GEOCRITICAL RESERVOIR FLOW SIMULATION AND DISPLAY USING
OPEN POROUS MEDIUM (OPM) CODE

J Rugis', P Leary', P Malin' and J Pogacnik'

'Institute of Earth Science & Engineering, University of Auckland, New Zealand

j.rugis@auckland.ac.nz

Keywords: Simulation, reservoir flow, open-source,
lognormal

ABSTRACT

Spatial fluctuations for in situ flow structures tend to be
spatially highly erratic and to scale with physical
dimension. Such reservoir flow spatial fluctuation
properties are reflected in the lognormal distributions of
well productivities in some oil/gas and geothermal fields.
Ability to efficiently recognize and manage large-scale
spatially erratic flow structures when they are present is
thus key to cost-effective reservoir operation.

The Open Porous Medium (OPM) consortium provides
industry-compatible = open-source finite-element flow
simulation code with robust handling of spatially complex
flow distributions.  For situations where the flow is
dominated by fractures, 3 empirical rules be stated: (i)
power-law-scaling fracture density fluctuations exist over
cm-km scale lengths; (ii) changes in permeability 6k are
proportional to the product of permeability k and changes in
porosity 8¢, Ok oc k d¢; and (iii) k is lognormally
distributed, k oc exp(0@), oo >> 1. OPM can be adapted to
systematic modelling of this type of heterogeneity, which
we show can be detected by new methods in seismic
emission tomography.

We exhibit here the aptitude of OPM code for simulating
and displaying spatially complex, single-phase flow
distributions. We show that it can be efficient and accurate
used for modeling of reservoir where significant flow
heterogeneity is responsible for lognormal distributions of
well productivity.

1. GEOCRITICALITY: THE THREE RULES

Out of computational necessity some past geothermal
reservoir observations and concepts have been fit to earth
models comprising a small range of geologically identified
formations (e.g., Grindley 1965 MDW 1977; DSIR 1981;
Wood 1992; Allis 2000; White et al 2005; Bignal &
Milicich 2012). These formations are generally assumed to
have essentially uniform physical properties (e.g., Theis
1935, 1952; Biot, 1941; Horner 1951; Freeze 1975;
Earlougher 1977; Kitanidis 1990; Horne 1995; Mannington
et al 2004; Ingebritsen et al 2010; Gudmundsdottir 2012;
Ricard et al 2012). In some cases non-uniformity in
physical properties has been limited to adding various
mechanically discontinuous fault structures as needed to
adjust flow models to observed pressure and flow data.

In situations where reservoir properties are highly
heterogeneous, the limitations of such reservoir modeling
assumptions have long been recognised (Warren & Skiba
1964; Freeze 1975; Smith & Freeze 1979; Dagan 1981,
1982; Desbarats 1987; Kitanidis 1990). For example,
because of pervious computational limitations, it has been
practically difficult to use them to forecast new well

productivity, along with well-core permeability, and trace
element and ore grade distributions. In many instances
these properties are found to follow lognormal distributions
(Law 1944; Warren & Skiba 1964; Jensen, Hinkley & Lake
1987; Limpert, Stahel & Abbt, 2001; Leary & Al Kindy
2002; US Energy Information Administration 2011; Grant
2009; Leary, Pogacnik & Malin 2012; Leary et al 2013a,c).
One modeling approach for dealing with these observations
is to include multiple layers with multiple properties, the
net distribution of which approach lognormality (M.
O’Sullivan, personal communication, 2013). Quantitatively,
such distributions imply at there exists large scale features
that span the sample volume (e.g. Mitzenmacher, 2004),
thereby helping account for many of the observed features
of the flow field.

To understand the effects of introducing more and more
heterogeneity into a flow model consider first a simple
system of geologically-recognized layers. If we log a well
drilled through a reservoir model composed of a few
laterally uniform layers, we record a series of step-functions
in logged properties at their boundaries. As discussed in
Appendix A, the Fourier spectrum of such a numerical log
has a specific property explicitly associated with step
functions:

S(k) ~ 1/12, (la)

where k is spatial frequency and S(k) the property spatial
variation power at spatial frequency k. Along layers S(k)
would remain constant until a lateral boundary, such as a
fault or significant facies change is encountered. The latter
boundaries would introduce 2D and 3D forms of Eq. la.
More complex models can thus be approached by
increasing the number of blocks.

In this paper we present an alternative approach to highly
heterogeneous reservoirs, one based on the spectral
characteristics of well logs, cores, and new seismic
emission tomography results (Geiser et al., 2011). The
approach can include formation boundaries, faults, and
facies changes.

Our development begins with noting that in highly
heterogeneous rocks, well logs along any direction in
geologically recognized layers show spectral distributions
different from Eq.la. In these cases properties scale
inversely with the first rather than the second power of
spatial frequency,

S(k) ~ 1/k', (1b)

where the range of observed spatial frequencies extends
over five decades, ~1/km < k < ~1/cm (Leary 1991, 1997,
2002; Bean 1996; Shiomi, Sato & Ohtake 1997; Dolan,
Bean & Riollet 1998; Marsan & Bean 1999; Leary et al
2013b,c).
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We note in passing that well-log power law scaling power
spectrum (1b) is also distinct from the spectrum of ‘white’
or ‘Gaussian’ spatial fluctuations characterized by

S(k) ~ 1/k° ~ const. (1c)

In Appendix A we shows how physical structures
characterized by spatial fluctuations associated with the
spectra in Eq.s 1 appear in map view. These maps illustrate
how the physical structure of crustal rock characterized by
spectrum (1b), is not effectively approximated by blocked
or uniformly random properties. As a result, geophysical
processes in highly heterogeneous rocks characterised by
well-log spectra (1b) need visualisation and conceptual
modelling tools that do not depend on quasi-uniformity
and/or spatial averages.

Paralleling well-log spectral systematics (1a)-(1c) discussed
in Appendix A, Appendix B reviews well-core spatial
fluctuation data that reveal a systematic in situ link between
porosity and permeability.  The examples given in
Appendix B show that logarithm of permeability fluctation
is more closely related to the distribution of porosity
fluctuations than permeability fluctuations themselves.

For modeling purposes, well-core fluctuation systematics
thus suggest two expressions relating in situ permeability to
in situ porosity. At the tenths of metres to metres scale,
spatial fluctuations in porosity 3¢ closely track spatial
fluctuations in the logarithm of permeability dlogk,

d¢ ~ dlogk. ?2)

At the integrated tens to hundreds of metres scale of spatial
fluctuations (2), a large-scale porosity-permeability relation
emerges as the lognormal distribution,

K <exp(ag), )

in which the degree of lognormality is controlled by the
empirical parameter a (Leary et al 2012).

Empirical conditions (1b), (2) and (3) provide a physical
basis for in situ flow modeling in highly heterogeneous
reservoirs (Leary et al 2013a). This approach gives a
physical basis to the statistical properties of reservoir
heterogeneity observed by Warren & Skiba (1964), Freeze
(1975), Smith & Freeze (1979), Dagan (1981, 1982),
Desbarats (1987) and Kitanidis (1990). We term the new
modeling approach ‘geocriticality’ because the physical
processes underlying (1b), (2) and (3) are closely related to
‘critical’ phenomena observed for a range of physical
systems (Leary 1997, 2002).

Our intent here is to introduce the OPM computational
environment in which to implement the geocritical reservoir
model in the context of advanced oil and gas reservoir flow
modeling. We display field and OPM-generated synthetic
geophysical data related to in sifu fracture distributions --
that is, consistent with spatial fluctuations with spatial
frequency spectrum (1b) and lognormal permeability
distributions (3) -- using software tools designed for
modelling and for visual inspection of complex 3D spatial
arrays.

2. OPEN POROUS MEDIA INITIATIVE

The Open Porous Media (OPM) initiative was launched in
June 2009 at Statoil Research Center in Norway, and is
currently supported by six research groups and several

industry partners both in Norway and Germany'. The
primary result of the initiative has been the development of
an open-source simulator suite for flow and transport in
porous media. The entire software suite has been made
available under the terms of the GNU General Public
License (GPL) version 3.

The development of new POM simulation codes is funded
in part by industry (Statoil and Total) and by public grants
from the Research Council of Norway. Current officially
funded OPM development is focused on oil reservoir
engineering, enhanced oil recovery and CO2 sequestration
(Lie 2012, Lie 2013). However, contributions aimed at
different fields are encouraged.

All of the OPM source code is hosted in GitHub public
repositories”. User contributions follow the “fork and pull”
model in which contributors create their own fork of the
common repository, make changes, and then notify the
maintainers who pull the changes back into the common
repository.

2.1 OPM modifications

OPM s itself an extension module to the Distributed
Unified Numerics Environment (DUNE), a software
toolbox for solving partial differential equations using grid
based methods®. OPM executable code can be built either as
a DUNE module, using the standard dune control
mechanism, or in stand-alone mode using cmake.

Both OPM and DUNE are written in the C++ language and
make use of an object oriented programming style. The
extensive OPM application programming interface (API)
documentation takes the form of formatted HTML pages
suitable for viewing in a web browser.

One of the primary advantages of open-source code is, of
course, the ability to modify its functionality. In the work
presented in this paper, we have employed the
incompressible two-point-flux-approximation (TPFA) fluid
pressure solver (Ponting 1992) class Opm::IncompTpfa. As
given in its original form, this class only accepts bulk
values for porosity and permeability from the properties
class Opm::IncompPropertiesBasic. We have added public
member functions setPorosity and setPermeability to the
IncompPropertiesBasic class to accept arbitrary porosity
and permeability fields.

OPM includes the class Opm::writeVtkData for writing out
simulation results to a file suitable for visualisation in
ParaView". For completeness, we have modified this class
so that the output file includes the 3D porosity and
permeability fields as well as the computed pressure and
velocity fields.

! http://www.opm-project.org
2 github.com
3 http://www.dune-project.org
* hitp://www.paraview.org
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3. PROCESSING WORKFLOW

Our geocritical reservoir modelling workflow begins with
the generation of synthetic 3D porosity and permeability
blocks consistent with the rules given in Section 1. We
explore the implications of varying alpha in equation (4)
through values of 3, 10, 20 and 30.

We submit the porosity/permeability blocks to our modified
OPM simulation code for determination of pressure and

velocity.

Finally, we use ParaView to visually explore the simulation
results.
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Figure 1: Porosity histogram.
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Figure 2: Permeability histogram — alpha 3.
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Figure 3: Permeability histogram — alpha 10.

3.1 Synthetic data generation

In this paper, using MatLab, we started with the creation of
a spatially filtered 64x64x64 porosity structure (2) having a
filter exponent of 1.35. As shown in Figure 1, this porosity
structure has an overall normal (Gaussian) population
distribution.

Again using MatLab, we created permeability structures
according to equation (4) over a range of four different
values for alpha. Figures 2-5 show resultant permeability
population histograms for alpha equal to 3, 10, 20 and 30.

Observe that the permeability population distribution starts
out as normal with alpha equal to 3, then becomes
increasing lognormal as alpha is increased.

We saved each 64x64x64 porosity/permeability pair out to
a MatLab data file.
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Figure 4: Permeability histogram — alpha 20.
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Figure 5: Permeability histogram — alpha 30.

3.2 Simulation

We wrote a C++ wrapper program to read Matlab data files,
call our modified OPM modules, run an OPM 64x64x64 3D
simulation and output ParaView compatible result files for
visualisation.

Note that OPM has inbuilt support for explicit physical
units of measurement, with the International System of
Units as default. As an example, the commonly used unit of
measurement for permeability, milli-Darcy, is internally
translated to its correct value in metres squared.

For this simulation the grid units were left as the default,
which gave an overall physical model space cube of 64
metres per side. We chose a somewhat modest
inflow/outflow rate of 10 litres per second with
injection/extraction points centered on opposite faces, 6
metres in from the outside.

The OPM simulator was run for each of the four alpha
values. Central slices of the resultant velocity field are
shown in Figures 6-9. The injection/extraction points are
clearly visible. Velocity magnitudes range from very nearly
zero to approximately 1 mm/sec. For these models, the
maximum differential pressure (not illustrated) ranges from
approximately 550 to 890 kPa.

We see that, as alpha increases, velocity filaments begin to
form. These velocity filaments are suggestive of flow
pathways which are explored further in the next section.
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Figure 6: Velocity slice — alpha 3.

Figure 7: Velocity slice — alpha 10.

Figure 8: Velocity slice — alpha 20.

Figure 9: Velocity slice — alpha 30.
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3.3 Additional 3D visualisation

Paraview software includes a collection of additional
processing “filters” that target advanced visualisation. One
of the filters can be used to create flow streamlines from
seed particles placed in the velocity field.

Streamlines are shown for the four alpha values in Figures
10-13. We can see that, consistent with the notion of
geocriticality, the particle flow streamlines become
increasingly perturbed as alpha is increased.
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Figure 1: Streamlines — alpha 3.
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Figure 4: Streamlines - alpha 30.

3. CONCLUSION

We have successfully enhanced the Open Porous Media
software tool suite to accommodate heterogeneous porosity
and permeability structures that are consistent with our
theory of geocriticality. We have also used visual
streamlines to indicate the perturbed particle pathways
associated with an increased permeability factor. These
steps are part of a sequence of OPM developments designed
to accommodate the modelling of large-scale active-
reservoir surface seismic monitoring data arising from
reservoir fluid pressurisation events (Leary et al 2013a).
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APPENDIX A — RESERVOIR WELL-LOG
SPECTRAL SYSTEMATICS

Figs A1-A3 illustrate features of in situ spatial fluctuations
recorded by well logs run in wellbores in reservoirs
worldwide (Leary 2002). Fig Al (left) is a numerical well-
log in which a sequence of zero values is followed by a
step-change to unit values. The Fourier transform
coefficients of a step function are known to scale inversely
with wavenumber, hence the power-spectrum scales
inversely as the wavenumber squared (Bracewell 1978).
Fig A1 (right) shows the Fourier power-spectrum of Fig A1l
(left), plotted as a straight line (blue) on log-log axes; the
numerical fit to the spectrum (red) gives spectral slope -
1.983 ~-2.
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Figure Al A simple step function in a material property
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SPECTRAL SLOPES = -0.029215  -2.006
0 T =

[S)

100

200

300

T T T T T T 4T

400

500

600

700

e baiilis
10 EsssgmE

800

GAUSSIAN (BLU) BROWNIAN (RED)

LT R
10 £ 22 &tk

900

1000
-20
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Fig A2 (left) shows a ‘white noise’ sequence of
uncorrelated (Gaussian) random numbers (blue) and its
cumulative integral of correlated (Brownian) random

numbers (red). Fig A2 (right) shows that the white noise
power spectrum (blue) fluctuates around flat (zero slope)
trend while the Brownian noise power-spectrum (red)
fluctuates around trend of slope -2. Neither spectral slope is
observed for reservoir well logs except when (i) poor data
where only instrument white noise is observed; or (ii) where
well-logs pass through major unconformities such as
sediment/igneous contacts.

il

Figure A3 Map view comparisons of the 3 types of rock
hetrogeneity discussed in this paper, along with
their material property well logs and spectral
contents.
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Fig A3 (left) shows 2D spatial fluctuation arrays for ‘white
noise’ (top), ‘Brownian noise’ (bottom) and the
intermediate case ‘1/k noise’ (center). Fig A3 (right) shows
sample well-log 1D sequences across each of the noise
arrays, with the associated power spectra. As in Figs Al-
A2, the white noise and Brownian noise sequences have
spectral trends of slope ~ 0 and ~ -2, respectively. The
center array has a spectral power-law trend ~ -1. Visual
inspection of field well-log fluctuation sequences indicates
that in situ fluctuations resemble ‘1/k’ noise sequences
rather than white or Brownian noise sequences. We can
therefore conclude that 2D and 3D array sequences of
crustal property fluctuations resemble the spatial correlation
seen in the center array rather than either the top or the
bottom array. Visual inspection of the 2D arrays indicates
that small-scale sampling of the white noise array gives a
good estimate of the large-scale spatial behavior of the
array, while extensive small-scale sampling of the
Brownian noise array can indicate locally extensive spatial
regions either well above or well below the overall mean;
2D Brownian noise thus resembles a noisy step-function
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sequence as can occur in sedimentary sections. In contrast,
small-scale spatial sampling of the ‘l1/k noise’ array
achieves neither of these sampling goals at any scale length.
These spatial fluctuation features are independent of scale.
The only reliable information we have about 1/k and
Brownian noise sequences are (i) the larger the spatial
scale, the greater can be fluctuation amplitudes, and (ii) the
location of the large amplitude fluctuations are unknowable
from sparse small-scale sampling. It follows that the largest
flow structure uncertainties occur at reservoir scales, and
that the locations of these fluctuation extremes need to be
observed rather than predicted (Leary et al 2013a).

APPENDIX B - RESERVOIR HETEROGENEITY
WELL-CORE SYSTEMATICS

Figures B1-3 illustrate the well-core poroperm empirical
relation (2) above, 3¢ ~ dlogk, linking in situ porosity ¢ fo
in situ permeability « in clastic reservoir rock (Leary & Al
Kindy 2002; Leary & Walter 2008; Leary, Pogacnik &
Malin 2012; Leary et al 2013b). As indicated by the
lognormality expression (3) above, relation (2) can be
restated as ok ~ k6¢@. Warren & Skibas (1964) derive an
equivalent relation in an attempt to explain the lognormality
of well-core permeability first noted by Law (1944).

HORZ WELL POROPERM 1 (222 SAMPLES)
3 : : . . :

% 10 20 % 100 200
o (%) LOG(x) « (mD)

Figure B1 These plots compare the relative relations
between lateral porosity and permeability
distributions in highly hetrogenous rocks. The
top plot compares normalized, unit variance
porosity and log(permeability) as a function of
well depth. The bottom plots show the
distributions of porosity, log(permeability), and
permeability. In both sets of plots it can be seen
that the log(permeability is more close related to
porosity than permeability itself.

The representative clastic reservoir well-core poroperm
fluctuation sequences displayed in Figs 1-3 show a depth
sequence of well-core porosity spatial fluctuations in blue
overlayed by the spatial fluctations of log(permeability) in
red. The fluctuation sequences are normalised to zero-
mean/unit-variance format; that 1is, the fluctuation
amplitudes are in units of trace standard deviation . The
coefficient of spatial correlation is typically ~85%.
Beneath each fluctuation plot are histrogram showing that
typically porosity is normally distributed while permeability
is lognornally distributed.
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Figure B2 The same as in Figure B1.
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Figure B3 The same as in Figures B1 and B2.

Very few well-core poroperm data are available from
geothermal fields. Fig B4 shows available data are
consistent with the clastic reservoir data of Figs 1-3 (left-
hand data from the Bulalo field, Philippines; right-hand data
from the Ohaaki field, New Zealand; Leary et al 2013b).
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Figure B4 Normalized, unit variance porosity and
log(permeability) data from Philippine and New
Zealand geotheraml fields.
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