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ABSTRACT 
Tracer returns provide direct proof of fluid connections 
between different wells in a geothermal field. The tracer 
profile yields estimates for travel times and fluid recovery 
fractions between injection and production wells, and can 
provide strong constraints on assumed reservoir structure in 
numerical simulators. Analysis of tracer profiles is not 
always straightforward, due to uncertainties from secondary 
injection of tracer, and from assumptions about the “tracer 
tail”.  In addition, the mechanism of tracer transport involves 
many effects such as pressure gradients in the reservoir, 
tending to move tracer from injector to producer; negative 
buoyancy effects due to cold injection which tend to move 
tracer vertically downwards; and the structure of fracture 
and matrix system. The importance of each of these effects 
will vary in different geothermal fields.  

We briefly discuss several standard methods of tracer 
analysis, and then focus on an alternative method of tracer 
analysis, which may be of value for tracer profiles 
characterised by long tails. We use a class of remarkable 
probability functions which have unbounded moments 
(mean, variance, etc). The method cannot be applied 
universally to all tracer profiles, but does provide an 
idealised framework for a general classification of tracer 
profiles, and in many cases, may yield improved estimates 
for the fraction of tracer recovered. We test this method with 
field data. 

1. INTRODUCTION  
Tracer measurements have been used in producing 
geothermal fields over the last 30 years [Stefansson, 1997] 
to identify flow connections and travel times of tracer 
between injection and producing wells. Types of tracer used 
include: fluorescent dyes (rodamine, sodium fluorescein, 
tinopal), inert gases (Xe, sodium hexafluoride), organic 
compounds (aromatic acids), radioactive isotopes (Xe133, 
I125, I131), naturally occurring chemicals (NaCl), and 
alcohol (methanol, ethanol) tracers [Bixley et al, 
1995],[Rose et al, 2001],[Adams et al, 2000]. 

Tracer measurements are especially important in geothermal 
fields where injection is occurring. If rapid and significant 
tracer returns are observed between injection and production 
wells, then injection from these wells may need to be 
stopped or moved to elsewhere in the field because of the 
potential threat of cold returns to production wells. 

Transport of tracer results primarily from flow dispersion 
(spatial variation in velocity), and diffusion, through an 
immense number of flow paths, the nature of which are 
unknown. If density effects due to temperature differences 
are important, as is likely about injection wells, relative 
depths of feed points in injection and producer wells will 
also be important. Additionally, nearby producers may 
capture tracer, hiding connections between wells. These and 

other complexities show that the interpretation of tracer 
profiles should proceed cautiously, given the difficult and 
unknown aspects of much of the flow geometry relevant to 
tracer returns. 

Tracer measurements record the rate of recovered tracer 
versus time. Typical inferences from such tracer datasets 
include first arrival time, peak arrival time, and percentage 
recovery of total injected tracer. 

Several methods are used to analyse tracer returns, 
including: the mean residence time method; the fractional 
derivative method; the travel-time method; the fracture 
block method; the convolution method; the non-parametric 
method, and numerical simulation. 

The mean residence time method [Shook, 2005] uses the 
first moment of the tracer data, to provide a characteristic 
time for the tracer record. This method works in principle, 
provided the first moment is bounded. The fractional 
derivative method [Suzuki et al., 2010] assumes non-Fickian 
mass transport. The travel-time method [Bullivant and 
OSullivan, 1991] aims to locate geological structures such as 
faults. The fracture block method [Jensen and Horne, 1983] 
assumes two permeability structures to explain aspects of 
fast and slow transport in geothermal fields. The convolution 
method [Yanigasawa et al, 2009] calculates secondary and 
higher tracer returns, adding these to the primary tracer 
returns, to improve estimates of tracer recovery. The non-
parametric method [Villacorte et al., 2010] aims to obtain 
unbiased estimates of well to well connectivity. Numerical 
simulation [Nakao et al., 2007] is perhaps the most robust of 
methods, because it aims to describe in detail the porous 
medium connecting injection and production wells. Below 
we discuss a new parametric method, which attempts to 
capture the scale dependence seen in many porous flow 
measurements. 

2. THE METHOD  
This section considers an idealized tracer concentration, C, 
imagined to result from the instantaneous injection of a 
given mass of tracer at the injector, measured at the 
producer, with all mass flow rates held constant.  

𝐶 = 𝜌𝑓𝑥
𝑞√2𝜋𝜎𝑡2

exp [−(𝑥−𝑢𝑡
√2𝜎𝑡

)2]                            (1) 

Here C is wellhead tracer concentration (kg/m3), 𝜌 is 
producer water density (kg/m3), f mass variable (kg), x 
nominal distance between injector and producer (m), q 
producer flow rate (kg/s), 𝜎 diffusion parameter (m2/s2), t 
time (s), and u is nominal fluid speed (m/s) between wells. 

This expression attempts to describe tracer transport with a 
speed u, and a diffusion coefficient that increases linearly  
time (D=𝜎t). Using diffusivities which increase with system 
size, has been suggested previously [Neuman, 1990]. 

The peak concentration in (1) occurs when 
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𝑥
𝑢 = �

1 + √1 + 4𝛼
2 � 𝑡𝑚 ;   𝛼 =

2𝜎
𝑢2                 (2)      

which allows x to be replaced by the peak time, tm. If (2) is 
substituted into (1), and C is scaled by the peak 
concentration Cm, then the tracer profile is a function of t/tm 
and α, where α is non-dimensional (= 2/Peclet number). 

𝐶
𝐶𝑚

= 𝑡𝑚2

𝑡2
exp[(√1+4𝛼−1)2

4𝛼
] exp-[

�(√1+4𝛼+1�𝑡𝑚2𝑡 −1]2

𝛼
]  (3) 

Equation (3) may be useful, since both Cm and tm can be 
read off the tracer plot, and then α is determined from (3). 

The total mass M of tracer recovered (kg) is 

𝑀 = �
𝑞𝐶
𝜌
𝑑𝑡 =

𝑓
2 [1 + 𝑒𝑟𝑓(

1
√𝛼

)]        (4)
∞

0
 

where erf is the error function, and (4) is independent of x. 
Then (4) can be rewritten, using the non-dimensional R, as 

          𝑀 = R q 𝐶𝑚 𝑡𝑚
ρ

                                                     (5)   

where R is given in Table 1. Note that M = f when α=0, but 
then Cm =∞, explaining why R is zero then. 

Table 1.Variation of R in (5) with α.  

α R α R α R 

0.0 0.0 0.8 1.383 7.0 2.054 

0.01 0.177 0.9 1.434 8.0 2.077 

0.1 0.558 1.0 1.479 9.0 2.097 

0.2 0.783 2.0 1.739 10.0 2.113 

0.4 1.071 3.0 1.861 50.0 2.279 

0.5 1.172 4.0 1.936 100 2.318 

0.6 1.255 5.0 1.987 1000 2.381 

0.7 1.324 6.0 2.024 ∞ √𝜋𝑒
2

 = 2.409 

Table 2. First inflection point times, as a function of α. 
The ratio t1/tm equals 1/√𝟑 when α = ∞, and 0 for α = 0. 

α t1/tm α t1/tm α t1/tm 

0.1 0.2353 0.8 0.3994 7.0 0.5073 

0.2 0.2920 0.9 0.4073 10.0 0.5179 

0.3 0.3252 1.0 0.4142 50.0 0.5498 

0.4 0.3482 2.0 0.4548 100.0 0.5578 

0.5 0.3653 3.0 0.4745 1000.0 0.5711 

0.6 0.3789 4.0 0.4869 10,000 0.5754 

0.7 0.3900 5.0 0.4956 ∞ 0.5774 

Table 2 tabulates t1, the time of the first inflection point for 
Equation (3). The first arrival time t0 , given in Table 3, is 

                         𝑡0 = 𝑡1 −
𝐶(𝑡1)
𝑐̇(𝑡1)

                          (6) 

where 𝑐̇(𝑡1) is the time derivative of C at t = t1. 

Table 3. First arrival times, as a function of α. 

 α tm/t0 α tm/t0 α tm/t0 

0.0 1.0 0.7 1.817 7.0 2.131 

0.01 1.144 0.8 1.842 10.0 2.159 

0.1 1.428 0.9 1.863 50.0 2.241 

0.2 1.563 1.0 1.882 100.0 2.261 

0.3 1.646 2.0 1.992 1000.0 2.294 

0.4 1.706 3.0 2.045 10,000.0 2.305 

0.5 1.751 4.0 2.078 ∞ 2.309 

0.6 1.787 5.0 2.100 ∞ 4/√3 

Table 3 shows that (3) requires the peak arrival times to vary 
between 1 and 2.3 times the first arrival time. Numerous 
tracer plots have been published over the years, and are 
referenced in the IGA Website Database, under tracer 
conference papers. There are examples in this database 
which support Table 3, but not every example follows Table 
3. In some cases, there is not a clear first arrival time, and 
instead a gradual increase in tracer concentration is 
recorded. 

The special case of (3) for very large α is 

          𝐶
𝐶𝑚

= 𝑒𝑡𝑚2

𝑡2
exp (− 𝑡𝑚2

𝑡2
)  ; α=∞                                    (7) 

3. APPLICATIONS OF THE METHOD 
Figure 1 plots the concentration calculated from (7), and an 
approximation to a published tracer plot from the Raft River 
geothermal field in 2010 [Mattson et al., 2011]. The model 
does not match the peak tracer concentration, but after this, 
(7) closely follows the data. 

 

Figure 1:          RRG-1, Raft river, Cassia County, Idaho, 
2010 [Mattson et al., 2011].           

 

While a relatively small, but significant number of published 
tracer plots can be approximated by (7), a greater proportion 

0

5

10

15

20

25

30

35

40

-10 10 30 50 70 90 110 130 150

Co
nc

en
tr

at
io

n 
(a

rb
itr

ar
y 

un
its

)

Days

Equation (7)

Data



 

 
Proceedings 36th New Zealand Geothermal Workshop 

24 - 26 November 2014 
Auckland, New Zealand 

of tracer plots can be approximated by (3). The tracer plot 
from WK121 [McCabe, et al., 1983] in July 1979, from the 
Wairakei geothermal field in New Zealand, is given in 
Figure 2 for α equal to 0.85. 

 
Figure 2: WK121 response to WK101, July 1979, 

Wairakei. Fitted Equation (3) has α = 0.85. 

It is surprising that (3) can approximate, crudely at least, a 
large number of tracer profiles. Specifically, once (3) has 
been adjusted to pass through the peak in the tracer plot, 
then there is only one parameter (α) left in the fitting. There 
is a maximum “width” that can be tolerated, corresponding 
to an infinite value of α. 

Figure 2 is unusual for tracer profiles, since the “first 
returns” are apparent for many multiples of tm. More usually, 
tracer returns from secondary reinjection will reach the 
producer well, and may provide a confusing background 
flow. A possible example of this is shown in Figure 3, from 
well SG-6 in the Svartsengi field in Iceland [Gudmundsson 
and Hauksson, 1985]. 

 

Figure 3: Tracer curve from SG-6, Svartsengi field, 
Iceland, 1985. Fitted Equation (3) has α = 0.3. 

4. TOTAL TRACER RETURNS 
An immediate challenge is to determine the tail of the tracer 
return plot, from amongst what are likely to be a background 
of tracer readings. Here we will not do this for actual field 
data, because we do not know the total mass flowing to the 
producer from the initial injection of tracer. 

Rather, we will consider the case when the actual tracer 
profile from the producer is assumed to be that from (7), and 
that the background flows become apparent at 2tm. In a field 
in which reinjection is occurring, it is reasonable to expect a 
significant mass of secondary tracer to have arrived by 2tm, 
since tm is a crude estimate to the time for tracer to move 

from injector to producer, provided the time to return fluid 
from the producer to the power plant and back to the 
injector, is small relative to tm. Figure 3 shows a departure 
between fitted and measured values at about 2tm. 

For simplicity, we take q/𝜌 = 1 = tm, Cm=1, and consider the 
infinite α case in (7). Then all methods should yield the total 
mass of tracer recovered up to time 2tm as (e √𝜋 erfc(0.5))/2, 
or 1.155, where erfc is the complementary error function. 
The total mass of tracer recovered equals (e √𝜋)/2 = 2.409, 
and so the total mass in the tail beyond 2tm equals 1.254. 

But if a decreasing exponential function is matched to (7) at 
time 2tm, it will be C = 0.25 exp(2.25-0.75t), and the mass in 
the tail will equal 0.706. Consequently, this apparently quite 
reasonable analysis approach will estimate the total mass 
recovered as 1.861= 1.155+0.706, which is only 77% of the 
mass recovered of 2.409. 

Alternatively, from (4) and (7), for infinite α, the mass of 
tracer in the tail after time t, MT(t), is 

𝑀𝑇(𝑡) = 𝑒√𝜋
2

𝑞𝐶𝑚𝑡𝑚
𝜌

erf (𝑡𝑚
𝑡

)                        (8) 

where erf is the error function. Consequently, the fraction of 
the mass of tracer remaining in the tail at time t is 

      𝑀𝑇(𝑡)
𝑀𝑇(0)

 = erf(𝑡𝑚
𝑡

) ≈ 2𝑡𝑚
𝑡√𝜋 

                                (9) 

for small tm/t. From (9), 10% of the total mass of tracer to be 
recovered, remains in the tail at t = 11tm, for α=∞. 

The equations above assume implicitly that the measured 
tracer profiles can be adequately approximated by (3). While 
this appears to be true for a significant number of tracer 
plots, it is also untrue for a significant number of tracer 
plots. Of course, in these cases, the selection into true/untrue 
is subjective. 

The equation for C in (3) has the property that for small α, C 
is essentially a delta function, but as α increases towards 
infinity, the width of C increases, but only to the extent of 
being described by (7). Many tracer plots are clearly much 
wider than constrained by (7), and so cannot be fitted by (3). 
For example, corresponding to Figure 2, the tracer responses 
in July 1979 from injection at WK101, at producers WK103, 
WK116 and WK76 are too wide to be fitted by (3). There 
are many other examples of tracer returns whose broad 
peaks are too wide to be fitted by (3). 

Additionally, there are also examples where different 
assumptions above do not hold in actual tracer tests. For 
example, tracer tests have occurred during times of 
significant changes to flow rate, due to field management, 
contradicting the assumption that q is constant. In other 
cases, variable flow rates occur naturally from cycling in 
multi-feed wells. 

Another example where (3) is not applicable is for injection-
backflow tracer tests, where tracer is first injected, and then 
produced from the same well [Kocabas and Horne, 1987]. 

5. CONCLUSIONS  
This paper has introduced a theoretical tracer profile, with a 
very long tail. Instead of the usual eventual exponential 
decay with time, as characterized by finite variance 
distributions, (3) eventually decays as 𝑡−2. Consequently, 
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(3) will typically predict higher rates of tracer recovery, than 
for methods based on profiles with a finite variance. 

An “obvious” estimate for the mass of tracer in the tail, was 
shown in a plausible example above, to be an underestimate 
of the mass of tracer recovered by 23%. 

This significant difference in the two estimates for tracer 
recovery is closely related to the very long tail for (3) and 
(7), since (9) showed that 10% of the total tracer recovered 
still resides in the tail at t = 11tm. In many cases, tracer 
records will not extend out to such long times. 

These two issues of possible significant underestimation of 
tracer recovery, and of the very long possible tracer tails, can 
perhaps be dismissed by arguing that (3) cannot apply to 
tracer profiles, since there are many examples where (3) 
does not apply. Countering this viewpoint are examples 
where (3) does appear to hold, as in Figures 1 and 2. 

In those cases where secondary tracer returns from injection 
are confusing the tracer profile, it seems to be an open 
question whether the tracer tail decays exponentially or 
algebraically with time. While exponential decay is widely 
assumed, we have highlighted some of the consequences if 
the tracer tail decays algebraically, instead.  

Finally, tracer returns can be classified as obeying (3), or 
not. If (3), then: 

1. Tracer returns are classified by percentage 
recovery, peak time, peak value, and α; 

2. The mean residence time method is inapplicable, 
and will be characterized by extremely sensitive 
results when considering the tracer tail [Grant and 
Bixley, 2011]; 

3. Traditional methods can underestimate percentage 
recovery, perhaps by around 20%, when secondary 
returns are important; 

4. The tracer tail will decay as the inverse square of 
time; 

5. All moments (apart from the zero moment) of the 
tracer profile are unbounded; 

6. The ratio of peak to first arrival times varies 
between 1 and 2.3; 

7. Up to 10% of the total tracer recovered may 
remain in the tail, after 11 times the peak time; 

8. The limiting case of infinite α provides strong 
constraints on the applicability of (3). 
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