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ABSTRACT

Tracer returns provide direct proof of fluid connections
between different wells in a geothermal field. The tracer
profile yields estimates for travel times and fluid recovery
fractions between injection and production wells, and can
provide strong constraints on assumed reservoir structure in
numerical simulators. Analysis of tracer profiles is not
always straightforward, due to uncertainties from secondary
injection of tracer, and from assumptions about the “tracer
tail”. In addition, the mechanism of tracer transport involves
many effects such as pressure gradients in the reservoir,
tending to move tracer from injector to producer; negative
buoyancy effects due to cold injection which tend to move
tracer vertically downwards; and the structure of fracture
and matrix system. The importance of each of these effects
will vary in different geothermal fields.

We briefly discuss several standard methods of tracer
analysis, and then focus on an alternative method of tracer
analysis, which may be of value for tracer profiles
characterised by long tails. We use a class of remarkable
probability functions which have unbounded moments
(mean, variance, etc). The method cannot be applied
universally to all tracer profiles, but does provide an
idealised framework for a general classification of tracer
profiles, and in many cases, may yield improved estimates
for the fraction of tracer recovered. We test this method with
field data.

1. INTRODUCTION

Tracer measurements have been used in producing
geothermal fields over the last 30 years [Stefansson, 1997]
to identify flow connections and travel times of tracer
between injection and producing wells. Types of tracer used
include: fluorescent dyes (rodamine, sodium fluorescein,
tinopal), inert gases (Xe, sodium hexafluoride), organic
compounds (aromatic acids), radioactive isotopes (Xel33,
1125, 1131), naturally occurring chemicals (NaCl), and
alcohol  (methanol, ethanol) tracers [Bixley et al,
1995],[Rose et al, 2001],[Adams et al, 2000].

Tracer measurements are especially important in geothermal
fields where injection is occurring. If rapid and significant
tracer returns are observed between injection and production
wells, then injection from these wells may need to be
stopped or moved to elsewhere in the field because of the
potential threat of cold returns to production wells.

Transport of tracer results primarily from flow dispersion
(spatial variation in velocity), and diffusion, through an
immense number of flow paths, the nature of which are
unknown. If density effects due to temperature differences
are important, as is likely about injection wells, relative
depths of feed points in injection and producer wells will
also be important. Additionally, nearby producers may
capture tracer, hiding connections between wells. These and

other complexities show that the interpretation of tracer
profiles should proceed cautiously, given the difficult and
unknown aspects of much of the flow geometry relevant to
tracer returns.

Tracer measurements record the rate of recovered tracer
versus time. Typical inferences from such tracer datasets
include first arrival time, peak arrival time, and percentage
recovery of total injected tracer.

Several methods are used to analyse tracer returns,
including: the mean residence time method; the fractional
derivative method; the travel-time method; the fracture
block method; the convolution method; the non-parametric
method, and numerical simulation.

The mean residence time method [Shook, 2005] uses the
first moment of the tracer data, to provide a characteristic
time for the tracer record. This method works in principle,
provided the first moment is bounded. The fractional
derivative method [Suzuki et al., 2010] assumes non-Fickian
mass transport. The travel-time method [Bullivant and
OSullivan, 1991] aims to locate geological structures such as
faults. The fracture block method [Jensen and Horne, 1983]
assumes two permeability structures to explain aspects of
fast and slow transport in geothermal fields. The convolution
method [Yanigasawa et al, 2009] calculates secondary and
higher tracer returns, adding these to the primary tracer
returns, to improve estimates of tracer recovery. The non-
parametric method [Villacorte et al., 2010] aims to obtain
unbiased estimates of well to well connectivity. Numerical
simulation [Nakao et al., 2007] is perhaps the most robust of
methods, because it aims to describe in detail the porous
medium connecting injection and production wells. Below
we discuss a new parametric method, which attempts to
capture the scale dependence seen in many porous flow
measurements.

2. THE METHOD

This section considers an idealized tracer concentration, C,
imagined to result from the instantaneous injection of a
given mass of tracer at the injector, measured at the
producer, with all mass flow rates held constant.

x—ut.
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Here C is wellhead tracer concentration (kg/m®), p is
producer water density (kg/m®), f mass variable (kg), x
nominal distance between injector and producer (m), q
producer flow rate (kg/s), o diffusion parameter (m?/s%), t
time (s), and u is nominal fluid speed (m/s) between wells.

This expression attempts to describe tracer transport with a
speed u, and a diffusion coefficient that increases linearly
time (D=ot). Using diffusivities which increase with system
size, has been suggested previously [Neuman, 1990].

The peak concentration in (1) occurs when
Proceedings 36th New Zealand Geothermal Workshop

24 - 26 November 2014
Auckland, New Zealand



u 2 az? ©

x <1 +vV1+ 401) 20
P [, tm;

which allows x to be replaced by the peak time, t.. If (2) is
substituted into (1), and C is scaled by the peak
concentration C,,, then the tracer profile is a function of t/t,
and o, where o is non-dimensional (= 2/Peclet number).

[(ViFaa+1)im_q72

(T exp [ 2] (3)

C_
Cm

eD[

Equation (3) may be useful, since both C,, and t,, can be
read off the tracer plot, and then a is determined from (3).

The total mass M of tracer recovered (kg) is

M= fq 1+erf( RO

¥

where erf is the error function, and (4) is independent of x.
Then (4) can be rewritten, using the non-dimensional R, as

RqCpty,
p
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where R is given in Table 1. Note that M = f when o=0, but
then C,, =c0, explaining why R is zero then.

Table 1.Variation of R in (5) with a.
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where ¢(t,) is the time derivative of C at t = t;.

Table 3. First arrival times, as a function of a.

o} tm/to o tlto o} tm/to

0.0 1.0 0.7 1.817 7.0 2.131
0.01 1.144 0.8 1.842 10.0 2.159
0.1 1.428 0.9 1.863 50.0 2.241
0.2 1.563 1.0 1.882 100.0 2.261
0.3 1.646 2.0 1.992 1000.0 2.294
0.4 1.706 3.0 2.045 10,000.0 | 2.305
0.5 1.751 4.0 2.078 0 2.309
0.6 1.787 5.0 2.100 0 413

o R o R o R

0.0 |00 08 | 1383 | 7.0 2.054

0.01 | 0177 |09 | 1.434 | 8.0 2.077

0.1 | 0558 |10 | 1479 |90 2.097

02 |0.783 |20 |1.739 | 10.0 2.113

04 |1.071]30 | 1861 | 50.0 2.279

05 | 117240 | 1936 | 100 2.318

0.6 | 1255 |50 | 1.987 | 1000 2.381

07 | 1324 |60 |2024 | © %: 2 409

Table 2. First inflection point times, as a function of a.
The ratio t,/t, equals 1/v/3 when a = o, and 0 for o = 0.

a t/ty a t/tm o t/ty

0.1 0.2353 | 0.8 0.3994 | 7.0 0.5073
0.2 0.2920 | 0.9 0.4073 | 10.0 0.5179
0.3 0.3252 | 1.0 0.4142 | 50.0 0.5498
0.4 0.3482 | 2.0 0.4548 | 100.0 0.5578
0.5 0.3653 | 3.0 0.4745 | 1000.0 | 0.5711
0.6 0.3789 | 4.0 0.4869 | 10,000 | 0.5754
0.7 0.3900 | 5.0 0.4956 | o 0.5774

Table 2 tabulates t; the time of the first inflection point for
Equation (3). The first arrival time t, , given in Table 3, is

Table 3 shows that (3) requires the peak arrival times to vary
between 1 and 2.3 times the first arrival time. Numerous
tracer plots have been published over the years, and are
referenced in the IGA Website Database, under tracer
conference papers. There are examples in this database
which support Table 3, but not every example follows Table
3. In some cases, there is not a clear first arrival time, and
instead a gradual increase in tracer concentration is
recorded.

The special case of (3) for very large a is

= Shexp(-2) ;oo )
3. APPLICATIONS OF THE METHOD

Figure 1 plots the concentration calculated from (7), and an
approximation to a published tracer plot from the Raft River
geothermal field in 2010 [Mattson et al., 2011]. The model
does not match the peak tracer concentration, but after this,
(7) closely follows the data.
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Figure 1: RRG-1, Raft river, Cassia County, Idaho,
2010 [Mattson et al., 2011].

While a relatively small, but significant number of published
tracer plots can be approximated by (7), a greater proportion
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of tracer plots can be approximated by (3). The tracer plot
from WK121 [McCabe, et al., 1983] in July 1979, from the
Wairakei geothermal field in New Zealand, is given in
Figure 2 for a equal to 0.85.
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Figure 2: WK121 response to WK101, July 1979,
Wairakei. Fitted Equation (3) has a = 0.85.

It is surprising that (3) can approximate, crudely at least, a
large number of tracer profiles. Specifically, once (3) has
been adjusted to pass through the peak in the tracer plot,
then there is only one parameter (o) left in the fitting. There
is a maximum “width” that can be tolerated, corresponding
to an infinite value of a.

Figure 2 is unusual for tracer profiles, since the “first
returns” are apparent for many multiples of t,,. More usually,
tracer returns from secondary reinjection will reach the
producer well, and may provide a confusing background
flow. A possible example of this is shown in Figure 3, from
well SG-6 in the Svartsengi field in Iceland [Gudmundsson
and Hauksson, 1985].
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Figure 3: Tracer curve from SG-6, Svartsengi field,
Iceland, 198S. Fitted Equation (3) has a = 0.3.

4. TOTAL TRACER RETURNS

An immediate challenge is to determine the tail of the tracer
return plot, from amongst what are likely to be a background
of tracer readings. Here we will not do this for actual field
data, because we do not know the total mass flowing to the
producer from the initial injection of tracer.

Rather, we will consider the case when the actual tracer
profile from the producer is assumed to be that from (7), and
that the background flows become apparent at 2t,,,. In a field
in which reinjection is occurring, it is reasonable to expect a
significant mass of secondary tracer to have arrived by 2t,
since t,, is a crude estimate to the time for tracer to move

from injector to producer, provided the time to return fluid
from the producer to the power plant and back to the
injector, is small relative to t,,. Figure 3 shows a departure
between fitted and measured values at about 2t,,,.

For simplicity, we take g/p =1 = t,,, C,=1, and consider the
infinite o case in (7). Then all methods should yield the total
mass of tracer recovered up to time 2ty as (e Y erfc(0.5))/2,
or 1.155, where erfc is the complementary error function.
The total mass of tracer recovered equals (e \Vm)/2 = 2.409,
and so the total mass in the tail beyond 2t,,, equals 1.254.

But if a decreasing exponential function is matched to (7) at
time 2t,,,, it will be C = 0.25 exp(2.25-0.75t), and the mass in
the tail will equal 0.706. Consequently, this apparently quite
reasonable analysis approach will estimate the total mass
recovered as 1.861= 1.155+0.706, which is only 77% of the
mass recovered of 2.409.

Alternatively, from (4) and (7), for infinite o, the mass of
tracer in the tail after time t, MT(t), is

MT(6) = S Cntn oyl ®

where erf is the error function. Consequently, the fraction of
the mass of tracer remaining in the tail at time t is

MT(t) _
MT(0)

tmy  2tm
erf(2) ~ 2 )
for small t,/t. From (9), 10% of the total mass of tracer to be
recovered, remains in the tail at t = 11t,,, for a=oco.

The equations above assume implicitly that the measured
tracer profiles can be adequately approximated by (3). While
this appears to be true for a significant number of tracer
plots, it is also untrue for a significant number of tracer
plots. Of course, in these cases, the selection into true/untrue
is subjective.

The equation for C in (3) has the property that for small a, C
is essentially a delta function, but as o increases towards
infinity, the width of C increases, but only to the extent of
being described by (7). Many tracer plots are clearly much
wider than constrained by (7), and so cannot be fitted by (3).
For example, corresponding to Figure 2, the tracer responses
in July 1979 from injection at WK101, at producers WK103,
WK116 and WKT76 are too wide to be fitted by (3). There
are many other examples of tracer returns whose broad
peaks are too wide to be fitted by (3).

Additionally, there are also examples where different
assumptions above do not hold in actual tracer tests. For
example, tracer tests have occurred during times of
significant changes to flow rate, due to field management,
contradicting the assumption that q is constant. In other
cases, variable flow rates occur naturally from cycling in
multi-feed wells.

Another example where (3) is not applicable is for injection-
backflow tracer tests, where tracer is first injected, and then
produced from the same well [Kocabas and Horne, 1987].

5. CONCLUSIONS

This paper has introduced a theoretical tracer profile, with a
very long ftail. Instead of the usual eventual exponential
decay with time, as characterized by finite variance
distributions, (3) eventually decays as t~2. Consequently,
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(3) will typically predict higher rates of tracer recovery, than
for methods based on profiles with a finite variance.

An “obvious” estimate for the mass of tracer in the tail, was
shown in a plausible example above, to be an underestimate
of the mass of tracer recovered by 23%.

This significant difference in the two estimates for tracer
recovery is closely related to the very long tail for (3) and
(7), since (9) showed that 10% of the total tracer recovered
still resides in the tail at t = 11t,. In many cases, tracer
records will not extend out to such long times.

These two issues of possible significant underestimation of
tracer recovery, and of the very long possible tracer tails, can
perhaps be dismissed by arguing that (3) cannot apply to
tracer profiles, since there are many examples where (3)
does not apply. Countering this viewpoint are examples
where (3) does appear to hold, as in Figures 1 and 2.

In those cases where secondary tracer returns from injection
are confusing the tracer profile, it seems to be an open
question whether the tracer tail decays exponentially or
algebraically with time. While exponential decay is widely
assumed, we have highlighted some of the consequences if
the tracer tail decays algebraically, instead.

Finally, tracer returns can be classified as obeying (3), or
not. If (3), then:

1. Tracer returns are classified by percentage
recovery, peak time, peak value, and o;

2. The mean residence time method is inapplicable,
and will be characterized by extremely sensitive
results when considering the tracer tail [Grant and
Bixley, 2011];

3. Traditional methods can underestimate percentage
recovery, perhaps by around 20%, when secondary
returns are important;

4. The tracer tail will decay as the inverse square of
time;

5. All moments (apart from the zero moment) of the
tracer profile are unbounded,

6. The ratio of peak to first arrival times varies
between 1 and 2.3;

7. Up to 10% of the total tracer recovered may
remain in the tail, after 11 times the peak time;

8.  The limiting case of infinite o provides strong
constraints on the applicability of (3).
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