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ABSTRACT 

Simulations of subsurface temperature usually contain 
uncertainties and an important question is then: exactly how 
uncertain are they, or how well are we able to predict them? 
We propose here that the uncertainty is depending on the 
main heat transport mechanisms: if heat transported by 
conduction only, then the temperatures are relatively simple 
to predict and the uncertainty is low. However, if advective 
heat transport is present, then the additional transport of heat 
in the fluid phase can significantly change the temperature 
field, making it more difficult to predict. 

We suggest here a method that enables us to evaluate the 
dominating heat transport mechanisms with a method based 
on the thermodynamic concept of entropy production.  

Simple examples show that the internal thermal entropy 
production is zero if a system is in a conductive steady state. 
If convection is present in the system, entropy production is 
greater than zero, with higher values for more vigorous 
convection. In fact, for a simple layer system, it can be 
shown that the entropy production is directly related to the 
efficiency of heat transport, measured with the Nusselt 
number.  

We conclude from these examples that thermal entropy 
production can be applied to estimate how well we will be 
able to predict temperatures in a specific geothermal 
resource area. 

1. INTRODUCTION 

Uncertainties in simulations of subsurface processes are 
commonly evaluated with stochastic simulations (e.g. 
Doherty, 1994; Subbey et al., 2004; Riva et al., 2010; Vogt 
et al., 2010a). Instead of one specific result, a variety of 
probable realisations are generated, within the range of input 
data or parameter uncertainty. As a large quantity of 
simulation results are generated with these methods, 
effective measures are required to identify and classify the 
results. The aim of the work presented here is to evaluate 
whether a thermodynamic measure can be applied to classify 
simulated flow fields in coupled hydrothermal systems.  

A variety of methods has already been developed to evaluate 
results of stochastic simulations. The main scope of such 
analyses is to evaluate how accurately the simulation can 
predict a set of observables, for example temperatures at 
observation points (e.g. Vogt et al., 2010b), or the 
production history in an oil reservoir (Suzuki et al., 2008). 
Even, though, these methods are well suited for typical 
problems of calibration and production forecast, they do not 
provide a measure of the state of the whole system.  

In the work presented here, it will be evaluated if a 
thermodynamic measure, specific thermal entropy 
production, can be applied to characterize the system state. 
In the classical sense, thermodynamic measures can be 
applied to predict the response of a system with macroscopic 
measures, without having to know all the detailed processes 
within the system. A simple and typical example is the 
“Ideal Gas Law”, describing the relationship between 
pressure P, temperature T and volume V in an ideal gas:  

TNkPV B
, 

where N is the number of molecules in the gas and the 
proportionality factor kB the Bolzmann's constant. Based on 
the kinetic theory of gases, this formula can be used to 
evaluate how, for example, a volume change affects 
temperature – without having to know the kinetic energy of 
every single molecule in the gas. On the appropriate scale 
and for a specific question, thermodynamic measures are 
useful to describe systems without having to know exactly 
the details inside the system itself.  

Based on these considerations, it will here be evaluated if 
thermal entropy production is useful as a measure of the 
thermodynamic state of a hydrothermal flow system.  

2. THERMAL ENTROPY PRODUCTION IN A 
THERMO-HYDRAULIC SYSTEM  

Entropy production is related to dissipative heat processes 
within a system. The entropy of a diabatic system changes if 
heat is supplied or removed from the system. The change of 
entropy, the entropy production, is defined as the ratio 
between the change in heat Q and the temperature T (e.g. 
Callen, 1985):  

T

Q
S




 

The second law of thermodynamics states in the traditional 
(non-statistical) form that entropy in a closed system is 
either constant or increases and therefore:  

0S  . 

Entropy is produced due to reversible and irreversible 
processes (see Regenauer-Lieb et al., 2010, and references 
therein). Here, only the entropy production for slow fluid 
flow in a permeable matrix is considered, using an approach 
initially developed for climate systems. For a thermo-
hydraulic system that exchanges heat with its surroundings, 
the entropy production S  for the system and its 
surroundings can be described as: 
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The volume integral on the right side describes entropy 
production within the system due to viscous dissipation, 
considering fluid density   and heat capacity cP, 

temperature T and pressure p, and the fluid velocity v


. 

The surface integral represents entropy production due to 
thermal dissipation for a heat flux qh, perpendicular to a  

surface A ( n


is the normal vector on the surface).  

If we only consider thermal dissipation, and assume that the 
internal system is in steady state (in a statistical sense), the 
entropy production is reduced to the heat that is supplied 
through the boundary by the heat flux q (Ozawa et al., 
2003):  

dAnq
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Only the conductive heat transport is considered here as 
relevant to entropy production. This is following the 
argument of Ozawa et al. (2003) that advective heat 
transport is, in principle, a reversible process and does 
therefore not contribute to viscous dissipation. However, 
advective heat transport implicitly induces entropy 
production as it can lead locally to very large temperature 
gradients, and therefore induces conductive processes.  

As the entropy production, defined in the description in the 
equation above, depends on the size of the subsystem 
through the integration over the surface, it can be scaled by 
the mass V ρ of the system to obtain the specific entropy 
production:  

V

S
s


 

 

As a measure of the whole entropy production in a larger 
system, the average specific entropy production can be 
calculated:  


V

dVs
V
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3. APPLICATION OF ENTROPY PRODUCTION TO 
ANALYSE A TRANSIENT CONDUCTIVE HEAT 
FLOW FIELD  

3.1 Basic considerations for the conductive case  

As a first example, the average specific entropy production 
for a system in a transient conductive state will be evaluated. 
In the following considerations, conductive heat fluxes are 
aligned with coordinate axes. The fluxes are per definition 
oriented towards the system. From these considerations 
directly follows that the entropy production of a system in 
conductive steady state is zero as all heat fluxes into and out 
of the system are completely balanced. For example, 
considering a simple system with a vertical heat flux only, 
no heat flux in or out of the cell exists in x-direction and the 
same applies to the y-direction. The heat flux in z-direction 
is the same into and out of the cell qz,in = qz,out. Therefore, 
the internal entropy production is zero.  

3.2 Entropy production in a transient conductive system  

We will now consider a system that initiates from a 
conductive steady state but then experiences a change in the 
boundary conditions. The system is a conductive porous 
medium in a rectangular box with a thickness of 2500 m and 
a lateral extent of 3000 x 3000 m. Temperature is fixed at 
the top (10◦C) and the system is homogeneous and isotropic, 
with a thermal conductivity of λ = 2.9 W K−1m−1 and a 
thermal diffusivity of κ = 10−6m−2. Lateral no flux boundary 
conditions apply. We perform a numerical experiment to 
determine the temperature profile within the box using the 
finite-difference simulation code SHEMAT (Clauser and 

Figure 1: Entropy production during equilibration phase in a conductive system starting from a steady state; (a) Vertical
profiles of temperature and entropy production in the simulated box for different times (in years, see legend); (b)
average specific entropy production in the entire box, decreasing back to zero during the time of the experiment. The
dashed line indicates the theoretical characteristic time scale. 

Time [a] 
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Bartels, 2003). The box is discretised into a regular mesh 
with cell sizes of 100 m in x- and y-direction, and 50 m in z-
direction. The specific entropy production for every cell in 
the domain is calculated from the heat flux over all cell 
surfaces, and the average specific entropy production is 
calculated with the equations given above. 

The system is initially in a conductive steady state with a 
temperature at the base of 60◦C. Then, temperature at the 
base is instantaneously increased to a higher value of 90◦C. 
The high temperature at the base will lead to transient 
conductive effects in the system until a new steady state is 
reached. This equilibration time span is simulated here with 
50 logarithmically spaced time steps for a total time of 106 
years. With the parameters of the transport problem 
considered here, the system equilibration can be evaluated 
from the characteristic time scale τ of diffusive heat 
transport (e.g. Turcotte and Schubert, 2002): 

000,50
2

1 2  l


  years.  

It can therefore be expected that the system reach the steady 
state in the time scale of the simulation.  

In figure 1a, vertical profiles of temperatures and entropy 
production for different times after the temperature increase 
are presented. The temperature profiles reflect the sudden 
temperature increase at the base and the subsequent 
propagation of the temperature front towards the top of the 
system. The profile of specific entropy production shows 
that the entropy production is maximal in the region of the 
system where the temperature front propagates. The peak 
itself is decreasing over time as the temperature front 
becomes broader.  

The temporal development of the average specific entropy 
production over time (fig. 1b) shows that entropy production 
is initially very high in the system and then subsequently 
decreases back to zero when the system reaches the new 
steady state. The high increase at the beginning is due to the 
high temperature contrast at the base of the system. The new 
equilibrium state is reached after approximately 105 years. 
This is in the order of the characteristic time scale τ of the 
system, indicated with the vertical dotted line in figure 1b.  

This simple example showed that the average entropy 
production could be applied to evaluate the internal 
thermodynamic state of a conductive system during the 
equilibration phase. The time scale for equilibration and the 
decrease of the value to zero are in accordance to theoretical 
considerations. In the next step, the application of the 
measure to visualize and analyze more complex systems is 
evaluated. 

4. ANALYSIS OF ENTROPY PRODUCTION IN A 
CONVECTIVE SYSTEM  

4.1 Relationship between thermal entropy production 
and advective heat transport  

As a second example, we examine how entropy production 
within the system is affected by advective heat transport 
with a simple convective system heated from below (fig. 2). 
Heat is transported with the fluid in the upwelling and 
downwelling parts of the convection cell, leading to the 
typical temperature profile of a convection system 
(background picture in fig. 2).  

We consider now the processes in a small sub-part of the 
system where colder fluid is transported downwards. The 
advecting fluid disturbs the temperature field and leads to a 
temperature gradient between adjacent sub-volumes in the 
system. This temperature gradient causes a conductive heat 
flow qx between from the hotter to the colder volume, with 
temperatures TH and TC. This heat flow leads to an entropy 
change in both systems:  

0



H

x
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q
S   and  0

C
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C T
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S  

It is interesting to note that the entropy is decreased in the 
hotter sub-volume but increased in the colder system. 
However, this is not a violation of the second law of 
thermodynamics because each sub-volume is not a closed 
system. Also, considering the two subvolumes, the average 
entropy of this small subsystem is increased:  

0 CHHC SSS 
 

This simple consideration indicates that entropy production 
is non-zero in a convective system because temperature 
disturbance due to advective heat transport leads to an in- 
crease in entropy. Furthermore, it can be expected that 
entropy production increase with more vigorous convection. 
A measure commonly applied to determine the heat 
transport through a system is the non-dimensional Nusselt 
number, the ratio between the total heat flow to conductive 
heat flow:  

cq

q
Nu

T


  

Figure 2: Thermal entropy production in a convective
system: if a cool fluid parcel is transported
downwards in a convection cell, it is getting in
contact with a warmer parcel, invoking a heat
flux and increasing the entropy production 
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For the case of pure conduction, qT = qc and the Nusselt 
number is 1. In a convective system, the Nusselt number is 
greater than 1 and increases with more vigorous convection 
(Nield and Bejan, 2006). Regenauer-Lieb et al. (2010) 
showed that the Nusselt number can be related to the 
thermal dissipation in a system. Specifically for the case 
considered here, the Nusselt number can be expected to be 
proportional to the thermal entropy production in the system 

SNu  , 

suggesting that higher entropy production can be related to a 
higher heat transfer rate through the system, which, for the 
case of a convective system, is associated with higher fluid 
velocities (e.g. Nield and Bejan, 2006).  

4.2 Entropy production during the onset of convection  

In analogy to the study of the conductive system presented 
before, we want to evaluate if the average entropy measure 
can be used to determine the state of the system from 
conductive to convective equilibrium state. We perform 
again a numerical experiment with the same specifications 
as in Sec. 3.2, and additionally consider fluid transport in the 
box. Similar to before, the average specific entropy 
production is calculated for every time step. The average 
specific entropy production curve for the onset of 
convection in the porous system with a permeability of 5 · 
10−13 m2 as used in the example above, is presented in figure 
3. The system initiates from a conductive steady state with 
no entropy production. When convection sets in, entropy 
production reaches a maximum and then decreases and 
converges to a finite value larger than zero, in accordance to 
what was expected from the theoretical considerations 
above.  

 

Figure 3: specific thermal entropy production during the 
onset of convection in a porous medium. After the 
convective system is developed, the system 
reaches a convective equilibrium state with non-
zero entropy production 

This example shows that the average entropy production 
provides an insight into the global behavior of the system 
between two equilibrium states. We will now evaluate how 
the behavior changes with different system properties. As 
evaluated before, the onset of convection in the system can 
be expected for permeabilities larger than approximately 
1.25 · 10−13 m2. In the following experiment, we will 
evaluate the entropy production in the same system for a 
range of different permeabilities, from 10−13 m2 to 10−11 m2. 
All other parameters and settings are kept constant.  

Graphs for the average specific entropy production during 
the onset of convection in these models are presented in 
figure 4. The specific entropy production for a permeability 
of 10−13 m2 remains zero, indicating that the system stays in 

a conductive steady state. For higher values, convection sets 
in and the same pattern is observed as before, with an 
increase of entropy production during the onset of 
convection, leveling out to a constant finite value when the 
system reaches the convective equilibrium state. Due to a 
higher heat transfer in the system, the onset of convection 
occurs at earlier times for systems with higher 
permeabilities. For very high permeabilities, flow velocities 
become too high for the grid resolution considered here.  

4.3 Relationship between Nusselt number and entropy 
production  

In the experiment shown in figure 4, it was observed that the 
finite values of entropy production in convective systems 
increase for convection in higher permeable layers (fig. 4). 
We will now evaluate the relationship between entropy 
production and Nusselt number in this system.  

 

Figure 4: specific entropy production during the onset of 
convection for multiple scenarios with different 
premeabilities of the porous layer 

The non-dimensional Nusselt number is defined as the ratio 
of total heat flow (advective and conductive) to conductive 
heat flow. For a homogeneous system of equal thickness 
with impermeable boundaries as considered here, the 
Nusselt number can be estimated from the ratio of the mean 
temperature gradient over the boundary to the temperature 
gradient over the whole system (e.g. Holzbecher, 1998): 

H

TT

dx
z

T

L
Nu L

minmax

1




 


 , 

where Tmax and Tmin are fixed temperatures at bottom and top 
of the system, L the area of the base of the system and H its 
thickness. Applying this method to the last time step of the 
convection simulations presented above (fig. 4), we obtain 
an estimation of Nusselt numbers in the system and can 
compare these to the average specific entropy production, 
presented in figure 5.  
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Figure 5: relationship between the experimentally 
determined equilibrium state of thermal entropy 
production (sdot) and the Nusselt number (Nu) 
suggesting a linear relationship 

The results show a correlation between Nusselt number and 
entropy production, with a clear linear relationship for the 
lower permeability scenarios, up to k = 2 · 10−13 m2. Since 
inertial terms are neglected in our calculations, we attribute 
the deviation for higher permeabilities to numerical 
instabilities. Nevertheless, the proportionality between 
Nusselt number and entropy production as expected from 
theory (Regenauer-Lieb et al., 2010) is obtained in the 
results of the numerical study, providing an indication for 
the suitability of the measure to classify the thermodynamic 
state of the system.  

5. DISCUSSION 

The results show that average thermal entropy production 
can be applied as a measure to compare the thermodynamic 
state of a coupled hydrothermal system. Thermal entropy 
production describes the state of a system with respect to 
applied boundary conditions, through a comparison of heat 
transport into and out of the system. If a system is in steady 
state, entropy production converges to a stable value. 
Specifically, if a system is in a conductive steady state, then 
the entropy production is 0. The example simulations show 
that entropy production increases during the onset of 
convection, but then decreases again as the system stabilizes 
and converges to a finite value. 

The relationship between thermal entropy production and 
the hydrothermal state of the system is, in our point of view, 
an important step towards an analysis of uncertainties in 
geothermal systems on the scale of the entire system: the 
higher the thermal entropy production in the system, the 
more difficult it will generally be to predict its state (e.g. 
temperatures at each location). A formal evaluation of this 
relationship is the scope of further research. 
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