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ABSTRACT

Simulations of subsurface temperature usually contain
uncertainties and an important question is then: exactly how
uncertain are they, or how well are we able to predict them?
We propose here that the uncertainty is depending on the
main heat transport mechanisms: if heat transported by
conduction only, then the temperatures are relatively simple
to predict and the uncertainty is low. However, if advective
heat transport is present, then the additional transport of heat
in the fluid phase can significantly change the temperature
field, making it more difficult to predict.

We suggest here a method that enables us to evaluate the
dominating heat transport mechanisms with a method based
on the thermodynamic concept of entropy production.

Simple examples show that the internal thermal entropy
production is zero if a system is in a conductive steady state.
If convection is present in the system, entropy production is
greater than zero, with higher values for more vigorous
convection. In fact, for a simple layer system, it can be
shown that the entropy production is directly related to the
efficiency of heat transport, measured with the Nusselt
number.

We conclude from these examples that thermal entropy
production can be applied to estimate how well we will be
able to predict temperatures in a specific geothermal
resource area.

1. INTRODUCTION

Uncertainties in simulations of subsurface processes are
commonly evaluated with stochastic simulations (e.g.
Dobherty, 1994; Subbey et al., 2004; Riva et al., 2010; Vogt
et al.,, 2010a). Instead of one specific result, a variety of
probable realisations are generated, within the range of input
data or parameter uncertainty. As a large quantity of
simulation results are generated with these methods,
effective measures are required to identify and classify the
results. The aim of the work presented here is to evaluate
whether a thermodynamic measure can be applied to classify
simulated flow fields in coupled hydrothermal systems.

A variety of methods has already been developed to evaluate
results of stochastic simulations. The main scope of such
analyses is to evaluate how accurately the simulation can
predict a set of observables, for example temperatures at
observation points (e.g. Vogt et al., 2010b), or the
production history in an oil reservoir (Suzuki et al., 2008).
Even, though, these methods are well suited for typical
problems of calibration and production forecast, they do not
provide a measure of the state of the whole system.

In the work presented here, it will be evaluated if a
thermodynamic  measure, specific thermal entropy
production, can be applied to characterize the system state.
In the classical sense, thermodynamic measures can be
applied to predict the response of a system with macroscopic
measures, without having to know all the detailed processes
within the system. A simple and typical example is the
“Ideal Gas Law”, describing the relationship between
pressure P, temperature 7" and volume ¥ in an ideal gas:

PV = Nk,T

s

where N is the number of molecules in the gas and the
proportionality factor kp the Bolzmann's constant. Based on
the kinetic theory of gases, this formula can be used to
evaluate how, for example, a volume change affects
temperature — without having to know the kinetic energy of
every single molecule in the gas. On the appropriate scale
and for a specific question, thermodynamic measures are
useful to describe systems without having to know exactly
the details inside the system itself.

Based on these considerations, it will here be evaluated if
thermal entropy production is useful as a measure of the
thermodynamic state of a hydrothermal flow system.

2. THERMAL ENTROPY PRODUCTION IN A
THERMO-HYDRAULIC SYSTEM

Entropy production is related to dissipative heat processes
within a system. The entropy of a diabatic system changes if
heat is supplied or removed from the system. The change of
entropy, the entropy production, is defined as the ratio
between the change in heat QO and the temperature 7 (e.g.
Callen, 1985):

The second law of thermodynamics states in the traditional
(non-statistical) form that entropy in a closed system is
either constant or increases and therefore:

S20

Entropy is produced due to reversible and irreversible
processes (see Regenauer-Lieb et al., 2010, and references
therein). Here, only the entropy production for slow fluid
flow in a permeable matrix is considered, using an approach
initially developed for climate systems. For a thermo-
hydraulic system that exchanges heat with its surroundings,
the entropy production S for the system and its
surroundings can be described as:
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The volume integral on the right side describes entropy
production within the system due to viscous dissipation,
considering fluid density 0 and heat capacity cp,

temperature 7 and pressure p, and the fluid velocity V.

The surface integral represents entropy production due to
thermal dissipation for a heat flux ¢, perpendicular to a

surface 4 ( 71 is the normal vector on the surface).

If we only consider thermal dissipation, and assume that the
internal system is in steady state (in a statistical sense), the
entropy production is reduced to the heat that is supplied
through the boundary by the heat flux ¢ (Ozawa et al.,
2003):

. 1- -
S:quh-ndA

Only the conductive heat transport is considered here as
relevant to entropy production. This is following the
argument of Ozawa et al. (2003) that advective heat
transport is, in principle, a reversible process and does
therefore not contribute to viscous dissipation. However,
advective heat transport implicitly induces entropy
production as it can lead locally to very large temperature
gradients, and therefore induces conductive processes.

As the entropy production, defined in the description in the
equation above, depends on the size of the subsystem
through the integration over the surface, it can be scaled by
the mass V' p of the system to obtain the specific entropy
production:
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As a measure of the whole entropy production in a larger
system, the average specific entropy production can be
calculated:

<s>=%£sd1/

3. APPLICATION OF ENTROPY PRODUCTION TO
ANALYSE A TRANSIENT CONDUCTIVE HEAT
FLOW FIELD

3.1 Basic considerations for the conductive case

As a first example, the average specific entropy production
for a system in a transient conductive state will be evaluated.
In the following considerations, conductive heat fluxes are
aligned with coordinate axes. The fluxes are per definition
oriented towards the system. From these considerations
directly follows that the entropy production of a system in
conductive steady state is zero as all heat fluxes into and out
of the system are completely balanced. For example,
considering a simple system with a vertical heat flux only,
no heat flux in or out of the cell exists in x-direction and the
same applies to the y-direction. The heat flux in z-direction
is the same into and out of the cell ¢.;, = ¢. o, Therefore,
the internal entropy production is zero.

3.2 Entropy production in a transient conductive system

We will now consider a system that initiates from a
conductive steady state but then experiences a change in the
boundary conditions. The system is a conductive porous
medium in a rectangular box with a thickness of 2500 m and
a lateral extent of 3000 x 3000 m. Temperature is fixed at
the top (10°C) and the system is homogeneous and isotropic,
with a thermal conductivity of 2 = 2.9 W K'm™ and a
thermal diffusivity of x = 10°m2 Lateral no flux boundary
conditions apply. We perform a numerical experiment to
determine the temperature profile within the box using the
finite-difference simulation code SHEMAT (Clauser and

(b) < $ > during model equilibration

55le=10 :
1
1
1
. 1
1
2.0 E
'
1
'
N1s . :
. [
1
v . [
1
1ot . ,
° [
. !
.. f
0.5} *e, !
..' 1
o, [
.... [
00 ‘ il T
10! 10 10° 10* 10° 10°
T
Time [a]

Figure 1: Entropy production during equilibration phase in a conductive system starting from a steady state; (a) Vertical
profiles of temperature and entropy production in the simulated box for different times (in years, see legend); (b)
average specific entropy production in the entire box, decreasing back to zero during the time of the experiment. The
dashed line indicates the theoretical characteristic time scale.
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Bartels, 2003). The box is discretised into a regular mesh
with cell sizes of 100 m in x- and y-direction, and 50 m in z-
direction. The specific entropy production for every cell in
the domain is calculated from the heat flux over all cell
surfaces, and the average specific entropy production is
calculated with the equations given above.

The system is initially in a conductive steady state with a
temperature at the base of 60°C. Then, temperature at the
base is instantaneously increased to a higher value of 90°C.
The high temperature at the base will lead to transient
conductive effects in the system until a new steady state is
reached. This equilibration time span is simulated here with
50 logarithmically spaced time steps for a total time of 10°
years. With the parameters of the transport problem
considered here, the system equilibration can be evaluated
from the characteristic time scale 7z of diffusive heat
transport (e.g. Turcotte and Schubert, 2002):

T = le ~ 50,000 years.
2K

It can therefore be expected that the system reach the steady
state in the time scale of the simulation.

In figure la, vertical profiles of temperatures and entropy
production for different times after the temperature increase
are presented. The temperature profiles reflect the sudden
temperature increase at the base and the subsequent
propagation of the temperature front towards the top of the
system. The profile of specific entropy production shows
that the entropy production is maximal in the region of the
system where the temperature front propagates. The peak
itself is decreasing over time as the temperature front
becomes broader.

The temporal development of the average specific entropy
production over time (fig. 1b) shows that entropy production
is initially very high in the system and then subsequently
decreases back to zero when the system reaches the new
steady state. The high increase at the beginning is due to the
high temperature contrast at the base of the system. The new
equilibrium state is reached after approximately 10° years.
This is in the order of the characteristic time scale 7 of the
system, indicated with the vertical dotted line in figure 1b.

This simple example showed that the average entropy
production could be applied to evaluate the internal
thermodynamic state of a conductive system during the
equilibration phase. The time scale for equilibration and the
decrease of the value to zero are in accordance to theoretical
considerations. In the next step, the application of the
measure to visualize and analyze more complex systems is
evaluated.

4. ANALYSIS OF ENTROPY PRODUCTION IN A
CONVECTIVE SYSTEM

4.1 Relationship between thermal entropy production
and advective heat transport

As a second example, we examine how entropy production
within the system is affected by advective heat transport
with a simple convective system heated from below (fig. 2).
Heat is transported with the fluid in the upwelling and
downwelling parts of the convection cell, leading to the
typical temperature profile of a convection system
(background picture in fig. 2).

We consider now the processes in a small sub-part of the
system where colder fluid is transported downwards. The
advecting fluid disturbs the temperature field and leads to a
temperature gradient between adjacent sub-volumes in the
system. This temperature gradient causes a conductive heat
flow ¢, between from the hotter to the colder volume, with
temperatures 7y and T¢. This heat flow leads to an entropy
change in both systems:

SH=_—qx<O and SC=%>O

H C

It is interesting to note that the entropy is decreased in the
hotter sub-volume but increased in the colder system.
However, this is not a violation of the second law of
thermodynamics because each sub-volume is not a closed
system. Also, considering the two subvolumes, the average
entropy of this small subsystem is increased:

<SHC> =S, +S8.>0
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Figure 2: Thermal entropy production in a convective
system: if a cool fluid parcel is transported
downwards in a convection cell, it is getting in
contact with a warmer parcel, invoking a heat
flux and increasing the entropy production

This simple consideration indicates that entropy production
is non-zero in a convective system because temperature
disturbance due to advective heat transport leads to an in-
crease in entropy. Furthermore, it can be expected that
entropy production increase with more vigorous convection.
A measure commonly applied to determine the heat
transport through a system is the non-dimensional Nusselt
number, the ratio between the total heat flow to conductive
heat flow:

=3
9.

Nu
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For the case of pure conduction, gr = ¢. and the Nusselt
number is 1. In a convective system, the Nusselt number is
greater than 1 and increases with more vigorous convection
(Nield and Bejan, 2006). Regenauer-Lieb et al. (2010)
showed that the Nusselt number can be related to the
thermal dissipation in a system. Specifically for the case
considered here, the Nusselt number can be expected to be
proportional to the thermal entropy production in the system

NuOCS,

suggesting that higher entropy production can be related to a
higher heat transfer rate through the system, which, for the
case of a convective system, is associated with higher fluid
velocities (e.g. Nield and Bejan, 2006).

4.2 Entropy production during the onset of convection

In analogy to the study of the conductive system presented
before, we want to evaluate if the average entropy measure
can be used to determine the state of the system from
conductive to convective equilibrium state. We perform
again a numerical experiment with the same specifications
as in Sec. 3.2, and additionally consider fluid transport in the
box. Similar to before, the average specific entropy
production is calculated for every time step. The average
specific entropy production curve for the onset of
convection in the porous system with a permeability of 5 -
107" m? as used in the example above, is presented in figure
3. The system initiates from a conductive steady state with
no entropy production. When convection sets in, entropy
production reaches a maximum and then decreases and
converges to a finite value larger than zero, in accordance to
what was expected from the theoretical considerations
above.
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Figure 3: specific thermal entropy production during the
onset of convection in a porous medium. After the
convective system is developed, the system
reaches a convective equilibrium state with non-
zero entropy production

This example shows that the average entropy production
provides an insight into the global behavior of the system
between two equilibrium states. We will now evaluate how
the behavior changes with different system properties. As
evaluated before, the onset of convection in the system can
be expected for permeabilities larger than approximately
125 - 10" m% In the following experiment, we will
evaluate the entropy production in the same system for a
range of different permeabilities, from 10™* m? to 107" m2.
All other parameters and settings are kept constant.

Graphs for the average specific entropy production during
the onset of convection in these models are presented in
figure 4. The specific entropy production for a permeability
of 107" m? remains zero, indicating that the system stays in

a conductive steady state. For higher values, convection sets
in and the same pattern is observed as before, with an
increase of entropy production during the onset of
convection, leveling out to a constant finite value when the
system reaches the convective equilibrium state. Due to a
higher heat transfer in the system, the onset of convection
occurs at earlier times for systems with higher
permeabilities. For very high permeabilities, flow velocities
become too high for the grid resolution considered here.

4.3 Relationship between Nusselt number and entropy
production

In the experiment shown in figure 4, it was observed that the
finite values of entropy production in convective systems
increase for convection in higher permeable layers (fig. 4).
We will now evaluate the relationship between entropy
production and Nusselt number in this system.
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Figure 4: specific entropy production during the onset of
convection for multiple scenarios with different
premeabilities of the porous layer

The non-dimensional Nusselt number is defined as the ratio
of total heat flow (advective and conductive) to conductive
heat flow. For a homogeneous system of equal thickness
with impermeable boundaries as considered here, the
Nusselt number can be estimated from the ratio of the mean
temperature gradient over the boundary to the temperature
gradient over the whole system (e.g. Holzbecher, 1998):

1 ¢or
i L-[ﬁzdx
o

max min

H

Nu

>

where T, and T,,;, are fixed temperatures at bottom and top
of the system, L the area of the base of the system and H its
thickness. Applying this method to the last time step of the
convection simulations presented above (fig. 4), we obtain
an estimation of Nusselt numbers in the system and can
compare these to the average specific entropy production,
presented in figure 5.
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Figure 5: relationship between the experimentally
determined equilibrium state of thermal entropy
production (sdot) and the Nusselt number (Nu)
suggesting a linear relationship

The results show a correlation between Nusselt number and
entropy production, with a clear linear relationship for the
lower permeability scenarios, up to k =2 - 107> m% Since
inertial terms are neglected in our calculations, we attribute
the deviation for higher permeabilities to numerical
instabilities. Nevertheless, the proportionality between
Nusselt number and entropy production as expected from
theory (Regenauer-Lieb et al., 2010) is obtained in the
results of the numerical study, providing an indication for
the suitability of the measure to classify the thermodynamic
state of the system.

5. DISCUSSION

The results show that average thermal entropy production
can be applied as a measure to compare the thermodynamic
state of a coupled hydrothermal system. Thermal entropy
production describes the state of a system with respect to
applied boundary conditions, through a comparison of heat
transport into and out of the system. If a system is in steady
state, entropy production converges to a stable value.
Specifically, if a system is in a conductive steady state, then
the entropy production is 0. The example simulations show
that entropy production increases during the onset of
convection, but then decreases again as the system stabilizes
and converges to a finite value.

The relationship between thermal entropy production and
the hydrothermal state of the system is, in our point of view,
an important step towards an analysis of uncertainties in
geothermal systems on the scale of the entire system: the
higher the thermal entropy production in the system, the
more difficult it will generally be to predict its state (e.g.
temperatures at each location). A formal evaluation of this
relationship is the scope of further research.
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