase 
change interface within a fixed grid structure is to use mesh 
refinement, but this approach can become very 
computationally costly, especially for tracking an interface 
that moves large distances, as many layers of the grid must 
then be refined. At best, utilising this technique only results 
in a layer-by-layer representation of the movement of the 
water table, rather than continuous, accurate tracking. 

(Keating and Zyvoloski 2009) modified the numerical 
simulator FEHM (Zyvoloski 2007) to allow continuous 
tracking of the water table within a Eularian framework. 
FEHM is a multi-phase flow simulator using a conservation 
of mass and energy to solve for the pressure of each 
component (e.g. water and air).  Keating and Zyvoloski’s 
technique uses a simplified air/water method which avoids 
discontinuities in the saturation/pressure relationship (i.e. 
convergence problems associated with grid blocks switching 
across the phase-change boundary), while still giving a 
saturation dependent result. This is achieved by solving a 
multi-phase mass conservation equation, but assuming 
constant air pressure.  

For a block containing the water table they introduce a 
pseudo liquid saturation which measures how “full” the 
block is of water. The mass balance equation is solved for 
water pressure, 𝑝𝑤, the sole primary variable. Then the water 
pressure is used to derive pressure head and then the pseudo 
saturation is calculated as follows. First the head is 
calculated assuming an approximate hydrostatic pressure 
profile in the block: 

ℎ =
𝑝𝑤
𝜌𝑔 + 𝑧 

Here ℎ is pressure head (which determines the water table 
level), 𝜌 density and 𝑔 gravity. Pressure head and the 
elevation ranges within a grid block, 𝑧2 and 𝑧1, are then used 
to calculate saturation: 

𝑆𝑙 =  
ℎ −  𝑧2
𝑧1 − 𝑧2

 

Here 𝑆𝑙 is the pseudo liquid saturation, which is then entered 
back into the mass balance equation, both in the 
accumulation term and in calculating the effective 
permeability for horizontal flow between partly full blocks. 

The intention of Keating and Zyvoloski was to create a 
method of solving for the water table that was more 
numerically stable than usual groundwater simulators (i.e. 
avoiding “dry cells” such as those used in MODFLOW 2000 
(Harbaugh et al. 2000) and utilising a NR iterative scheme 
rather than Picard iteration). Comparisons of their approach 
with the equivalent MODFLOW simulations show improved 
accuracy of the water table location and better convergence 
properties. Keating and Zyvoloski also compare their 
method with FEHM equivalent air/water two-phase methods 
and show that their water table tracking method more 
accurately represents the pressure near the water table, as 
well as being more efficient and stable. A drawback to their 
method is that a problem-dependent parameter needs to be 
utilised in order to scale permeability in partially saturated 
cells, although their examples show the same value for this 
parameter works for most problems. 

2.2 Lagrangian and Mixed Frameworks 
Lagrangian and mixed approaches allow meshes (either the 
mesh the governing equations are solved on or a reference 
mesh) to deform and move as the interface moves. These 
methods have advantages of being easy to implement as the 
whole domain does not need to be re-meshed at each time 
step, but can be difficult to implement in non-homogenous 
domains, and may create undesirable aspect ratios in some 
elements. 

 (Knupp 1996) utilized a moving coordinate system for the 
solution of free-surface (fully saturated only) groundwater 
flow problems. The finite volume method was utilised to 
discretize the free-surface flow equations, with backwards 
time differencing. In this case, pressure head is the primary 
unknown and so once the solution at each time step 
converges, the new water table elevation is easily calculated. 
After each time step, Knupp applies grid movement within 
each column (no horizontal movement of the nodes are 
made), and rock properties are vertically interpolated from 
the original stratigraphic domain on to the new block 
centres. Although the method attempts to have the grid fit 
the stratigraphy, and only nodes near the water table are 
moved, the modified model stratigraphy does not exactly 
match the original, especially when blocks are deformed 
over large vertical distances and the stratigraphy is very 
heterogeneous. Knupp’s moving mesh algorithm is 
implemented in the groundwater modelling code SECO-3D 
(Roache 1993).. 

(Crowe et al. 1999) presented a method which again solves 
the free-surface flow equations for groundwater flow whilst 
tracking the water table. However, their method is aimed at 
more accurately approximating heterogeneous and complex 
stratigraphy. Crowe et al., solve a standard finite element 
discretization (nodes situated at boundaries) of the free-
surface groundwater equations, giving directly a solution for 
pressure head and water table elevation. At each time step, 
nodes that lie on the water table are moved to a new 
elevation, creating a new vertical spacing in the top layer of 
elements. If the new vertical spacing is more than ¼ that of 
regular grid spacing, ∆𝑧, a new layer is added with the 
original stratigraphy at the corresponding elevation applied. 
This layer adding approach gives a maximum layer 
extension of 5/4 ∆𝑧. When the maximum layer extension 
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occurs, an error is introduced if there is a difference in rock 
properties between the previous and current water table 
surface layers.  

Once nodes are moved, numerical convergence is tested for 
by calculating a residual between the head at the node and 
the elevation of the node. Once this residual is within a 
defined tolerance the simulation moves on to the next time 
step. One problem encountered by Crowe et al., with their 
method was a convergence issue when the water table 
moved through units that had a large contrast in rock 
properties. Although they offered a numerical solution to 
this issue, they found the best way to obtain a convergent 
solution for all problems was manual intervention and 
manipulation of rock properties to reduce the contrast.  

3. NUMERICAL METHOD 
The ultimate goal is to have a non-isothermal, multiphase, 
saturated/unsaturated model which tracks the water table as 
part of the TOUGH2 solution process. In order to achieve 
this goal, simple models and numerical algorithms are being 
explored first, and are built upon as they are tested and 
validated. The methods described here assume one 
dimensional, isothermal conditions and thus density and 
other water properties are not changing with time, energy 
conservation does not need to be considered, and there are 
no horizontal flows. The water table surface is set at the top 
of the model, and the methods used do not take into account 
the vadose zone or capillary effects. The methods are 
focused on sub-surface fluid movement so surface flows and 
run-off are not considered and it is assumed that the 
infiltration rate is known. The water table is assumed to 
correspond to a sharp discontinuity in fluid properties. 
Hence, the governing equations described in this work are 
those for a liquid saturated, isothermal model.  

The new numerical methods described here employ a very 
similar algorithmic procedure to Crowe et al., and use a 
layer building technique to update the grid, but because of 
the difference in governing equations and discretization 
method, they incorporate different numerical strategies. 

3.1 Governing Equations 
TOUGH2 solves mass and energy balance equations using 
an integrated finite difference technique. For this method, 
the region of interest is divided into blocks or elements 
where the 𝑖th block has a volume 𝑉𝑖 and connection area 𝑎𝑖𝑗 
to the adjacent 𝑗th block. As time is incremented, the mass 
and energy flux in and out of each element is calculated. The 
difference equations are fully implicit as mass and energy 
fluxes are evaluated at the new time step. Mobilities and 
enthalpies are upstream weighted, and interface 
permeabilities and conductivities are harmonically weighted. 
Because the problems considered in this project so far are 
isothermal, the governing equations given below are for 
isothermal all-liquid conditions. The discretized mass 
balance (grid shown in Figure 1) can be written as: 

𝑉𝑖�𝐴𝑚𝑖
𝑛+1 − 𝐴𝑚𝑖

𝑛  � =  �𝑎𝑖𝑗
𝑗

𝐹𝑚𝑖𝑗
𝑛+1∆𝑡𝑛 + 𝑄𝑚𝑖

𝑛+1∆𝑡𝑛 (1) 

Here 𝐴𝑚𝑖 denotes the mass of fluid per unit volume of 
reservoir in block 𝑖 and ∆𝑡𝑛 the duration of the 𝑛th time 
step. 𝐴𝑚𝑖 is defined for isothermal liquid conditions by: 

Here 𝜑 is porosity and 𝜌 density. The mass flux 𝐹𝑚𝑖𝑗
𝑛+1, from 

block 𝑖 to block 𝑗 evaluated at the end of the (𝑛 + 1)th time 
step, is given by the discrete version of Darcy’s Law: 

𝐹𝑚𝑖𝑗
𝑛+1 =  �

𝑘
𝑣�𝑖𝑗

𝑛+1

�
𝑃𝑗𝑛+1 − 𝑃𝑖𝑛+1

𝑑𝑖𝑗
− 𝜌𝑖𝑗𝑛+1𝑔𝑖𝑗� (3) 

Here 𝑘 is permeability, 𝑣 is viscosity, 𝑃 pressure and 𝑔 
gravity. The distance between block centres, 𝑑𝑖𝑗 , is the sum 
of distances 𝑑𝑖 and 𝑑𝑗  from the centres of the 𝑖th and 𝑗th 
block to their connecting interface, respectively. 

Similarly, 𝑄𝑚𝑖
𝑛+1 is the mass production or injection from or 

into block 𝑖 evaluated at the end of the (𝑛 + 1)th time step.  

Both approaches to tracking the water table (described in 
Sections 3.2 and 3.2 below) are based on the calculation of 
the mass flow into or out of the top surface of the model (the 
water table surface). The correct position of the water table 
is one where fluid is no longer moving into or out of the top 
surface of the water table block. For a given time step this 
position is found when the sum of fluxes across the top 
surface, 𝐹𝑚0𝑖

𝑛+1, is zero. The top surface of the grid (the water 
table elevation for the previous time step) is then moved to 
lie at the correct water table position for the current time 
step. 

 

Figure 1: Left, TOUGH2 mass balance on block 𝒊 at time 
t=n. Right, mass balance on moving water table block 𝒊 
at time t=n+1. 

3.2 Method 1 - Iterative Method 
For this method, the top surface of the grid (the water table 
elevation) is iteratively moved and the time step re-run until 
the correct position is found for the current time step. The 
correct position moves the water table surface so a new 
volume is created in which there is no flux across the top 
surface of the water table block. The following derivation 
describes how one can calculate the correct volume required 
for a time step without interfering with the TOUGH2 code. 

Using the left image in Figure 1 as an example, a standard 
TOUGH2 mass balance on water table block 𝑖 at time step 
∆𝑡 can be written as (from equation (1): 

𝑉𝑖𝑛+1,𝑘𝐴𝑚𝑖
𝑛+1,𝑘 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛

= 𝑎0𝑖  𝐹𝑚0𝑖
𝑛+1,𝑘∆𝑡𝑛 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗

𝑛+1,𝑘∆𝑡𝑛
+  𝑄𝑚𝑖

𝑛+1,𝑘∆𝑡𝑛  
(4) 

For this method, we iteratively adjust 𝑉𝑖𝑛+1,𝑘 and re-solve 
equation (4) until 𝐹𝑚0𝑖

𝑛+1,𝑘 = 0 (i.e. the image on the right in 
𝐴𝑚 =  𝜑𝜌 (2) 



 

 
Proceedings 36th New Zealand Geothermal Workshop 

24 - 26 November 2014 
Auckland, New Zealand 

4 

Figure 1). Because the new volume is fed back into 
TOUGH2 to be re-solved for iteration 𝑘+1 of time step ∆𝑡, 
TOUGH2 is actually solving the following: 

𝑉𝑖𝑛+1,𝑘𝐴𝑚𝑖
𝑛+1,𝑘 − 𝑉𝑖

𝑛+1,𝑘𝐴𝑚𝑖
𝑛 =  𝑎𝑜𝑖𝐹𝑚0𝑖

𝑛+1,𝑘∆𝑡𝑛
− 𝑎𝑖𝑗𝐹𝑚𝑖𝑗

𝑛+1,𝑘∆𝑡𝑛 + 𝑄𝑚𝑖
𝑛+1,𝑘∆𝑡𝑛 

(5) 

The iterative process starts with a standard solve of the 
TOUGH2 time step, with 

𝑉𝑖𝑛+1,0 = 𝑉𝑖𝑛 (6) 

 Thus, equation (5) becomes: 

𝑉𝑖𝑛𝐴𝑚𝑖
𝑛+1,1 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛 =  𝑎𝑜𝑖𝐹𝑚0𝑖
𝑛+1,1∆𝑡𝑛

− 𝑎𝑖𝑗𝐹𝑚𝑖𝑗
𝑛+1,1∆𝑡𝑛 + 𝑄𝑚𝑖

𝑛+1,1∆𝑡𝑛 
(7) 

As described earlier, we want to solve for 𝐹𝑚0𝑖
𝑛+1,𝑘 = 0. 

Hence, we really wish to solve: 

𝑉𝑖𝑛+1,1𝐴𝑚𝑖
𝑛+1,1 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛

= 0 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗
𝑛+1,1∆𝑡𝑛+𝑄𝑚𝑖

𝑛+1,1∆𝑡𝑛 
(8) 

In which 

𝑉𝑖𝑛+1,1 =  𝑉𝑖𝑛 + 𝑎0𝑖∆ℎ(1) (9) 

And  

∆ℎ(1) = ℎ𝑖
𝑛+1,1 − ℎ𝑖𝑛 (10) 

As shown in Figure 1. 

Substituting equation (9) into equation (8) results in:  

By comparing equations (7) and (11), we find an equation 
describing ∆ℎ(1) : 

To proceed past one iteration, and iterate towards a volume 
𝑉𝑖𝑛+1,𝑘 which results in 𝐹𝑚0𝑖

𝑛+1,1=0, we resolve equation (5) 
using TOUGH2. The volume 𝑉𝑖

𝑛+1,𝑘 is now the new updated 
volume found from equation (12). Again (similarly as for 
equation (8)), what we really want to solve rather than 
equation (5), is: 

𝑉𝑖𝑛+1,𝑘𝐴𝑚𝑖
𝑛+1,𝑘 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛

= 0 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗
𝑛+1,𝑘∆𝑡𝑛

+ 𝑄𝑚𝑖
𝑛+1,𝑘∆𝑡𝑛 

(13) 

With  

Substituting equation (14) into (5) we get: 

𝑉𝑖𝑛+1,𝑘𝐴𝑚𝑖
𝑛+1,𝑘 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛

=  𝑎0𝑖∆ℎ(𝑘)𝐴𝑚𝑖
𝑛 + 𝑎0𝑖𝐹𝑚0𝑖

𝑛+1,𝑘∆𝑡𝑛
− 𝑎𝑖𝑗𝐹𝑚𝑖𝑗

𝑛+1,𝑘∆𝑡𝑛 +  𝑄𝑚𝑖
𝑛+1,𝑘∆𝑡𝑛 

(15) 

Comparing equation (15) and equation (13), the first two 
terms on the RHS of equation (15) should balance out. 
When they do, the volume is correct, the water table surface 
is in the correct position, and the next time step can be 
solved. If the terms do not balance out, ∆ℎ(𝑘+1) may be 
calculated using: 

∆ℎ(𝑘+1) = −
𝑎0𝑖𝐹𝑚0𝑖

𝑛+1,𝑘∆𝑡𝑛
𝑎0𝑖𝐴𝑚𝑖

𝑛+1,𝑘  (16) 

And  

∆ℎ(𝑘+1) = ℎ𝑖
𝑛+1,𝑘+1 − ℎ𝑖𝑛 (17) 

 

The procedure is then iterated by applying ℎ𝑖
𝑛+1,𝑘+1 to block 

volumes and connection distances, and re-solving the time 
step. 

The steps of the method are as follows: 

1. New TOUGH2 time step. The top surface of the model is 
set at the water table surface, ℎ𝑖𝑛, 𝑘 = 0. 

2. Solve one TOUGH2 time step, ∆𝑡𝑛 , 𝑘 = 𝑘 + 1. 

3. Extract the mass flow through the water table surface, 
𝐹𝑚0𝑖
𝑛+1,𝑘,  from the TOUGH2 results. 

4. Evaluate ∆ℎ(1) using Equation (12) 

5. Use the value for ∆ℎ(1) and equation (10) to move the 
water table surface to ℎ𝑖

𝑛+1,𝑘+1. Update the block 
volumes, connection distances and block centre locations 
in the TOUGH2 file. Block properties for this updated 
model are taken from the initial input data file and grid, 
so that the original stratigraphy and parameters are 
preserved. 

6. Repeat Step 2 and Step 3 using the updated volume. 

7. Evaluate: 

7.1 𝑎0𝑖∆ℎ(𝑘)𝐴𝑚𝑖
𝑛 −  𝑎0𝑖𝐹𝑚0𝑖

𝑛+1,𝑘∆𝑡𝑛 ≤ 𝑡𝑜𝑙: stay with this 
solution, ready to move on to the next TOUGH2 
time step. Go to Step 1. 

7.2 𝑎0𝑖∆ℎ(𝑘)𝐴𝑚𝑖
𝑛 −  𝑎0𝑖𝐹𝑚0𝑖

𝑛+1,𝑘∆𝑡𝑛 ≰ 𝑡𝑜𝑙: the elevation 
of the water table block is wrong and block volumes 
need to be adjusted. Continue to Step 8. 

8. Use equations (16) and (17) to find ∆ℎ(𝑘+1) and move the 
water table surface to ℎ𝑖

𝑛+1,𝑘+1. Update the block 
volumes, connection distances and block centre locations 
in the TOUGH2 file. Go to Step 6.  

Step 6 – Step 8 are repeated until the convergence criteria in 
Step 7.2 is met. A diagram of this workflow is shown in 
Figure 2. This method has been implemented in 1-D (see 
Section 4) with good results. 

𝑉𝑖𝑛𝐴𝑚𝑖
𝑛+1,1 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛

=  −𝐴𝑚𝑖
𝑛+1,1𝑎0𝑖∆ℎ(1)

−  𝑎𝑖𝑗𝐹𝑚𝑖𝑗
𝑛+1,1∆𝑡𝑛  +  𝑄𝑚𝑖

𝑛+1,1∆𝑡𝑛   
(11) 

∆ℎ(1) = −
𝐹𝑚0𝑖
𝑛+1,1

𝐴𝑚𝑖
𝑛+1,1 ∆𝑡𝑛  (12) 

𝑉𝑖𝑛+1,𝑘 =  𝑉𝑖𝑛 + 𝑎0𝑖∆ℎ(𝑘)  (14) 
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Figure 2: Algorithm for Method 1 – Iterative Method 

3.2 Method 2 – Flux Approximation Method 
This method essentially takes one step of the above iterative 
method. It assumes the flux out the top surface of the model 
at the first iteration, 𝐹𝑚0𝑖

𝑛+1,1, is related to the required change 
of height of the water table block by equation (12). In this 
case, equation (8) (the mass balance we want TOUGH2 to 
solve) becomes: 

𝑉𝑖𝑛+1𝐴𝑚𝑖
𝑛+1 − 𝑉𝑖𝑛𝐴𝑚𝑖

𝑛 =  0 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗
𝑛+1∆𝑡𝑛+𝑄𝑚𝑖

𝑛+1∆𝑡𝑛 (18) 

Where 

𝑉𝑖𝑛+1 =  𝑉𝑖𝑛 −  𝑎0𝑖∆ℎ (19) 

And  

∆ℎ =  ℎ𝑖𝑛+1 − ℎ𝑖𝑛  

Substituting (19) into (18): 

𝑉𝑖𝑛(𝐴𝑚𝑖
𝑛+1 − 𝐴𝑚𝑖

𝑛 ) =  −𝑎0𝑖∆ℎ𝐴𝑚𝑖
𝑛+1 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗

𝑛+1∆𝑡𝑛
+ 𝑄𝑚𝑖

𝑛+1∆𝑡𝑛  
(20) 

If we then ignore the moving boundary, a TOUGH2 mass 
balance for the original volume 𝑉𝑖𝑛 is (as for equation (7)):   

𝑉𝑖𝑛�𝐴𝑚𝑖
𝑛+1 − 𝐴𝑚𝑖

𝑛  � =  𝑎0𝑖𝐹𝑚0𝑖
𝑛+1∆𝑡𝑛 − 𝑎𝑖𝑗𝐹𝑚𝑖𝑗

𝑛+1∆𝑡𝑛
+ 𝑄𝑚𝑖

𝑛+1∆𝑡𝑛 
(21) 

By comparing equation (21) to (20), it is clear that the ∆ℎ 
term can be approximated by the flux across the top surface: 

 𝑎0𝑖∆ℎ𝐴𝑚𝑖
𝑛+1 =  −𝑎𝑖𝑗𝐹𝑚0𝑖

𝑛+1∆𝑡𝑛 (14) 

The fluid storage calculation in this method assumes 
negligible change in density between time steps. Hence, the 
fluid properties at the previous time step are used: 

𝐴𝑚𝑖
𝑛+1 ≈ 𝐴𝑚𝑖

𝑛  

This approximation allows equation (2) to be substituted 
into (14): 

𝑎𝑜𝑖∆ℎ𝜑𝑖𝑛𝜌𝑖𝑛 =  ∆𝑡𝑛+1𝑎𝑖𝑗𝐹𝑚0𝑖
𝑛+1 (15) 

Rearranging (15) to make the change in block height the 
subject (as this is the variable required to update the 
TOUGH2 input file block parameters) results in: 

∆ℎ =  
∆𝑡𝑛𝐹𝑚0𝑖

𝑛+1

𝜑𝑖𝑛𝜌𝑖𝑛
 

(16) 

There are two assumptions made for this method. One, there 
is a negligible change of density between time steps, and 
two, the flux across the top surface can be used to find the 
change in height of the top block. These assumptions 
remove the need for an iterative approach as used in Method 
1, meaning there is no convergence issue and it is 
computationally faster. If the time step ∆𝑡𝑛 is chosen 
appropriately, each time step will capture small changes in 
mass flow (and hence changes in the top surface flux), and 
so errors arising from these assumptions will be small. For 
the isothermal cases considered here, this is a viable method. 
However, for two-phase flow these assumptions may 
produce large errors in the location of the water table.  

4. EXAMPLE –GRAVITY DRAINAGE 
To demonstrate the methods described in Section 3, a simple 
example of gravity drainage of water down a column of soil 
is considered. For comparison, the equivalent air/water EOS 
model in TOUGH2 is also used to solve the problem. 

4.1 Model set-up 
The numerical simulations were carried out using 
AUTOUGH2 ((Bullivant 1990) and (Yeh et al. 2012)) a 
version of TOUGH2 (Pruess et al. 1999) developed at the 
University of Auckland. The moving water table simulations 
use EOS1 (water only) and the air/water model uses EOS3. 
The model grid consists of one vertical column with a total 
height of 0.92m. There are two rock-types, coarse and fine 
sand. The fine sand overlays the coarse sand, and each fills 
half the column, i.e. a depth of 0.46m. Two grid resolutions 
are used: Grid 1 is discretised into 46 layers, each of which 
is 0.02m thick, whereas Grid 2 is coarser, with 23 layers, 
each of which is 0.04m thick. Because of the discretization 
used with Grid 2, the fine sand fills the column from the 
surface down to 0.48m. 

The properties of the sands are given in Table 1, and the grid 
structure and rock-type assignment are shown in Figures 3 
and 4, respectively.  

 



 

 
Proceedings 36th New Zealand Geothermal Workshop 

24 - 26 November 2014 
Auckland, New Zealand 

6 

Table 1: Formation properties for the drainage model 

 fine sand coarse sand 

Rock grain density (kg/m²) 2.08E+03 2.08E+03 
Porosity 3.00E-01 3.40E-01 
Permeability (isotropic) 
(m2) 

7.27E-11 1.89E-10 

Heat conductivity (W/m K) 3.00E+00 3.00E+00 
Specific heat (J/kg K) 8.30E+02 8.30E+02 

 

 Figure 3: Left, Gravity drainage model Grid 1. Right, 
Gravity drainage model Grid 2. 

 

Figure 4: Rock-type allocation. Left, Gravity drainage 
model Grid 1. Right, Gravity drainage model Grid 2. 

4.1.1 Boundary and initial conditions – moving water 
table grids 
For the moving water table models, the side boundaries are 
closed. A constant atmospheric pressure boundary condition 
is applied to the top block in the computational model, ie at 
the water table. This is implemented by connecting a large 
volume block filled with water with a very small connection 
distance to the top grid block. The pressure of the large 
volume block is atmospheric pressure (101.325kPa). 
Initially the water table is set at the top of the column, 
although throughout the simulation the water table moves 

and the computational grid is changed. Thus, the atmosphere 
boundary block moves with the water table. 

Initially, all blocks are fully saturated with water and 
pressure is at hydrostatic equilibrium. This was achieved by 
using a hand calculation for head at each block centre, using 
the density of water at 25°C. 

4.1.2 Boundary and initial conditions – air/water grids 
In the air/water model the side boundaries are also closed. 
The large atmosphere block at the top of the grid is filled 
with air and water vapour at atmospheric pressure. As for 
the moving water table models, initially all grid blocks are 
fully saturated with water and pressure is at hydrostatic 
equilibrium. 

Because the moving water table methods assume a sharp 
transition of density across the water table, and the air water 
model is being used as a comparison, no capillary effects 
were included in the air/water model. 

 The relative permeability function (shown in Figure 5) is 
linear with coefficients chosen such that liquid was fully 
mobile and gas very immobile (in TOUGH2 terms, RP = 0, 
0.999, 0.001, 0.9991). Keeping the gas immobile was 
necessary in order to create a sharp transition of saturation 
across the air/water interface. The choice of relative 
permeability function creates the relatively sharp transition 
in saturation seen in Figure 7. 

 

Figure 5: Relative permeability function for the 
air/water model. 

4.1.3 Simulation – all models 
Drainage begins when the simulation starts. At the 
beginning of the simulation, the pressure at the base of the 
model is set to atmospheric by attaching a large atmosphere 
block filled with water at 101.325kPa (similar to that 
attached to the top grid block) to the bottom grid block. This 
allows the fluid to begin draining out of the bottom block of 
the column. 

The simulation was run for 150 seconds at a time step of no 
larger than 0.16 seconds. Over the 150 seconds simulated, 
the column water table level drained down to -0.73m in Grid 
1, and -0.68m in Grid 2. For the air/water model, air from 
the atmosphere boundary block moves downwards into the 
column replacing water as it drains out the bottom. For the 
moving water table models, the atmosphere boundary block 
stays attached to the water table grid block as that block 
moves downwards. 
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4.2 Model results. 
Results for elevation of the water table versus time using 
Grid 1 are shown in Figure 6, and the Grid 2 results are 
shown in Figures 8 and 9. The location of the water table in 
the air/water model is determined by first finding the 
bottom-most layer in which gas saturation is more than 
0.001. Then a hydrostatic pressure profile is calculated 
upwards from the centre of this block and the level where 
atmospheric pressure is reached is set as the water table 
location. 

 

Figure 6: Gravity drainage model results – Grid 1. 

Figure 7: Gravity drainage model results, Grid 2. 

For the Grid 1 the results from all three methods look very 
similar. The fine resolution of the grid enables the air/water 
method to give a good match to the other methods. The Flux 
Approximation (Method 2) solution is very close to that of 
the Iterative Method (Method 1) solution. At each time step, 
the Method 2 result differs to that of the final solve of 
Method 1 (which takes ~2 extra iterations to converge to a 
tolerance of 1.0e-15) by at most 6.0e-4. The air/water 
method follows the moving water table methods closely, and 
the result at 150 s has a difference of 1.0e-3 to the moving 
boundary solutions for Grid 1 and 3.0e-3 for Grid 2. 
However, due to the shape of the air/water solution, results 
are inaccurate at certain times during the simulation. The 
Grid 2 results (Figures 8 and 9) display this - the air/water 
method results are stepped and the size of the steps changes 
depending on the grid resolution.  

 
Figure 8: Vapour saturation vs depth for the air/water 
model using Grid 2 at times 0.0s, 32.0s and 55.2s. 

The step-wise shape in the air- water model solution is due 
to saturation changes. Pressure in the water table block 
remains constant while air saturation increases - this is the 
flat part in each step of the air/water solution. The vertical 
part of each step of the air/water solution corresponds to 
when the vapour saturation in the current water table block 
increases beyond 0.001, and the water table is assumed to 
move down to the next layer. The value of 0.001 is arbitrary 
and was chosen by observing plots of the vapour saturation 
over time (as seen in Figure 7). The step-wise shape of the 
air/water solution shows how the air/water method is limited 
in terms of accuracy by the grid resolution. A detailed plot 
over the time period 85s – 110s is shown in Figure 9. The 
time at which the step has just dropped down, and the water 
table has moved to a new layer, are when the air/water 
model solution is least accurate. Then, as the pressure stays 
constant and the air saturation increases, the air/water 
solution nears the moving water table method solutions, 
until it drops again and the cycle repeats. 

 

 Figure 9: Gravity drainage model results detail, Grid 2. 

Note also that the air/water method result fluctuates over 
time around the solutions from the other methods. Using the 
results shown in Figure 9 as an example, the point on the flat 
top of the step of the air/water solution, where the moving 
water table methods intersect the step, varies over the three 
steps shown in Figure 9. This may be a feature of the 
relative permeability used (which has no influence on the 
behavior of the other models as they are single phase).  

Quantitative analysis and comparison of the computational 
speed between all three methods has not been undertaken, 
but the Flux Approximation Method is much quicker than 
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the Iterative Method (each time step is run once for Method 
2, compared to an average of 3 times for Method 1). For this 
isothermal case, the air/water simulation speed is similar to 
the speed of the moving water table methods.  

Larger, more complex models need to be investigated in 
order to ascertain which of the two moving boundary 
methods yields the best results. The accuracy of the Flux 
Approximation Method is not surprising for this simple, 
isothermal case, but it needs to be tested on more 
challenging non-isothermal problems. The limitations of 
both methods also need to be considered further. The Flux 
Approximation Method assumes constant fluid density, 
which cannot be assumed in a non-isothermal simulation, 
while the Iterative Method is very computationally costly, 
and it is not clear yet how to extend the method to 2D or 3D 
simulations including horizontal flow. 

5. CONCLUSIONS AND FURTHER WORK 
Numerical methods for tracking the water table in a 
TOUGH2 simulation were presented and results for simple 
isothermal problems show the methods to be working 
effectively. These methods are not limited in accuracy by the 
thickness of the model layers, as is currently the case in 
standard approaches to capturing the movement of a water 
table. 

Work is continuing in understanding the computational error 
associated with the Flux Approximation Method, and 
reducing the computational expense associated with Iterative 
Method in 2-D and 3D problems. Further development and 
extension of both the Iterative and Flux Approximation 
methods, plus other solution methods, will be explored in 
order to extend water table tracking to two-phase, non-
isothermal flow.  
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