
Proceedings 36th New Zealand Geothermal Workshop
24 - 26 November 2014
Auckland, New Zealand

BAYESIAN EMULATION OF GEOTHERMAL NUMERICAL MODELS: A SYNTHETIC
RESERVOIR CASE-STUDY

Ariel Vidal1and Rosalind Archer1
1Department of Engineering Science, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand

avid587@aucklanduni.ac.nz

Keywords: Bayesian emulators, numerical modelling,
uncertainty.

ABSTRACT
Complex numerical models are built in almost all fields of
science as a means to simulate the behaviour of natural,
real-world systems. These models are normally
implemented as computer codes, which can take from
fractions of seconds to several hours for a single run. The
outputs of these models are generally used as a prediction
of the real-world phenomena that are simulated by the
model, but they will inevitably be faulty in some way.
There will be uncertainty about how close the true
quantities will be to the outputs of the numerical model and
in the input parameters used for setting up the model. A
formal sensitivity/uncertainty analysis for a particular
numerical model may require thousands of model runs
which could be impractical for complex models. In the last
years there has been an increasing attention on the use of
Bayesian methods to quantifying, analysing and managing
uncertainty in the application of complex numerical models.
Statistical emulators are being used to understand complex
numerical codes and their parameter space in a wide variety
of applications. Emulators based on Gaussian processes can
inexpensively produce a reasonable representation of
outcomes for a numerical model for a large set of potential
input parameter settings without running the simulator
itself, which may be valuable when the expense to run the
simulator is high. In this paper a brief review of how a
Gaussian process emulator works is presented together with
some preliminary results on its implementation on a
synthetic geothermal reservoir.

1. INTRODUCTION
Computer codes are normally used to make predictions
about real-world systems in many fields of science and
technology. In this paper we will refer to such a computer
code as a simulator. For our purposes it is convenient to
represent the simulator in the form of a function y = f (x),
and a run of the simulator is defined to be the process of
producing one set of outputs y for one particular input
configuration x . Additionally, as a prerequisite it is
necessary that the simulator under study is deterministic, so,
running the simulator for the same input configuration x
several times it will produce the same output y. In this paper
attention is focused on single scalar values for the code
output, but the approximation can also be extended to
multidimensional code outputs (Conti and O’Hagan, 2010;
Hankin, 2012). Under a Bayesian perspective the true value
of the code output is a random variable, drawn from a
distribution that is conditioned by our prior knowledge, and
by the previous code runs. In this sense the computer code
is viewed as a random function (Hankin, 2005).

The output y of a simulator is a prediction of the real-world
phenomena that is simulated by the model, but as such will
inevitably be imperfect. There will be uncertainty about
how close the true real-world quantities will be to the

output y. This uncertainty arises from many sources,
particularly uncertainty in the correct values of the input
parameters and uncertainty about the correctness of the
model f(.) in representing the real-world system. A more
detailed description of uncertainties involved in using
simulators can be found in Kennedy and O’Hagan (2001).

The complexity of a simulator can become a problem when
it is necessary to make many runs for different input
configurations. For example, the simulator user may wish to
study the sensitivity of y to variations in x, which implies a
large number of simulator runs. For example, standard
Monte Carlo-based methods of uncertainty/sensitivity
analysis require thousands of simulator runs which become
impractical when the code is costly to run (Saltelli et al.,
2000).

In general terms an emulator is a statistical representation
of f(.) that is constructed using a training sample of
simulator runs (Conti et al., 2009). The next sections
present a brief review of the theory behind emulation and
Gaussian processes. This is followed by an application to a
simple synthetic geothermal reservoir numerical model.

2. EMULATION OF COMPLEX SIMULATORS
As was mentioned an emulator is a representation of a
simulator. However, an emulator is not just a
representation, but a statistical representation. An
approximation to f(.) for any input configuration x is a
single value f̂ (x). An emulator provides an entire
probability distribution for f(x). We can regard the mean of
that distribution as the approximation f̂ (x), but the emulator
also provides a distribution around that mean which
describes how close it is likely to be to the true f(x). In fact,
an emulator is a probability distribution for the entire
function f(.) (O’Hagan, 2006).

An important requirement is that f(.) be a smooth function,
so that, if we know the value of f(x), we should have some
idea about the value of f(x’) for x close to x’. It is this
property of f(.) that will give us the opportunity to improve
on Monte Carlo sampling, since the extra information that
is available after each code run is ignored in the Monte
Carlo approach (Oakley and O’Hagan, 2002).

2.1 Gaussian process emulation
Next section is based mainly on the ideas of Kennedy and
O’Hagan (2001) and Oakley and O’Hagan (2002).
Formally, f(.) is a Gaussian process if, for every n∈ , the
joint distribution of 1(),..., ()nf x f x is multivariate normal
provided ix X∈ . In particular, f (x) is normally distributed
for all x X∈ . The Gaussian process is a distribution for a
function, where each point f(x) has a normal distribution.
This distribution is characterized by its mean function m(.),
where m(x)=E{f(x)}, and its covariance function c(.,.),
where c(x,x’)=cov{f (x),f (x’)}.

mailto:avid587@aucklanduni.ac.nz

Proceedings 36th New Zealand Geothermal Workshop

24 - 26 November 2014
Auckland, New Zealand

The mean and covariance functions should then be
specified to reflect prior knowledge about f(x). In general,
m(.) may be any function on X but c(.,.) must have the
property that for every n=1, 2,… the variance-covariance
matrix of 1 2(), (),..., ()nf x f x f x is non-negative definite for
all 1 2, ,..., .nx x x X∈

A normal option is to model m(.) and c(.,.) hierarchically. In
the case of m(.) a common choice is the linear model
structure

 T() ()m x h x β= (1)

where h(.) T
1 2((.), (.),..., (.))ph h h= is a vector of p known

regressor functions over X and T
1 2(, ,...,)pβ β β β= is a

vector of p unknown coefficients. A common choice, also
used in this paper, is T() (1,)h x x= , but one is free to choose
any function of x that could include any beliefs we might
have about the form of f(.). As a prior distribution for β the
multivariate normal distribution is a convenient choice
(Kennedy and O’Hagan, 2001). This prior distribution
should be specified to reflect genuine belief, but in practice
prior information about parameters such as β will usually
be weak.

It is possible to separate the mean and covariance by
writing

 T() () () () ()f x m x e x h x e xβ= + = + (2)

using equation (1), where ()e x is a zero-mean Gaussian
process with covariance function

 2 2cov{ (), (') } (, ')f x f x c x xσ σ= (3)

conditional on 2σ , where (, ')c x x is a correlation function
that measures the correlation between x and x’. In this paper
the form

 T(, ') exp{ (') (')}c x x x x B x x= − − − (4)

will be used, where B is a diagonal matrix of positive
roughness parameters or scales (Oakley and O’Hagan,
2002). This choice of function implies that the output is a
smooth function of the inputs, which is one of the main
assumptions that we make when building an emulator. Of
course, equation (4) is just one possible formulation. The
scales are estimated by maximizing the posterior likelihood
for a given set of scale parameters. In this work
optimization techniques (either Nelder-Mead or simulated
annealing) are used to find the optimal scales (Hankin,
2005). If the scale value for the i-th dimension is big, even
small displacements in parameter space in that dimension
will result in small correlations. On the contrary, if the scale
value for the i-th dimension is small, even large
displacements in that dimension will have large
correlations. According to examples presented in Kennedy
and O’Hagan (2001), Hankin (2005) and experiments made
by the authors during the validation of the model, not
shown in this paper, the values used for scales (roughness
parameters) and the effect of using alternative covariance
structures does not seem to make much difference in
practice.

For convenience, Oakley and O’Hagan (2002) assumed the
normal inverse gamma distribution as the conjugate prior
for β and 2σ :

1 T 1(2)2 2

2

{() () }(,) exp[]
(2)

r q z V z ap β ββ σ σ
σ

−− + + − − − +
∝ (5)

and, for the examples given in this paper, a weak form of
this prior 2 2(,)p β σ σ −∝ will be used which implies an
infinite prior variance of f(.) suggesting that there is little
knowledge about the output of the computer code. Oakley
(2002) gives a deep treatment to the problem of eliciting
right values for a, r, z and V, using the properties of a
normal inverse gamma distribution

2 2(() ,var() () , () (2))E z E V E a rβ β σ σ= = = −). As this
author mentioned it is generally considered preferable to
elicit beliefs about observable quantities, rather than
parameters in some statistical model. This is because the
expert may have difficulty in interpreting the meaning of
some model parameters. Making probability statements
about β and 2σ (given the function h(.)) will
automatically imply probability statements about f(.)
through the Gaussian process model. The underlying
technique in the elicitation process is to ask the expert for
probability statements about the observable quantity f(x) in
the form of percentiles of f(x), and then finding a, r, z and V
such that the implied percentiles through the Gaussian
process model are similar. It is important to mention that, as
was stated by Oakley (2002), since we ask the expert for
statements about observables, and then find an appropriate
prior to match these statements, we cannot assert that the
Gaussian process prior is a perfect representation of the
expert’s uncertainty. We can only find hyperparameters
such that the Gaussian process prior resembles the expert’s
judgments as closely as possible, and so we think of the
chosen prior distribution resulting from the elicitation as
being a ‘fitted prior’.

The next step is to condition the random function f(.) at
specific points in the parameter space. This set of points is
known as the experimental design or design matrix and they
represent points where our code will be run and used for
calibration of the Gaussian process model. In this paper a
maximin Latin hypercube design is used. These designs
give good coverage of the space and are evenly distributed
in each one-dimensional projection (Kennedy and
O’Hagan, 2001). With the specified prior, and an
experimental design 1{ ,..., }nD x x= on which f(.) has been
evaluated giving ()d f D= , it can be shown (Oakley and
O’Hagan, 2002) that:

*

*

() () ,
ˆ (,)

r n
f x m x d B t

c x xσ
+

−
 (6)

Hence, as equation (6) states, the outputs corresponding to
any set of inputs will now have a multivariate t distribution,
where the main components of this equation can be
calculated according to the next expressions:

 * T T 1ˆ ˆ() () () (),m x h x t x A d Hβ β−= + − (7)

* T 1

T T 1 * T T 1 T

(, ') (, ') () (')
{ () () } { (') (') } ,
c x x c x x t x A t x
h x t x A H V h x t x A H

−

− −

= − +

− −
 (8)

Proceedings 36th New Zealand Geothermal Workshop

24 - 26 November 2014
Auckland, New Zealand

Further terms needed to account for equations (7) and (8)
may be derived from:

 T
1() ((,),..., (,)),nt x c x x c x x= (9)

which is a vector of data- to-unknown correlation values.

 T T T
1((),..., ()),nH h x h x= (10)

1 2 1

2 1

1

1 (,) (,)
(,) 1

,

(,) 1

n

n

c x x c x x
c x x

A

c x x

 
 
 =  
  
 





 



 (11)

Where matrix A corresponds to the correlation matrix of
data-to-data samples used for the construction of the
emulator.

 * 1 T 1ˆ (),V V z H A dβ − −= + (12)

T 1 T 1 T * 1

2
ˆ ˆ()ˆ ,

2
a z V z d A d V

n r
β βσ

− − −+ + −
=

+ −
 (13)

 * 1 T 1 1() ,V V H A H− − −= + (14)

 T
1((),..., ()).nd f x f x= (15)

So, the covariance between any two outputs may be
calculated by equation (8) and an estimation of uncertainty

given by *ˆ (,).c x xσ The former equations are consistent in
that the estimated value for points actually in the design
matrix is in fact the observations (with zero error). It may
similarly be shown that *(,) 0c x x = for x D∈ , as expected:
the emulator should return zero error when evaluated at a
point where the code output is known. For full details of the
prior to posterior analysis please refer to O’Hagan (1994).

3. EMULATION OF A SYNTHETIC GEOTHERMAL
RESERVOIR
In order to illustrate the construction and use of an
emulator, in the next section a synthetic geothermal
reservoir will be modelled with reference input parameters
and then, through emulation, we show how it is possible to
get a set of cheap output model approximations that
correlate well with the actual outputs of the simulator.

3.1 Model setup
With the purpose of testing the Gaussian process emulation
technique described in the previous chapter a simple
synthetic model of a rectangular geothermal reservoir was
used. This reservoir consists of three different horizontal
layers with permeability values of -12,-15 and -13 from top
to bottom in log10(m2) units. The modelled reservoir size is
25x20x4 km and the grid used for simulation is a regular
one composed of 25x20x20 blocks in the x-y-z directions
with a block size of 400x400x200 m, comprising a total of
10,000 blocks. Boundary conditions at the bottom of the
model correspond to a centred rectangle of 19x14 blocks
with a heat flux of 300 mW/m2 and no heat flux generators
for the blocks outside this zone were defined. In the same
way no mass upflows were used. Closed lateral boundary
conditions were defined for the model. Equal values of
permeability in the x and y directions were assumed. The z

direction permeability was a fraction of the x direction
permeability (Kx=Ky=10Kz). With this configuration a
reference TOUGH2 (Pruess, 1990) run was carried out to
establish the natural-state of the system. Ten vertical wells
are spread across the reservoir which later were used for
extracting temperature values and hence comparing
different runs by means of an objective function. This
objective function corresponds to our function f(.) which we
will try to reproduce through emulation.

3.2 Design Matrix
The first step to build an emulator is to choose input
configurations 1 2, ,..., nx x x at which to run the simulator to
get training data. As could be expected the accuracy of the
emulator will depend on the set of sample points selected.
There is considerable literature on the design of computer
experiments for interpolating the simulator or for
uncertainty analysis of the code, for a comprehensive
review please refer to Santner et al. (2003). As was
mentioned we will use the statistical approach of Latin
hypercube sampling based on maximin criteria which
maximize the minimum distance between points, but place
the points in a randomized location within its interval.
Three different set of input points were used, each one with
30, 50 and 100 samples, respectively, to test the influence
of the number of points in the accuracy of the results.
Adaptive sampling algorithms have been also used (Pau et
al., 2013) but, as O’Hagan (2006) has noticed it is not clear
whether more sophisticated sampling algorithms would
yield much improvement in the emulator’s accuracy.

The value of permeability for each one of the three different
layers of the synthetic reservoir is considered uncertain in
the analysis. As a prior belief we specified that the ranges
for the logarithm of the permeability in each layer are [-13,
-11], [-16, -14] and [-14, -12] for the upper, intermediate
and lower layer, respectively. The output of interest, f(x), is
the scalar value of the objective function built as the
squared sum of residuals between the values of temperature
in the ten wells in the reference model, described in the
previous section, and the temperature values in the same ten
wells generated by new runs of the simulator built with the
different set of points of each design matrix. Figure 1
presents the distribution in space of sample points for the
three training sets generated. As can be seen in this simple
three-dimensional case with just 30 samples it is clear that
there are wide zones in the input parameter space that are
not being sampled and hence represented in the training
phase of the emulator. This under-representation could
produce uncertain results of the emulator approximation
when it is evaluated inside these areas of the input
parameter space. It seems that, at least for this 3-
dimensional scenario, 100 samples represent a conservative
number of runs to include a considerable portion of the
input parameter space. Also, as can be expected, the values
for the objective function shows lower values closer to the
values of permeability used for the reference model and
higher values if we begin to move away from the reference
values. Additionally, it is important to mention that it is not
straightforward to compare between the three different sets
of training points as each design matrix samples from
specific locations which could not be replicated in a new set
of points, even when the new set includes a bigger number
of samples. So, this restriction will influence the behaviour
of the emulator as it will be trained with samples in
different locations. A sequential sampling strategy may

Proceedings 36th New Zealand Geothermal Workshop
24 - 26 November 2014
Auckland, New Zealand

Figure 1: Distribution of sampling points from three different sets of 30, 50 and 100 samples from a Latin hypercube
sampling. Units in three axes represents logarithm of permeability values, with logk1, logk2 and logk3 the values of
permeability for the upper, intermediate and lower layer respectively in the synthetic model. Also values for the
objective function are showed for each point used for the training.

overcome this obstacle and make the effect of the number
of sampling points clearer as a set with a bigger number of
samples will include all the points from previous sets.

Histograms with values for the objective function used for
training in each scenario can be seen in Figure 2. The first
feature that appears evident is that in the three cases the
values of the objective function tend to be clustered into
low values with a weak tail towards high values. More than
80 percent of the samples for each training set are below the
value of 100,000 which leaves underrepresented the output
space for high values. Special care must be taken into
account when trying to infer conclusions with high values
in the output space.

3.3 Results and discussion
The next sets of results were obtained using the R (R core
team, 2014) package Emulator (Hankin, 2005) which
implements the ideas of Oakley and O’Hagan (2002). A
stationary covariance function and for the prior mean a
regression function of the form T() (1,)h x x= were used
which is a simple approach but it has been used
successfully in previous works for its simplicity and
reliability (Oakley and O’Hagan, 2002; Kennedy et al.,
2006). Other forms of the prior mean could be used if they
would provide a more accurate estimation of the function
we are emulating.

Figure 3 shows a comparison between observed vs
predicted values of the objective function for the three
different emulators tested against a data set of 200 random
samples for which we already have run the simulator. As
could be expected the best performance was produced by
the emulator built with a 100 training samples which, as a
whole, seems to produce a good representation of the
simulator behaviour. A second important point, as was
described previously, is the clustering of objective function
values into the lower range of values where it is possible to
see better results than for high values. In the case with 30
training samples we see that the emulator produces values
that are both, lower and higher than the actual values of the
simulator, but in the case with 50 training samples it seems
that the emulator tends to produce values that are lower
than those obtained by running the simulator. Moreover,
these underestimated samples possess the bigger errors. If
we were tempted to discard these values the performance of
the emulator appears to correctly reproduce the test data set.
One simple explanation for these errors could be due to the
dissimilar distribution of point samples in the input

parameter space between the training and test set of
samples, where points with the poorest fit must be those
located more away from training samples. Another feature,
without an easy explanation, is the presence of negative
emulated values for the objective function which are not
allowed in the output space of the simulator as it is built as
a sum of strictly positive values. These kinds of situations
could be avoided including restrictions on the permitted
output space for the emulator.

The increase in the number of training samples also has
effects on the distribution and values of the standard
deviation of each emulated value. Figure 4 presents
histograms with the values of the standard deviation vs
frequency for each emulator. In general they tend to cluster
into low values, below 10,000, situation which is stronger
as we increase the number of training samples where the
errors are mainly concentrated below 5,000. The highest
values over 40,000 are quite scarce and just represent
outliers inside the population. In most cases these errors
represent a small fraction of the value being emulated
(<5%).

Although the main objective of this work is not to present a
solution to the calibration/inverse problem of a numerical
model, an easy task could be to compare the values of
permeability of the lowest objective function values
obtained through emulation and simulator runs with the
actual values used in the reference model presented in
Section 3.1. As can be seen in Table 1 eight of ten points
with the lowest values for the objective function are present
in both models (simulator vs emulator) which is a good
indicator of consistency between both models. A result
which is not so evident from Table 1 is that values in this
table for both models are not necessarily the closest points
to the actual values declared for permeability in the
reference model, which points to the non-uniqueness nature
of the inverse/calibration problem. A deeper understanding
of the physics of the process under study and how the
simulator works should elucidate some clues for helping to
understand this source of uncertainty. For a thorough
Bayesian treatment of the calibration problem please refer
to Kennedy and O’Hagan (2001).

The gain in time by using the emulator in this example is
quite impressive as each run of the simulator takes an
average of 300 seconds, depending on the input parameter
configuration used, and the whole evaluation of 200 points
in the test data set takes less than 1 second. The main
computational bottleneck in the process is the inversion of

Proceedings 36th New Zealand Geothermal Workshop
24 - 26 November 2014
Auckland, New Zealand

Figure 2: Histograms with values of the objective function vs frequency used for training for each one of the three different
set of points used for the construction of an emulator.

Figure 3: Values for the objective function obtained by the emulator vs actual values obtained by simulator runs (T2 axes)
for a set of 200 random samples in the input parameter space. From left to right there is an increase in the number of
training samples from 30 to 50 to 100. Errors bar are 95% confidence intervals.

the matrix A in equation (11), but this only has to be done
once per emulator (Hankin, 2005). This saving in time is
even more pronounced for bigger and more complex
models which can take several hours or days for only a
single run.

4 FUTURE WORK
This work represents the first attempts made by the authors
in the direction of including Bayesian techniques in the
analysis of geothermal numerical models and sources of
uncertainty. As such, there are still some points that require
more attention and analysis.

More sampling techniques must be tested and incorporated
in the analysis; the sequential sampling algorithms used by
Pau et al. (2013) are of particular interest for a better
understanding of the influence of the number of training
points in the emulator’s performance.

The choice of a linear regression function T() (1,)h x x= as a
prior belief of the mean could be refined and new forms for
this function could be explored. The selection of this or
another type of function will depend on the nature and
complexity of the problem under study, as a simple
expression that represents previous knowledge about the
function appears unlikely when using complex simulators
such as TOUGH2. In this same line, the assumption of
stationarity is a modeller decision and more complex

expressions for the covariance or even the use of multiple
covariance functions for different zones in the input
parameter space will depend of each problem and
smoothness of the function being emulated.

The presented methodology treats the computer code as a
black-box. There is no use of information about the
mathematical model implemented by the code. New
methods that open this black box will be more powerful,
but, certainly the resulting approach will be more complex
to apply.

The main future objective is being able to emulate a
complex model in a high-dimensional input parameter
space, as should be expected when modelling a natural
geothermal reservoir. It is important to mention that
emulation is rarely an end in itself; the purpose of building
an emulator is almost always to facilitate other calculations
that would not be practical to do using the simulator itself
mainly by time or computational restrictions (O’Hagan,
2006). One key point is that to build the emulator only one
set of runs of the simulator is used. After the emulator is
built, we do not need any more simulator runs, no matter
how many analyses are required of the simulator’s
behaviour. Uncertainty and sensitivity analysis based on
Monte-Carlo techniques may be conducted inexpensively
by using the emulator. A more ambitious task is to include
observations of the real-world process for a Bayesian
calibration of the model under study.

Proceedings 36th New Zealand Geothermal Workshop
24 - 26 November 2014
Auckland, New Zealand

Figure 4: Histograms with values of standard deviation vs frequency for the three different set of points used for the
construction of an emulator.

Table 1: Ten lowest values for the objective function in the test data set for simulator runs and emulated values using the
100 training samples emulator. Please remember that the reference model was built with values of -12, -15 and -13
for k1, k2 and k3, respectively.

5 CONCLUSIONS
This paper has shown how through emulation it is possible
to get a statistically rigorous and cheap approximation to a
simulator output in a geothermal setting. The posterior
approximations obtained by using the emulator are orders of
magnitude faster than running the simulator with the same
points and a strong confidence in the results can be achieved
after a successful training phase.

The current global tendency of bigger and more complex
numerical models in environmental sciences places a
growing importance on the use of fast and accurate
approximations that can be applied with tasks that require
multiple runs of the simulator.

There are still some aspects that required more attention and
analysis but the current results encourage the usage of
Bayesian techniques for a deeper analysis of the behaviour
of simulators currently used in the geothermal industry, their
sources of uncertainty and how to extract the maximum
value from the outputs that we are getting.

REFERENCES
Conti, S., Gosling, J. P., Oakley, J. E., O'Hagan, A.:

Gaussian process emulation of dynamic computer
codes. Biometrika, 96(3), 663-676. (2009).

 Conti, S. and O’Hagan, A.: Bayesian emulation of complex
multi-output and dynamic computer models. Journal

of Statistical Planning and Inference, 140(3), 640-651.
(2010).

Hankin, R.: Introducing BACCO, an R bundle for Bayesian
analysis of computer code output. Journal of
Statistical Software, 14. (2005).

Hankin, R.: Introducing multivator: A multivariate emulator.
Journal of Statistical Software, 46(8). (2012).

Kennedy, M. C. and O'Hagan, A.: Bayesian calibration of
computer models. Journal of the Royal Statistical
Society: Series B (Statistical Methodology), 63(3),
425-464. (2001).

Kennedy, M. C., Anderson, C. W., Conti, S., O'Hagan, A.:
Case studies in Gaussian process modelling of
computer codes. Reliability Engineering and System
Safety, 91(10-11), 1301-1309. (2006).

Oakley, J.: Eliciting Gaussian process priors for complex
computer codes. Journal of the Royal Statistical
Society: Series D (The Statistician), 51(1), 81-97.
(2002).

 Oakley, J. and O'Hagan, A.: Bayesian inference for the
uncertainty distribution of computer model outputs.
Biometrika, 89(4), 769-784. (2002).

k1 k2 k3 Obj fun k1 k2 k3 Obj fun
-11.905 -15.685 -13.135 2403.189 -12.085 -14.985 -12.585 2045.376
-11.955 -14.795 -12.795 2472.678 -12.055 -15.825 -13.115 2500.268
-11.965 -15.695 -13.015 2487.069 -11.905 -15.685 -13.135 3166.314
-12.105 -15.225 -13.065 2524.799 -12.045 -15.715 -13.155 3493.057
-11.715 -15.805 -13.095 2764.758 -11.715 -15.805 -13.095 3586.244
-12.085 -14.985 -12.585 4739.452 -11.955 -14.795 -12.795 3646.845
-12.015 -14.755 -12.645 4805.511 -11.135 -15.505 -13.025 4420.304
-12.045 -15.715 -13.155 4985.419 -12.115 -15.815 -13.175 4551.697
-12.055 -15.825 -13.115 5014.328 -11.965 -15.695 -13.015 4818.394
-11.505 -15.185 -13.145 6555.417 -12.015 -14.755 -12.645 5747.820

Simulator runs Emulator results

Proceedings 36th New Zealand Geothermal Workshop

24 - 26 November 2014
Auckland, New Zealand

7

O’Hagan, A.: Kendall’s Advanced Theory of Statistics, 2B,
Bayesian Inference. London: Edward Arnold. (1994).

O’Hagan, A.: Bayesian analysis of computer code outputs:
A tutorial. Reliability Engineering and System Safety,
91(10-11), 1290-1300. (2006).

Pau, G., Zhang, Y. Q. and Finsterle, S.: Reduced order
models for many- query subsurface flow applications.
Computers & Geosciences., 17(4), 705-721. (2013).

Pruess, K.: TOUGH2– A General Purpose Numerical
Simulator for Multiphase Fluid and Heat flow. Report:
LBL-29400, Lawrence Berkeley Laboratory,
Berkeley, California. (1990).

R Core Team: R: A language and environment for statistical
computing. R Foundation for Statistical Computing,
Vienna, Austria. URL http://www.R-project.org/.
(2014).

Saltelli, A., Chan, K., Scott, E.M.: Sensitivity analysis. New
York: Wiley. (2000).

Santner, T. J., Williams, B., Notz, W.: The design and
analysis of computer experiments. New York:
Springer. (2003).

http://www.r-project.org/

	Author Index
	NZGW 2014 Programme
	BAYESIAN EMULATION OF GEOTHERMAL NUMERICAL MODELS: A SYNTHETIC RESERVOIR CASE-STUDY
	Ariel Vidal1and Rosalind Archer1
	ABSTRACT
	1. introduction
	2. Emulation of complex simulators
	2.1 Gaussian process emulation

	3. emulation of A Synthetic geothermal reservoir
	3.1 Model setup
	3.2 Design Matrix
	3.3 Results and discussion

	4 future work
	5 conclusions
	REFERENCES

