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ABSTRACT 
Complex numerical models are built in almost all fields of 
science as a means to simulate the behaviour of natural, 
real-world systems. These models are normally 
implemented as computer codes, which can take from 
fractions of seconds to several hours for a single run. The 
outputs of these models are generally used as a prediction 
of the real-world phenomena that are simulated by the 
model, but they will inevitably be faulty in some way. 
There will be uncertainty about how close the true 
quantities will be to the outputs of the numerical model and 
in the input parameters used for setting up the model. A 
formal sensitivity/uncertainty analysis for a particular 
numerical model may require thousands of model runs 
which could be impractical for complex models. In the last 
years there has been an increasing attention on the use of 
Bayesian methods to quantifying, analysing and managing 
uncertainty in the application of complex numerical models. 
Statistical emulators are being used to understand complex 
numerical codes and their parameter space in a wide variety 
of applications. Emulators based on Gaussian processes can 
inexpensively produce a reasonable representation of 
outcomes for a numerical model for a large set of potential 
input parameter settings without running the simulator 
itself, which may be valuable when the expense to run the 
simulator is high. In this paper a brief review of how a 
Gaussian process emulator works is presented together with 
some preliminary results on its implementation on a 
synthetic geothermal reservoir. 

1. INTRODUCTION  
Computer codes are normally used to make predictions 
about real-world systems in many fields of science and 
technology. In this paper we will refer to such a computer 
code as a simulator. For our purposes it is convenient to 
represent the simulator in the form of a function y = f (x), 
and a run of the simulator is defined to be the process of 
producing one set of outputs y for one particular input 
configuration x . Additionally, as a prerequisite it is 
necessary that the simulator under study is deterministic, so, 
running the simulator for the same input configuration x 
several times it will produce the same output y. In this paper 
attention is focused on single scalar values for the code 
output, but the approximation can also be extended to 
multidimensional code outputs (Conti and O’Hagan, 2010; 
Hankin, 2012). Under a Bayesian perspective the true value 
of the code output is a random variable, drawn from a 
distribution that is conditioned by our prior knowledge, and 
by the previous code runs. In this sense the computer code 
is viewed as a random function (Hankin, 2005). 

The output y of a simulator is a prediction of the real-world 
phenomena that is simulated by the model, but as such will 
inevitably be imperfect. There will be uncertainty about 
how close the true real-world quantities will be to the 

output y. This uncertainty arises from many sources, 
particularly uncertainty in the correct values of the input 
parameters and uncertainty about the correctness of the 
model f(.) in representing the real-world system. A more 
detailed description of uncertainties involved in using 
simulators can be found in Kennedy and O’Hagan (2001). 

The complexity of a simulator can become a problem when 
it is necessary to make many runs for different input 
configurations. For example, the simulator user may wish to 
study the sensitivity of y to variations in x, which implies a 
large number of simulator runs. For example, standard 
Monte Carlo-based methods of uncertainty/sensitivity 
analysis require thousands of simulator runs which become 
impractical when the code is costly to run (Saltelli et al., 
2000). 

In general terms an emulator is a statistical representation 
of f(.) that is constructed using a training sample of 
simulator runs (Conti et al., 2009). The next sections 
present a brief review of the theory behind emulation and 
Gaussian processes. This is followed by an application to a 
simple synthetic geothermal reservoir numerical model. 

2. EMULATION OF COMPLEX SIMULATORS 
As was mentioned an emulator is a representation of a 
simulator. However, an emulator is not just a 
representation, but a statistical representation. An 
approximation to f(.) for any input configuration x is a 
single value f̂ (x). An emulator provides an entire 
probability distribution for f(x). We can regard the mean of 
that distribution as the approximation f̂ (x), but the emulator 
also provides a distribution around that mean which 
describes how close it is likely to be to the true f(x). In fact, 
an emulator is a probability distribution for the entire 
function f(.) (O’Hagan, 2006). 

An important requirement is that f(.) be a smooth function, 
so that, if we know the value of f(x), we should have some 
idea about the value of f(x’) for x close to x’. It is this 
property of f(.) that will give us the opportunity to improve 
on Monte Carlo sampling, since the extra information that 
is available after each code run is ignored in the Monte 
Carlo approach (Oakley and O’Hagan, 2002).  

2.1 Gaussian process emulation 
Next section is based mainly on the ideas of Kennedy and 
O’Hagan (2001) and Oakley and O’Hagan (2002). 
Formally, f(.) is a Gaussian process if, for every n∈ , the 
joint distribution of 1( ),..., ( )nf x f x is multivariate normal 
provided ix X∈ . In particular, f (x) is normally distributed 
for all x X∈ . The Gaussian process is a distribution for a 
function, where each point f(x) has a normal distribution. 
This distribution is characterized by its mean function m(.), 
where m(x)=E{f(x)}, and its covariance function c(.,.), 
where c(x,x’)=cov{f (x),f (x’)}. 
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The mean and covariance functions should then be 
specified to reflect prior knowledge about f(x). In general, 
m(.) may be any function on X but c(.,.) must have the 
property that for every n=1, 2,… the variance-covariance 
matrix of 1 2( ), ( ),..., ( )nf x f x f x is non-negative definite for 
all 1 2, ,..., .nx x x X∈  

A normal option is to model m(.) and c(.,.) hierarchically. In 
the case of m(.) a common choice is the linear model 
structure 

 T( ) ( )m x h x β=  (1) 

where h(.) T
1 2( (.), (.),..., (.))ph h h= is a vector of p known 

regressor functions over X and T
1 2( , ,..., )pβ β β β= is a 

vector of p unknown coefficients. A common choice, also 
used in this paper, is T( ) (1, )h x x= , but one is free to choose 
any function of x that could include any beliefs we might 
have about the form of f(.). As a prior distribution for β the 
multivariate normal distribution is a convenient choice 
(Kennedy and O’Hagan, 2001). This prior distribution 
should be specified to reflect genuine belief, but in practice 
prior information about parameters such as β will usually 
be weak. 

It is possible to separate the mean and covariance by 
writing 

 T( ) ( ) ( ) ( ) ( )f x m x e x h x e xβ= + = +  (2) 

using equation (1), where ( )e x is a zero-mean Gaussian 
process with covariance function  

 2 2cov{ ( ), ( ') } ( , ')f x f x c x xσ σ=  (3) 

conditional on 2σ , where ( , ')c x x is a correlation function 
that measures the correlation between x and x’. In this paper 
the form 

 T( , ') exp{ ( ') ( ')}c x x x x B x x= − − −  (4) 

will be used, where B is a diagonal matrix of positive 
roughness parameters or scales (Oakley and O’Hagan, 
2002). This choice of function implies that the output is a 
smooth function of the inputs, which is one of the main 
assumptions that we make when building an emulator. Of 
course, equation (4) is just one possible formulation. The 
scales are estimated by maximizing the posterior likelihood 
for a given set of scale parameters. In this work 
optimization techniques (either Nelder-Mead or simulated 
annealing) are used to find the optimal scales (Hankin, 
2005). If the scale value for the i-th dimension is big, even 
small displacements in parameter space in that dimension 
will result in small correlations. On the contrary, if the scale 
value for the i-th dimension is small, even large 
displacements in that dimension will have large 
correlations. According to examples presented in Kennedy 
and O’Hagan (2001), Hankin (2005) and experiments made 
by the authors during the validation of the model, not 
shown in this paper, the values used for scales (roughness 
parameters) and the effect of using alternative covariance 
structures does not seem to make much difference in 
practice. 

For convenience, Oakley and O’Hagan (2002) assumed the 
normal inverse gamma distribution as the conjugate prior 
for β  and 2σ : 

 
1 T 1( 2)2 2

2

{( ) ( ) }( , ) exp[ ]
(2 )

r q z V z ap β ββ σ σ
σ

−− + + − − − +
∝  (5) 

and, for the examples given in this paper, a weak form of 
this prior 2 2( , )p β σ σ −∝ will be used which implies an 
infinite prior variance of f(.) suggesting that there is little 
knowledge about the output of the computer code. Oakley 
(2002) gives a deep treatment to the problem of eliciting 
right values for a, r, z and V, using the properties of a 
normal inverse gamma distribution

2 2( ( ) ,var( ) ( ) , ( ) ( 2))E z E V E a rβ β σ σ= = = − ). As this 
author mentioned it is generally considered preferable to 
elicit beliefs about observable quantities, rather than 
parameters in some statistical model. This is because the 
expert may have difficulty in interpreting the meaning of 
some model parameters. Making probability statements 
about β  and 2σ  (given the function h(.)) will 
automatically imply probability statements about f(.) 
through the Gaussian process model. The underlying 
technique in the elicitation process is to ask the expert for 
probability statements about the observable quantity f(x) in 
the form of percentiles of f(x), and then finding a, r, z and V 
such that the implied percentiles through the Gaussian 
process model are similar. It is important to mention that, as 
was stated by Oakley (2002), since we ask the expert for 
statements about observables, and then find an appropriate 
prior to match these statements, we cannot assert that the 
Gaussian process prior is a perfect representation of the 
expert’s uncertainty. We can only find hyperparameters 
such that the Gaussian process prior resembles the expert’s 
judgments as closely as possible, and so we think of the 
chosen prior distribution resulting from the elicitation as 
being a ‘fitted prior’. 

The next step is to condition the random function f(.) at 
specific points in the parameter space. This set of points is 
known as the experimental design or design matrix and they 
represent points where our code will be run and used for 
calibration of the Gaussian process model. In this paper a 
maximin Latin hypercube design is used. These designs 
give good coverage of the space and are evenly distributed 
in each one-dimensional projection (Kennedy and 
O’Hagan, 2001). With the specified prior, and an 
experimental design 1{ ,..., }nD x x= on which f(.) has been 
evaluated giving ( )d f D= , it can be shown (Oakley and 
O’Hagan, 2002) that: 

 
*

*

( ) ( ) ,
ˆ ( , )

r n
f x m x d B t

c x xσ
+

−
  (6) 

Hence, as equation (6) states, the outputs corresponding to 
any set of inputs will now have a multivariate t distribution, 
where the main components of this equation can be 
calculated according to the next expressions: 

 * T T 1ˆ ˆ( ) ( ) ( ) ( ),m x h x t x A d Hβ β−= + −  (7) 

 
* T 1

T T 1 * T T 1 T

( , ') ( , ') ( ) ( ')
{ ( ) ( ) } { ( ') ( ') } ,
c x x c x x t x A t x
h x t x A H V h x t x A H

−

− −

= − +

− −
 (8) 
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Further terms needed to account for equations (7) and (8) 
may be derived from:  

 T
1( ) ( ( , ),..., ( , )),nt x c x x c x x=  (9) 

which is a vector of data- to-unknown correlation values. 

 T T T
1( ( ),..., ( )),nH h x h x=  (10) 

 

1 2 1

2 1

1

1 ( , ) ( , )
( , ) 1

,

( , ) 1

n

n

c x x c x x
c x x

A

c x x

 
 
 =  
  
 





 



 (11) 

Where matrix A corresponds to the correlation matrix of 
data-to-data samples used for the construction of the 
emulator. 

 * 1 T 1ˆ ( ),V V z H A dβ − −= +  (12) 

 
T 1 T 1 T * 1

2
ˆ ˆ( )ˆ ,

2
a z V z d A d V

n r
β βσ

− − −+ + −
=

+ −
 (13) 

 * 1 T 1 1( ) ,V V H A H− − −= +  (14) 

 T
1( ( ),..., ( )).nd f x f x=  (15) 

So, the covariance between any two outputs may be 
calculated by equation (8) and an estimation of uncertainty 

given by *ˆ ( , ).c x xσ The former equations are consistent in 
that the estimated value for points actually in the design 
matrix is in fact the observations (with zero error). It may 
similarly be shown that *( , ) 0c x x = for x D∈ , as expected: 
the emulator should return zero error when evaluated at a 
point where the code output is known. For full details of the 
prior to posterior analysis please refer to O’Hagan (1994). 

3. EMULATION OF A SYNTHETIC GEOTHERMAL 
RESERVOIR  
In order to illustrate the construction and use of an 
emulator, in the next section a synthetic geothermal 
reservoir will be modelled with reference input parameters 
and then, through emulation, we show how it is possible to 
get a set of cheap output model approximations that 
correlate well with the actual outputs of the simulator.  

3.1 Model setup 
With the purpose of testing the Gaussian process emulation 
technique described in the previous chapter a simple 
synthetic model of a rectangular geothermal reservoir was 
used. This reservoir consists of three different horizontal 
layers with permeability values of -12,-15 and -13 from top 
to bottom in log10(m2) units. The modelled reservoir size is 
25x20x4 km and the grid used for simulation is a regular 
one composed of 25x20x20 blocks in the x-y-z directions 
with a block size of 400x400x200 m, comprising a total of 
10,000 blocks. Boundary conditions at the bottom of the 
model correspond to a centred rectangle of 19x14 blocks 
with a heat flux of 300 mW/m2 and no heat flux generators 
for the blocks outside this zone were defined. In the same 
way no mass upflows were used. Closed lateral boundary 
conditions were defined for the model. Equal values of 
permeability in the x and y directions were assumed. The z 

direction permeability was a fraction of the x direction 
permeability (Kx=Ky=10Kz). With this configuration a 
reference TOUGH2 (Pruess, 1990) run was carried out to 
establish the natural-state of the system. Ten vertical wells 
are spread across the reservoir which later were used for 
extracting temperature values and hence comparing 
different runs by means of an objective function. This 
objective function corresponds to our function f(.) which we 
will try to reproduce through emulation. 

3.2 Design Matrix 
The first step to build an emulator is to choose input 
configurations 1 2, ,..., nx x x at which to run the simulator to 
get training data. As could be expected the accuracy of the 
emulator will depend on the set of sample points selected. 
There is considerable literature on the design of computer 
experiments for interpolating the simulator or for 
uncertainty analysis of the code, for a comprehensive 
review please refer to Santner et al. (2003). As was 
mentioned we will use the statistical approach of Latin 
hypercube sampling based on maximin criteria which 
maximize the minimum distance between points, but place 
the points in a randomized location within its interval. 
Three different set of input points were used, each one with 
30, 50 and 100 samples, respectively, to test the influence 
of the number of points in the accuracy of the results. 
Adaptive sampling algorithms have been also used (Pau et 
al., 2013) but, as O’Hagan (2006) has noticed it is not clear 
whether more sophisticated sampling algorithms would 
yield much improvement in the emulator’s accuracy. 

The value of permeability for each one of the three different 
layers of the synthetic reservoir is considered uncertain in 
the analysis. As a prior belief we specified that the ranges 
for the logarithm of the permeability in each layer are [-13, 
-11], [-16, -14] and [-14, -12] for the upper, intermediate 
and lower layer, respectively. The output of interest, f(x), is 
the scalar value of the objective function built as the 
squared sum of residuals between the values of temperature 
in the ten wells in the reference model, described in the 
previous section, and the temperature values in the same ten 
wells generated by new runs of the simulator built with the 
different set of points of each design matrix. Figure 1 
presents the distribution in space of sample points for the 
three training sets generated. As can be seen in this simple 
three-dimensional case with just 30 samples it is clear that 
there are wide zones in the input parameter space that are 
not being sampled and hence represented in the training 
phase of the emulator. This under-representation could 
produce uncertain results of the emulator approximation 
when it is evaluated inside these areas of the input 
parameter space. It seems that, at least for this 3-
dimensional scenario, 100 samples represent a conservative 
number of runs to include a considerable portion of the 
input parameter space. Also, as can be expected, the values 
for the objective function shows lower values closer to the 
values of permeability used for the reference model and 
higher values if we begin to move away from the reference 
values. Additionally, it is important to mention that it is not 
straightforward to compare between the three different sets 
of training points as each design matrix samples from 
specific locations which could not be replicated in a new set 
of points, even when the new set includes a bigger number 
of samples. So, this restriction will influence the behaviour 
of the emulator as it will be trained with samples in 
different locations. A sequential sampling strategy may 
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Figure 1: Distribution of sampling points from three different sets of 30, 50 and 100 samples from a Latin hypercube 
sampling. Units in three axes represents logarithm of permeability values, with logk1, logk2 and logk3 the values of 
permeability for the upper, intermediate and lower layer respectively in the synthetic model. Also values for the 
objective function are showed for each point used for the training. 

overcome this obstacle and make the effect of the number 
of sampling points clearer as a set with a bigger number of 
samples will include all the points from previous sets. 

Histograms with values for the objective function used for 
training in each scenario can be seen in Figure 2. The first 
feature that appears evident is that in the three cases the 
values of the objective function tend to be clustered into 
low values with a weak tail towards high values. More than 
80 percent of the samples for each training set are below the 
value of 100,000 which leaves underrepresented the output 
space for high values. Special care must be taken into 
account when trying to infer conclusions with high values 
in the output space. 

3.3 Results and discussion 
The next sets of results were obtained using the R (R core 
team, 2014) package Emulator (Hankin, 2005) which 
implements the ideas of Oakley and O’Hagan (2002). A 
stationary covariance function and for the prior mean a 
regression function of the form T( ) (1, )h x x=  were used 
which is a simple approach but it has been used 
successfully in previous works for its simplicity and 
reliability (Oakley and O’Hagan, 2002; Kennedy et al., 
2006). Other forms of the prior mean could be used if they 
would provide a more accurate estimation of the function 
we are emulating. 

Figure 3 shows a comparison between observed vs 
predicted values of the objective function for the three 
different emulators tested against a data set of 200 random 
samples for which we already have run the simulator. As 
could be expected the best performance was produced by 
the emulator built with a 100 training samples which, as a 
whole, seems to produce a good representation of the 
simulator behaviour. A second important point, as was 
described previously, is the clustering of objective function 
values into the lower range of values where it is possible to 
see better results than for high values. In the case with 30 
training samples we see that the emulator produces values 
that are both, lower and higher than the actual values of the 
simulator, but in the case with 50 training samples it seems 
that the emulator tends to produce values that are lower 
than those obtained by running the simulator. Moreover, 
these underestimated samples possess the bigger errors. If 
we were tempted to discard these values the performance of 
the emulator appears to correctly reproduce the test data set. 
One simple explanation for these errors could be due to the 
dissimilar distribution of point samples in the input 

parameter space between the training and test set of 
samples, where points with the poorest fit must be those 
located more away from training samples. Another feature, 
without an easy explanation, is the presence of negative 
emulated values for the objective function which are not 
allowed in the output space of the simulator as it is built as 
a sum of strictly positive values. These kinds of situations 
could be avoided including restrictions on the permitted 
output space for the emulator. 

The increase in the number of training samples also has 
effects on the distribution and values of the standard 
deviation of each emulated value. Figure 4 presents 
histograms with the values of the standard deviation vs 
frequency for each emulator. In general they tend to cluster 
into low values, below 10,000, situation which is stronger 
as we increase the number of training samples where the 
errors are mainly concentrated below 5,000. The highest 
values over 40,000 are quite scarce and just represent 
outliers inside the population. In most cases these errors 
represent a small fraction of the value being emulated 
(<5%). 

Although the main objective of this work is not to present a 
solution to the calibration/inverse problem of a numerical 
model, an easy task could be to compare the values of 
permeability of the lowest objective function values 
obtained through emulation and simulator runs with the 
actual values used in the reference model presented in 
Section 3.1. As can be seen in Table 1 eight of ten points 
with the lowest values for the objective function are present 
in both models (simulator vs emulator) which is a good 
indicator of consistency between both models. A result 
which is not so evident from Table 1 is that values in this 
table for both models are not necessarily the closest points 
to the actual values declared for permeability in the 
reference model, which points to the non-uniqueness nature 
of the inverse/calibration problem. A deeper understanding 
of the physics of the process under study and how the 
simulator works should elucidate some clues for helping to 
understand this source of uncertainty. For a thorough 
Bayesian treatment of the calibration problem please refer 
to Kennedy and O’Hagan (2001). 

The gain in time by using the emulator in this example is 
quite impressive as each run of the simulator takes an 
average of 300 seconds, depending on the input parameter 
configuration used, and the whole evaluation of 200 points 
in the test data set takes less than 1 second. The main 
computational bottleneck in the process is the inversion of 
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Figure 2: Histograms with values of the objective function vs frequency used for training for each one of the three different 
set of points used for the construction of an emulator. 

 

Figure 3: Values for the objective function obtained by the emulator vs actual values obtained by simulator runs (T2 axes) 
for a set of 200 random samples in the input parameter space. From left to right there is an increase in the number of 
training samples from 30 to 50 to 100. Errors bar are 95% confidence intervals. 

the matrix A in equation (11), but this only has to be done 
once per emulator (Hankin, 2005). This saving in time is 
even more pronounced for bigger and more complex 
models which can take several hours or days for only a 
single run. 

4 FUTURE WORK 
This work represents the first attempts made by the authors 
in the direction of including Bayesian techniques in the 
analysis of geothermal numerical models and sources of 
uncertainty. As such, there are still some points that require 
more attention and analysis. 

More sampling techniques must be tested and incorporated 
in the analysis; the sequential sampling algorithms used by 
Pau et al. (2013) are of particular interest for a better 
understanding of the influence of the number of training 
points in the emulator’s performance. 

The choice of a linear regression function T( ) (1, )h x x= as a 
prior belief of the mean could be refined and new forms for 
this function could be explored. The selection of this or 
another type of function will depend on the nature and 
complexity of the problem under study, as a simple 
expression that represents previous knowledge about the 
function appears unlikely when using complex simulators 
such as TOUGH2. In this same line, the assumption of 
stationarity is a modeller decision and more complex 

expressions for the covariance or even the use of multiple 
covariance functions for different zones in the input 
parameter space will depend of each problem and 
smoothness of the function being emulated. 

The presented methodology treats the computer code as a 
black-box. There is no use of information about the 
mathematical model implemented by the code. New 
methods that open this black box will be more powerful, 
but, certainly the resulting approach will be more complex 
to apply. 

The main future objective is being able to emulate a 
complex model in a high-dimensional input parameter 
space, as should be expected when modelling a natural 
geothermal reservoir. It is important to mention that 
emulation is rarely an end in itself; the purpose of building 
an emulator is almost always to facilitate other calculations 
that would not be practical to do using the simulator itself 
mainly by time or computational restrictions (O’Hagan, 
2006). One key point is that to build the emulator only one 
set of runs of the simulator is used. After the emulator is 
built, we do not need any more simulator runs, no matter 
how many analyses are required of the simulator’s 
behaviour. Uncertainty and sensitivity analysis based on 
Monte-Carlo techniques may be conducted inexpensively 
by using the emulator. A more ambitious task is to include 
observations of the real-world process for a Bayesian 
calibration of the model under study.
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Figure 4: Histograms with values of standard deviation vs frequency for the three different set of points used for the 
construction of an emulator. 

 

Table 1: Ten lowest values for the objective function in the test data set for simulator runs and emulated values using the 
100 training samples emulator. Please remember that the reference model was built with values of -12, -15 and -13 
for k1, k2 and k3, respectively. 

5 CONCLUSIONS 
This paper has shown how through emulation it is possible 
to get a statistically rigorous and cheap approximation to a 
simulator output in a geothermal setting. The posterior 
approximations obtained by using the emulator are orders of 
magnitude faster than running the simulator with the same 
points and a strong confidence in the results can be achieved 
after a successful training phase. 

The current global tendency of bigger and more complex 
numerical models in environmental sciences places a 
growing importance on the use of fast and accurate 
approximations that can be applied with tasks that require 
multiple runs of the simulator. 

There are still some aspects that required more attention and 
analysis but the current results encourage the usage of 
Bayesian techniques for a deeper analysis of the behaviour 
of simulators currently used in the geothermal industry, their 
sources of uncertainty and how to extract the maximum 
value from the outputs that we are getting. 
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-11.715 -15.805 -13.095 2764.758 -11.715 -15.805 -13.095 3586.244
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-12.055 -15.825 -13.115 5014.328 -11.965 -15.695 -13.015 4818.394
-11.505 -15.185 -13.145 6555.417 -12.015 -14.755 -12.645 5747.820

Simulator runs Emulator results
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