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ABSTRACT 
A large number of physical and social phenomena generate 
lognormal, ‘long-tailed’, or ‘fat-tailed’ population 
distributions.  Such distributions cause considerable 
problems for statistical sample analysis because the 
underlying interactive processes giving rise to such system 
populations violate the central limit theorem.  With no 
tendency for system processes to converge to normal 
distributions, the relation between sample data used for 
making decisions and actual system behaviour can be 
tenuous at best and catastrophic at worst.  Crustal reservoirs 
are subject to high degrees of lognormality in well 
production/productivity.  For reservoir engineering in 
general and geothermal reservoir engineering in particular, 
the breakdown of statistical sample analysis strongly 
impacts traditional reservoir modelling and greatly 
increases the risk/cost of reservoir drilling.  However, 
unlike many/most systems having long-tailed populations, 
physical processes underlying reservoir flow lognormality 
are well constrained by empirical rules interpretable in 
terms that clearly indicate how and why reservoir engineers 
can sample their reservoir for flow structures at the spatial 
scales relevant to effective reservoir management.  The 
physical elements of crustal reservoir flow heterogeneity 
and its appropriate spatial sampling scale are: 
• Well log spatial fluctuation power spectra: S(k) ~ 1/k, 

1/km < k < 1/cm;  
• Well core poroperm spatial fluctuation correlation: δφ ~ 

δlog(κ); 
• Well flow lognormality due to fracture-connectivity: κ ~ 

exp(αφ), α >> 1; 
• Critical density ncrit grain-scale cement-bond-defect 

interactions leading to fluid percolation via long-range 
critical-state fracture-connectivity pathways; 

• Seismic wave emission from dislocation slips at 
pressure-sensitive instabilities in large-scale flow-system 
fracture-connectivity structures. 

Surface-seismic-array detection/mapping of large-scale in 
situ flow-system fracture-connectivity dislocation structures 
has been proven for the current generation of producing 
shale reservoirs.  The same observational technology 
deployed at geothermal reservoirs can sample/map in situ 
flow structures at the spatial scales relevant to effective 
flow models and drill-site risk management. 
 
1. INTRODUCTION  
Prediction is very difficult, especially of the future.  
(Attr Niels Bohr) 
 
Drilling is about the future:  Does the drill bit encounter 
economic fluids and flow? 
 

Drilling is also:  
• Expensive – 30 to 40% of the cost of a geothermal 

facility 
• Chancy – Most wells, geothermal and otherwise, are 

sunk cost 
• Necessary – No pay fluids without drilling 
 
Observational procedures to improve drilling success 
deserve due consideration, particularly in the face of the 
extremely high rates of fluid flow required for commercial 
geothermal heat extraction.  In interest of better drilling 
success, we restate the generic reservoir flow sampling 
problem in terms of the physical state of crust rather than in 
terms of an imposed statistical profile.  Our terms of 
physical understanding of reservoir complexity expose a 
sampling problem which has no valid standard statistical 
solution, but does offer a valid physical solution. 
 
The physics-versus-statistics distinction on well siting can 
be quickly highlighted:   
• For physical reasons, it is far more efficient to base 

drilling decisions on sampling the reservoir at large 
scales for direct evidence of flow connectivity; 

• For statistical reasons, it is far less efficient to base 
drilling decisions on sampling the reservoir at small 
scales to determine flow connectivity through statistical 
averaging. 

 
The greater cost of physics-based large-scale observation is 
easily offset by greater drilling success arising from access 
to spatial information on in situ flow structure. 
 
2. DEFAULT RESERVOIR STATISTICAL 
SAMPLING  
The default view of in situ flow is typically expressed in 
terms of an REV or representative elementary volume [1-
6].  At scales larger than an REV, it is generally supposed 
that, essentially by definition, fluids seep from REV to 
REV in a more-or-less reliably-connected spatially-
averaged sense that is independent of the REV location in 
the reservoir.  This view of reservoir flow can be quantified 
in terms of spatial correlations between pairs of (zero-mean 
unit-variance) porosity sequences Φ(r) and Φ(r+h) 
separated by distance h,  
 
       Γ(h) ≡ <Φ(r)Φ(r+h)> ~ Γ0 exp(-h/ξ),  Γ0 > 0,          (1a) 
 
where the length parameter ξ represents the scale of the 
REV ~ ξ3.  The two end members values of spatial 
correlation function Γ(h) are: 
 
 Γ(h) ~ 0, h >> ξ; Γ(h) ~ Γ0 > 0, h << ξ.       (1b) 
  
For reservoir sample separation large compared to the REV, 
h >> ξ, when sample spatial correlations vanish, it can be 
reliably assumed that N small-scale porosity samples Φ(rn), 
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n = 1….N, average to a mean sample value that is a good 
estimate of the large-scale formation porosity.  In a separate 
parallel logic, it is typically supposed that formation 
permeability associated with formation porosity is also 
adequately estimated by small sample permeability values. 
 
The problem with default reservoir sampling view point 
expressing in Eqs. (1a-b) is that there is no evidence that 
the zero-correlation length scale ξ is small compared to 
formation/reservoir scales.  Rather, the evidence is 
overwhelming that ξ in crustal rock is extremely large, ξ → 
∞ [7-9].  Large correlation lengths ξ mean that in situ 
spatial correlations Γ(h) ~ Γ0 > 0 exist at all sample 
separations h, hence statistical averaging over small-scale 
spatial samples of reservoir properties does not reliably 
estimate large-scale property distributions within a 
formation or reservoir. 

Sampling the physical properties of crustal rock requires 
statistics compatible with the in situ physical state.  The 
appropriate statistical approach is direct observation of-
large scale in situ flow structures most relevant to reservoir 
performance. 

3. SAMPLING STATISTICS FOR SPATIALLY-
CORRELATED RANDOMNESS OF IN SITU FLOW  
Three empirical ‘rules’ constrain the spatial-correlation 
randomness of reservoir flow: 

1. Spatial sequences of porosity φ(s) along a wellbore 
are random but have a spatial frequency power 
spectrum that scales inversely with spatial frequency 
k, S(k) ∝ 1/k, for scale lengths from cm to km [7-9]. 

2. Spatial sequences of well-core porosity φn are 
random but the logarithm of well-core permeability 
log(κn) is strongly correlated with porosity, 0.65 
<φnlog(κn)> 0.9, n = 1….N [11-12]. 

3. Crustal flow system permeability is random due to 
the random flow system porosity given by κ ~ 
exp(αφ), with parameter α >> 1; for normally 
distributed flow system porosity φ, the magnitude of 
α guarantees the distribution of flow system 
permeability κ is lognormal [13-14] 

Fig 1 illustrates the spatial randomness of in situ flow 
conditioned by empirical rules 1-3.  It is visually apparent 
that intersecting deep flow targets is better accomplished by 
remotely detecting the flow structures than by sampling 
small scale poroperm properties through drilling at sites 
chosen in reference to surface flow manifestations.  While 
geothermal well siting is more directed than the 40-, 20- 
and 10 acre arbitrary siting of many/most oil/gas field 
wells, exploration and development drilling at, say, Ohaaki, 
Ngawha, Kawerau and Rotokawa geothermal sites in New 
Zealand using surface information remains a highly 
unreliable guide to deep flow structures [27-30].  More 
logical is to detect the large-scale in situ flow connectivity 
structures illustrated in Fig 1: 

• By Rule 1, important flow structures occur at the 
largest scale, hence sampling should occur at larger 
scales; 

• By Rule 2, drill-target flow is defined by large-scale 
flow connectedness, which should be the focus of 
observation; 

• By Rule 3, large-scale flow structures are rare and 
must be specifically observed rather than statistically 
inferred. 

 

Figure 1: Flow vectors of a 2D porous medium that 
obeys the empirical ‘rules’ 1-3 of §3.  Spatial 
correlation of in situ fractures leads to large-
scale spatially-dependent fracture-connectivity 
structures.  Such spatial-dependence is a direct 
contradiction of spatial independence that is 
characteristic of many concepts and models of in 
situ flow [1-6]. 

 

4. THE CRUSTAL ‘CRITICAL STATE’ 
UNDERLYING SPATIALLY-CORRELATED LONG-
RANGE IN SITU FLOW CONNECTIVITY 
STRUCTURES 
The physical state of crustal rock that gives rise to the 
observed empirical rules operates at the grain scale [7-9].  
Tough mineral grains are bonded by weak cements.  In the 
presence of finite strain induced by on-going tectonic 
deformation of the crust, intact cement bonds rupture to 
create grain-scale defects that allow passage of in situ 
fluids.  From percolation theory we know that at a ‘critical’ 
density of such cement bond defects there is a high 
probability that a defect-connectivity pathway spans a given 
crustal volume [7-9].  Such large-scale percolation 
pathways occurring at crustal scales give rise to the power-
law scaling empirical rule (1) and are the natural drilling 
targets for exploiting reservoirs.   

Empirical rule (2) can be understood in the same physical 
terms.  A number of grain-scale defects n in a crustal 
volume have a degree of defect connectivity which 
increases with defect number n in proportion to the factorial 
n!.  The mathematical relation between n and log(n!), 
log(n!) ~ nlog(n) – n, is equivalent to empirical rule (2), 
giving a picture of fluid flow by grain-scale percolation in 
proportion to the number of combinations, n!, in which n 
defects can be linked within a crustal volume.  The 
logarithm in (2) gives rise to the lognormal-skew nature of 
in situ permeability distributions (3), to which we can give 
a physical interpretation that fracture connectivity controls 
the ease with which in situ fluids flow along fracture-
connectivity pathways at all scales.  Lognormal-like skew 
of in situ flow systems thus naturally emerges from widely-
attested physical properties of crustal rock [7-14]. 
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The crustal ‘critical state’ is dynamic rather than static 
physical in nature, with fracture-connectivity being locally 
sensitive to small changes in fluid pressure.  It has been 
long observed that small changes in the fluid pressure of 
crustal reservoirs lead systematically to discernable seismic 
emissions (including large-scale earthquakes) [15-18].  
Recent detailed seismic monitoring investigations of 
reservoirs subject to in situ pressure changes through fluid 
depletion and/or hydrofracture operations show that small 
scale events occur preferentially along large-scale 
percolation fracture-connectivity pathways [19-22].  
Systematic detection of such incidental acoustic emissions 
leads to reliable, repeatable, and physically interpretable in 
situ flow structure maps within a reservoir. 

5. SEISMIC EMISSIONS IN SPATIALLY-
CORRELATED LONG-RANGE IN SITU FLOW 
SYSTEMS 
An active heat-transporting convective geothermal system 
is perhaps the ideal crustal volume in which to study natural 
seismic emissions generated by in situ flow.    Fig 2 gives a 
3 dimensional representation of the in situ spatial 
porosity/defect heterogeneity arising from empirical rules 
1-3 and generating the long-range spatially-correlated flow-
connectivity illustrated in Fig 1.  Within the reservoir 
volume at depth below the crustal surface, some portions 
have higher porosity/defect density (light green clusters) 
and some have lower porosity/defect density (dark/blue-
green clusters).  The spatial correlations of the crustal 
defects is prescribed by spectral scaling relation (1).  In line 
with empirical relations (2)-(3) and Fig 1 flow connectivity 
illustration, light green portions of the crustal volume are 
associated with greater well productivity, and dark/blue-
green regions with lesser well productivity. 

 

Figure 2: A generic crustal volume of nominal 
dimensions 1km in length and 200m in cross-
section at arbitrary depth below a surface 
seismic array represented by inverted triangles 
in red.  The distribution of green tints within the 
crustal volume represents spatially correlated 
variations in porosity in accord with well-log 
spectral empirics (1),  S(k) ∝ 1/kβ, β ~ 1, ~1/cm < 
k < ~1/km.  Permeability heterogeneity within 
the volume is fixed by well-core empirics (2), δϕ 
∝ δlog(κ).  Fluid flow within the crustal volume 
follows from Darcy’s equation v(x,y,z) = 
κ(x,y,z)/μ∇P(x,y,z).  Fluid pressure/flow at 
poroperm points in the volume give rise to 
seismic-slip instabilities which emit seismic 
waves indicated by dashed blue lines and 
detected by surface seismic sensors [19-22]. 

Seismic emission/detection in the Fig 2 reservoir volume is 
indicated by blue dotted lines connecting in situ sources to 

surface sensors (red triangles).  With a sufficient number of 
surface sensors and a long enough recording time, the very 
low level seismic events associated with in situ pressure-
disequilibrium flow can be extracted from seismic 
background and back-traced to their spatial origin.  This 
process is called “seismic emission tomography” (SET) 
[19-22].  Figs 3-4 illustrate the SET multi-channel seismic 
data analysis that can locate reservoir active flow regions 
suitable as drilling targets. 

Small sub-noise seismic events registered on many seismic 
channels can be detected by systematically combing 
through the multi-channel data illustrated in Fig 3 for a 
9x9-sensor surface seismic array illustrated as red triangles 
in Fig 2.  Each of the nine panels represents the arrival of 
seismic energy at nine sensors.  For a given interval of 
seismic data recording time – say 100 milliseconds – each 
sensor records background seismic activity which may, or 
may not, include a small seismic event arrival from the 
reservoir.  Fig 3 shows one such arrival across the 9 x 9 
sensor array (for visual clarity, the seismic arrivals are 
shown without background seismic noise that would 
otherwise overprint the signal).   

 
Figure 3: A snap-shot of a long temporal sequence of 

seismic data recorded by a 9 x 9 array of surface 
seismic sensors arising from a single source at 
depth in the reservoir volume as depicted in Fig 
2.  The array data display shows the event 
without background noise; in a realistic 
simulation of SET data processing, each signal is 
buried in background noise ten or more times 
the magnitude of the largest event signal.   

Events with arrivals at multiple sensors illustrated in Fig 3 
are identified and back-located in space by the following 
SET data processing logic:  

• Assume an event occurred in a particular node or voxel 
within the reservoir volume; 

• Using a pre-computed travel-time table, look up the 
travel time from the particular node to each sensor, and 
shift each seismogram according to the computed travel 
time so that the expected arrival occurs at the earliest 
time within the window; 

• Sum/stack all such time-shifted seismograms to evaluate 
one of three options: 
o If the event occurred in the given node/voxel, each 

time-shifted initial seismic motion will be aligned at 
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the beginning of the traces of all sensors, and the 
summed/stacked seismogram can have an initial 
arrival as shown in the upper trace of Fig 4; 

o If the event occurred near the given node/voxel, the 
time-shifted initial seismic motions will be partially 
aligned for some but not all sensors; 

o If the event occurred away from the given node/voxel, 
the time-shifted initial seismic motions will not be 
aligned and the summed/stacked seismogram will have 
no statistically significant peak as in lower trace of Fig 
4; 

• If the summed/stacked seismogram has a signal of 
sufficient strength, add a weighted ‘semblance’ value to 
the given node/voxel; otherwise add nothing to the 
node/voxel; 

• Repeat the time-shift winnowing sequence for each 
node/voxel in the crustal model until all nodes/voxels are 
processed. 

• Move to a new time-interval and repeat the above 
process.
 

 

Figure 4: SET data processing involves shifting each of 
the Fig 3 traces back and forth along its time axis 
according to the following logic: (a) If trace X 
contains a signal from a hypothetical event at 
source location Y, then if that trace is shifted by 
TXY units in time, TXY = the travel-time between 
source sensor X and source location Y, the signal 
should be shifted to the beginning of record; (b) 
Summing all traces X time shifted by amounts 
TXY for an actual source at location Y adds 
traces constructively to produce an identifiable 
net signal (upper trace); (c) Summing all traces 
X time shifted by amounts TXY for an non-
existent source at location Y adds traces 
destructively to produce a noise sequence (lower 
trace).  SET data processing repeats the trace-
by-trace time-shift procedure for every small 
time window in a recording sequence for every 
source location with a 3D mesh representation of 
the reservoir.  A typical SET scan may involve 
many thousands of time windows and source-
point mesh nodes, and hundreds of sensors. 

The processed data output from the surface seismic array 
recordings are given ‘semblance’ values for each 
node/voxel of the crustal volume model.  The final 
semblance counts are the total magnitudes of the 

summed/stacked traces given as the initial spike at the Fig 4 
upper-panel synthetic trace.  The higher the spike over 
background noise, the stronger is the imaging signal and the 
more active is the crustal node/voxel site. 

6. SET EVENT LOCATION IN SHALE RESERVOIRS 
SET data processing of surface seismic array to locate sub-
noise reservoir slip events associated with in situ fluid flow 
pathways has been validated at shale gas/oil reservoir 
production sites [19-22].  Fig 5 shows a color-coded spatial 
semblance plot for two 1.5km-long horizontal wells in a 
shale reservoir (wellbore traces appear as thin red 
horizontal lines across the figure).  Seismic events in the 
aftermath of a series of wellbore hydrofracture stimulations 
were recorded by a permanent array of subsurface seismic 
sensors overlying a producing shale reservoir at 3km depth 
as illustrated in Fig 2.   The Fig 5 color-coded induced-
event locations derived from SET processing show lower-
semblance values as the violet/blue end of the color 
spectrum, and higher-semblance values as the red end of 
the spectrum.  The spatial resolution of the SET locations is 
on the order of 10m; the radial extent of the SET images is 
50-60m. 

 

 

Figure 5: Shale reservoir wellbore SET semblance 
sequence along wellbore.  Colors denote spatial 
distribution of semblance magnitude.  Warm 
colors are higher semblance; cool colors are 
lower semblance.  Note the similarity of spatial 
heterogeneity with that of Fig 2. 

From Fig 5 semblance data, we see that wellbore event 
stimulation signals associated with fluid production 

o are strong near the wellbore and decrease in strength 
away from the wellbore; 

o vary in strength along the wellbore. 

We can model the Fig 5 field data radial and axial strength 
distributions and spatial heterogeneity by considering in 
situ flow from the reservoir formation into the stimulation 
fracture-plane and from the fracture-plane into the 
wellbore.  Such a flow model applied to wellbore time-
evolution fluid production curves gives two effective 
diffusion constants for the reservoir: (i) a diffusion constant 
for fracture-borne flow into the wellbore; and (ii) a 
diffusion constant for formation flow into the fracture.  Fig 
6 shows a time-evolution production curve for oil (blue) 
and gas (red) matched by a model curve (smooth black 
line); production erratics are due to wellbore flow 
operations. 
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Figure 6: Time-evolution production curve for oil (blue) 
and gas (red) matched by a model curve (smooth 
black line); production erratics are due to 
wellbore flow operations. 

Fig 7 shows model fluid flow radial and axial variability for 
a series of 12 planes normal to a wellbore along the length 
of the Fig 2 crustal simulation volume.  As with the Fig 5 
SET semblance distributions along a shale reservoir 
wellbore, the model wellbore-centric fluid flow magnitudes 
vary radially and axially: 

o Flow strongest near the central wellbore, decreasing 
away from the wellbore; 

o Flow variation at the 12 fracture planes along the 
wellbore axis; 

o Instances of strong flow as seen in the red-coded 
semblance values in Fig 5. 

 

Figure 7: Model fluid flow radial and axial variability 
for a series of 12 planes normal to a wellbore 
along the length of the Fig 2 crustal simulation 
volume.  In common with, but not conditioned by 
the observed Fig 5 SET semblance distributions 
along a shale reservoir wellbore, the model 
wellbore-centric fluid flow magnitudes vary 
radially and axially as a function of the stochastic 
nature of in situ poroperm spatial fluctuations. 

The collective flow computed for poroperm stimulation 
structures such as shown in Fig 7 can be computed, but 
such computations are difficult to compare decisively with 
collective wellbore flow as measured in Fig 6 field data.   

7. APPLICATION OF SEISMIC EMISSION 
TOMOGRAPHY IN GEOTHERMAL SYSTEMS 
SET processing of surface seismic data recorded over a 
producing shale reservoir identified in situ fracture-flow-
connectivity structures indicated by red lines in the 3km x 
3km sections shown in Fig 8.  The inferred red-line 
fracture-connectivity flow structures were mapped on the 
basis of seismic array site monitoring in advance of well 
stimulation (but not well drilling).   A hydrofracture 
sequence conducted in a 1km horizontal wellbore at the 
center of the section produced an initial signal (slight 
smudge at center of left-hand section) which grew into 
further signal activity at the original conductivity structure 
plus activating a remote fracture-connectivity structure 
(center section) and culminated in still further activity in the 
center structure with activity at three remote structures 
(right-hand section).   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8: A hydrofracture sequence conducted in a 3km 
by 3km reservoir section from a 1km horizontal 
wellbore at the center of the section.  The initial 
SET signal is slight smudge at center of top 
section; at subsequent times, SET signal activity 
at the original conductivity structure plus at 
remote fracture-connectivity structures; the time 
sequence culminates in further activity in the 
center structure with activity at three remote 
structures (bottom section).  Noteworthy is that 
fracture stimulation did not affect the rightmost 
mapped connectivity structures; the latter 
fracture set would be a logical target for further 
drilling. 
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It is noteworthy in the Fig 8 hydrofracture sequence that the 
fracture stimulation activity of some of the connectivity 
structures did not affect the rightmost mapped connectivity 
structures.  One can immediately infer the degree of 
fracture connectivity within and between the mapped 
connectivity structures.  The lack of hydrofracture 
stimulation connectivity across the section implies that an 
addition well be drilled in the lower-right non-connectivity 
sector.  The km-scale on which this signal activity is 
observed illustrates a degree of spatial extent and spatial 
resolution that would apply to geothermal systems. 

The basis for achieving the exhibited shale reservoir SET 
spatiotemporal image resolution of Figs 5 and 7 is an 
adequate velocity model of the reservoir volume.  Only 
with adequate velocity structure information can the SET 
analysis process accurately align the small signals emitted 
by pressure-disturbed fluid-active fracture connectivity 
structures at reservoir depths.  Most shale reservoir 
prospects have surface seismic sections which return 
detailed velocities models; these models can be further 
refined for a set of surface seismic array stations by 
recording perforation shots conducted during wellbore 
completions.  This level of velocity information is not 
available to geothermal systems; pyroclastic flow 
sequences are notoriously difficult to image with seismic 
reflectivity methods, and well completion perforations are 
not the integral part of geothermal production that they are 
in shale reservoir production.  Nonetheless, methods exist 
to probe complex velocity structures [23-25].   As a counter 
to the complexity of their seismic velocity structures, 
geothermal fluid flow systems are vastly more active than 
are those of shale reservoirs, and the spatial resolution 
required for usefully guiding the drill bit to flow-productive 
areas of the overall geothermal system is substantially less 
than that relevant to hydrofracturing operations important to 
shale reservoir production.  

8. DISCUSSION: RESISTING THE TEMPTATION 
TO ASSUME EVENT INDEPENDENCE WHEN 
PREDICTING THE FUTURE 
Statistical approaches to risk and/or uncertainty in 
predicting future events generally have at their core the 
assumption that a sample of events somehow usefully 
represents the entirety of events.  Where it is conceded that 
the full range of outcomes cannot be known, it is often 
assumed that a handful of known outcomes can help define 
risk and reduce uncertainty.  This assumption is accurate in 
many circumstances.  In games of chance or for 
engineering materials, a regularity or uniformity exists that 
allows the future to be a good guide to the past: 4 x 13 
distinct playing cards in a deck, six distinct sides to a die, 
two sides to a coin, rigid controls on the density, strength, 
composition, hardness, temperature of various engineering 
processes.  Risk and uncertainty exist, but are manageable 
on the basis of relatively straightforward sampling tactics 
over a uniform event field. 

In contrast, suppose that shuffling a deck of cards is 
systematically faulty, in that cards of a suit have a strong 
tendency to associate with other cards of that suit.  
Suddenly within a game there can be suit-specific trends 
that have no connection with uniform event sampling.  
Uncertainty and risk rise and efficiency drops.  Once the 
phenomena of hidden trends within shuffled decks become 
apparent, there will ensue attempts to recognize trends, but 
history indicates that such attempts are simply variations on 
the general theme of some sort of uniformity or regularity 

[26].  For instance, enough observation may indicate that 
the two of spades tends to associate with the three of 
spades, whence the risk/uncertainty tables will be adjusted 
accordingly as if the pairing of the two and three of spades 
is itself a new form of regularity or independent event that 
can be used to predict future events on the basis of 
occurrence within a sample.   

The tendency to work for and believe in uniformity or 
regularity of independent events has another manifestation 
relevant to in situ flow.  Rare conjunction of events, as for 
instance associated with accidents, are often discounted in 
probability because their chance of occurrence is estimated 
as the product of the chance of each element of the 
conjunction.  This is an accurate expectation if the 
conjunctive events are truly independent, but in many 
accidents the conjunctive events are dependent rather than 
independent [26].  In the case of in situ flow systems, large-
scale dominant flow structures may be rare (lognormally 
distributed) but they are far, far more common that would 
be expected if all fracture-connectivity conjunctions were 
taken as independent events.   

The empirical physics of in situ flow structures speaks 
directly to the matter of dependent events that comprise a 
flow system.  The first two empirical rules of crustal rock 
noted in §3, 

a) Spatial sequences of porosity φ(s) along a wellbore 
are random but have a spatial frequency power 
spectrum that scales inversely with spatial frequency 
k, S(k) ∝ 1/k, for scale lengths from cm to km; 

b) Spatial sequences of well-core porosity φn are random 
but the logarithm of well-core permeability log(κn) 
strongly correlated with porosity, 0.65 <φnlog(κn)> 
0.9, n = 1….N; 

give rise to two physical/mathematical truths about in situ 
flow.  First, if the fracture connectivity events that comprise 
in situ flow systems were spatially independent, the spatial 
frequency power spectrum of a wellbore trace would have 
the specific form of ‘white noise’, S(k) ∝ 1/k0 ~ constant, 
instead of the observed form S(k) ∝ 1/k1 as given in a).  
Second, as indicated above, the fracture-connectivity aspect 
of in situ flow arises directly from b) by counting the 
number of ways spatially correlated fractures can connect.  
Consider a unit volume of rock containing n fractures; the 
number of fracture-connections is proportional to the 
number of ways that n fractures can connect, n! ≡ n (n-1) 
(n-2) (n-3)……1.  A neighbour volume with n+δn grain-
scale fractures has (n+δn)! ways to connect.  The number of 
fractures in a volume element is proportional to the porosity 
of the volume element, n ∝ φ, and the number of fracture 
connections is proportional to the permeability of the 
element, n! ∝ κ.  This is because grain-scale fractures are 
more likely to occur where rock is porous and subject to 
greater strain than elsewhere; and fracture connectivity 
essentially defines what we mean by permeability.  
Stirling’s formula, n! ~ (n/e)n √2πn, expressed as log(n!) ~ 
n log(n) – n returns physical empirics b) as the difference in 
the logarithm of permeability proportional to the difference 
in porosity, δlog(n!) = log((n+δn)!) – log(n!) ∝ n + δn – n = 
δn.   

Physical/mathematical expression of empirical properties a) 
and b) associated with in situ flow indicates the 
fundamental importance of spatial correlation dependence 
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of in situ fracture events in determining the flow properties 
of rock.  It is grossly at odds with physical reality to 
express flow-system statistics in terms of independent 
events.  At the same time, the empirical lognormality of in 
situ flow system populations in crustal rock indicates that 
large-scale flow systems are rare (but not as rare as they 
would be if the flow systems were built of independent 
spatial occurrence of fractures, which is the default 
assumption about reservoir flow typically associated with 
geostatistical applications [1-6]).  Trying to find rare spatial 
occurrences of significant in situ flow systems determined 
by fundamentally spatially-dependent physical processes by 
means of expensive/risky drilling based on sampling 
strategies rooted in the statistics of independent events is 
highly inefficient. 

9. SUMMARY/CONCLUSIONS 
The potential for locating fracture-connectivity flow 
structures in natural geothermal flow systems is great.  The 
flow-signal in geothermal systems is probably one or more 
orders of magnitude greater for geothermal flow than for 
shale reservoir stimulated flow, and the spatial resolution 
needed to usefully guide the drill bit to the most promising 
areas is sizably less than that needed to guide shale 
reservoir hydrofracture operations. Finally, the 
effective/operational cost a geothermal well is at least an 
order of magnitude greater than that of a shale reservoir 
well. The play of these factors compensates for the 
challenges of acquiring adequately resolved velocity 
structure models with which to conduct SET analysis of 
surface seismic array recording data.  Establishing an SET-
based methodology for increasing net geothermal well 
productivity would likely  

• bring new more marginal fields on line; 
• enhance the productivity of existing fields;  
• extend the life of existing fields by enabling effective 

location of suitable sites for re-injection wells. 
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