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ABSTRACT

Numerical modelling has become an important tool in
managing geothermal systems and planning their
exploitation. The TOUGH2 simulator is the industry
standard tool for developing numerical models. It includes
several different equation-of-state modules and thus can be
used for modelling many different kinds of geothermal
fields as well as other complex sub-surface flow problems.
Under certain conditions TOUGH2 has difficulty in running
a model up to the very large times required for a natural
state simulation as it stalls at a relatively small time step
size. This problem leads to slow model development and
also poses a significant obstacle to inverse modelling using
iTOUGH2 or PEST as forward simulations are more
computationally expensive and may not finish. In this paper
two conditions leading to stalled simulations are identified
and analysed. A correction to the air-water and CO,-water
equation-of-state modules eliminates the first problem. The
second is eliminated by an adjustment to the saturation
temperature calculation. Results are presented showing a
dramatic improvement in the simulation time required to
achieve a steady state for large models of real geothermal
systems.

1. INTRODUCTION

Numerical simulation is an important tool for planning and
managing the development of geothermal systems (Burnell
et al., 2012). Since its development in the 1980s TOUGH2
(Pruess et al., 1999) has become the industry standard
simulator and is now widely used. At the same time
TOUGH2 has been extended to include several different
equation-of-state modules allowing it to be used for
modelling many different kinds of geothermal fields, as
well as other complex sub-surface flow problems.

Many TOUGH2 simulations must be carried out in order to
obtain a well-calibrated model of a geothermal system
(O’Sullivan et al., 2001). During the calibration process,
model parameters such as permeabilities and heat and mass
inputs are adjusted in order to match measured
observations. Under certain circumstances these changes
can cause the TOUGH2 simulator to stall at a relatively
small time step size, which then makes it difficult or
impossible to reach the desired large simulation time for a
natural state model. This behaviour is well known to
geothermal reservoir modellers and has also been reported
by Noy et al. (2012) in CO, sequestration simulations using
TOUGH?2. Previously O’Sullivan et al. (2013) proposed a
scripting approach to automate interventions into stalled
simulations, which allowed some simulations to continue
but did not address the underlying problem.

The objective of the present work was to identify stalled
simulations, study the cause of the stalling, determine fixes
for the problem and apply them directly to the

AUTOUGH?2? code, the University of Auckland version of
TOUGH2 (Yeh et al, 2012). Examples of stalled
simulations of real geothermal systems were collected over
several months. From these, simple test simulations that
replicated the problem were created. The analysis technique
developed for studying the problem is described below,
after a brief discussion of the TOUGH2 solution algorithm.
It is important to understand how the TOUGH?2 solution
algorithm works to be able to understand why the problem
occurs and how it can be corrected. Three examples of
stalled simulations of real geothermal systems have been
selected and the results of the analysis are presented for
each model. The results for each simulation using a
corrected version of the AUTOUGH2 code are presented
and the improvement is discussed.

2. TOUGH2 SIMULATOR

The TOUGH2 simulator solves mass and energy-balance
equations to determine the properties of non-isothermal
flows of multiphase, multicomponent fluids in porous and
fractured media (Pruess et al., 1999).

2.1 Governing Equations

The mass-balance and energy-balance equations solved by
TOUGH2 can be written in the following form (O’Sullivan,
2012):

d
pr AdV = —fn.F,ch+fq,ch (1)
v A v

where V is the volume of integration, 4, is the amount of
each quantity x within the volume, A is the surface of the
volume, F, is the flux of quantity k across the surface 4, n
is the normal vector to the surface A and g, represents any
sources or sinks in the volume. For this work we considered
two common types of systems each requiring governing
equations for three quantities. The first system uses
conservation equations for mass of water, mass of CO, and
for energy. The equation of state for this type of simulation
is referred to as EOS2. The second system uses
conservation equations for mass of water, mass of air and
for energy. The equation of state for this type of simulation
is referred to as EOS3.

The amount of each component per unit volume is
calculated as the sum of the contributions from each phase
as shown in Equation (2):

AK = (p(plSlXKl + pgSgXKg) (2)

Here ¢ is the porosity and for each phase, 8, the density is
given by pg, the saturation by Sg and the mass fraction by
X,p- The liquid phase is indicated by the subscript ! and the
gas phase by the subscript g. For the amount of energy in
the volume the definition includes an additional term for the
contribution of the rock:
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T is the temperature, p, the density of the rock, ¢, its heat
capacity and up the internal energy of phase . The flux of
each component F,; in Equation (1) is calculated using the
contribution of each phase Fp weighted by the mass
fraction:

Fe = X Fy + chgFg (4)

In some equations of state for TOUGH2 a dispersion term
can be added to (4) but in most geothermal systems the
effects of diffusion and hydrodynamic dispersion are small.
For the energy flux a conductive term is also included
where K is the thermal conductivity and the enthalpy of
each phase § must be taken into account as shown in
Equation (5).

F, = yF, + hyF, — KVT (5)

The flux of each phase is given by the two-phase form of
Darcy’s Law:

Kk
Fp = _T(VP +Pp8) (6)

Here k is the permeability tensor (usually assumed to be
diagonal), kg the relative permeability of the phase 8, vg
its viscosity, p the pressure and g is gravity. Note that for
this work the effect of capillary pressure was not
considered.

Discretising in space and applying implicit time stepping
reduces Equation (1) to a set of coupled non-linear
equations which can be written as:

At"“ ( ARl — A ) - Z al}Fl?Jl + Z qlrfll;l 7

In Equation (7) the superscript refers to the time step at
which the quantity is calculated. The term a;; is the area of

the interface between block i and block j and F,:‘Jl is the

flux of each quantity x across the same interface. The term

q,’},}}l represents p separate source terms of quantity k in

block i and finally the time step size is given by At™+1,

The discrete form of Equation (6) is used to calculate the
fluxes of each quantity:

n+1 +1 +1
Fn+1 (k k"ﬁ) [p}l pr n+1
tj

Bij vg d;; ~ Pgij Yij (®)

To calculate the relative permeability and viscosity term in
Equation (8) upwind differencing is used:

k n+1
( rﬁ) phase 8 flows i to j
L

1
<kr,8>n+ _ Ve /;
v B k n+1
74 ( Tﬁ) phase B flows j to i
VB i

(€))

The direction in which each phase flows is determined by
the pressure gradient and the effects of gravity as defined
by the following equation:

+1 +1 10
Gn+1 p]n pln n+1 ( )

Bu =T T Ppij 9ij

Now Ggi}r-l > 0 means that phase f flows from block j to
block i and GE‘;I < 0 means the opposite.

In both Equation (8) and Equation (10) g;; is the
component of gravity acting normally to the interface
between block i and block j and the density of the phase at
the interface pg{'ji is calculated simply from the average for

the two blocks:

+1 n+1
p;l +pﬁ]
PRy = an

In Equation (8) the permeability and block distance terms
are combined and calculated as a harmonic weight:

oty 12
In Equation (10) the block distance term is simply the sum
of the distance from each block centre to their shared
interface:

dij=di+dj (13)

The values of the secondary parameters /g, ug, ps and vy are
calculated using the primary variables and steam table data
supplied through the EOS modules.

2.2 Solution Process

Gathering all the terms in Equation (7) to the left hand side
gives a coupled system of nonlinear equations, which must
be solved at each time step to calculate the new values of
the primary variables in each block:

rx)=0 (14)

This system of equations is solved iteratively using the
Newton-Raphson (NR) method which can be written in the
following form (Pruess, 1999):

T (g1 — Xp) = 1(Xg) (15)

where k represents the NR iteration number and J is the
Jacobian matrix of the system of equations defined as:
Jar
=|= 16
1= 5] (16)

In TOUGH2 the Jacobian is calculated numerically by
evaluating the change in r corresponding to a small change
in X.

Once r(x;) is reduced to the defined convergence limit, the
NR method is complete and the values of the primary
variables at the new time step have been calculated.
TOUGH?2 uses adaptive time stepping which means that if
the NR method successfully converges within a specified
number of iterations then the time step size is increased. If
it successfully converges, but only after more than the
specified number of iterations, the time step remains the
same. When the NR does not converge within a specified
iteration number limit then the time step is reduced and
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another attempt is made at solving for the primary
variables.

The simulation is complete for a natural state model once
the total simulated time reaches the required target, usually
set at ~1.0x10'%s. This large target time does not reflect the
real time that the system took to develop over geological
time but rather is a computational technique for ensuring
that the system is at equilibrium.

2.3 Stalled simulations

Due to the highly nonlinear nature of the equations
governing flow in geothermal systems, the adaptive time
stepping often reduces and increases the time step size
many times during the solution process. However, in some
cases the solution process stalls with the time step unable to
increase above a relatively small value. This prevents the
simulation from reaching the specified total time and hence
it does not complete. This behaviour is often manifested by
a cycle of time step reductions followed by a single time
step increase. Figure (1), below, shows this type of
behaviour for two different models: one of the Lihir Island
geothermal system and the other of the Wayang Windu
geothermal system.
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Figure 1: Time step size for two stalled simulations.
Results for the Wayang Windu model using
EOS2 (-) and the Lihir Island model using EOS3
-

This situation occurs when the NR method is able to

converge within the maximum number of iterations at one

time step size, but cannot converge at a larger time step
size. TOUGH2 can be set to output the maximum residual,

r(x;), at each iteration throughout the simulation. This

reveals that the problem is usually caused by the residual at

the larger time step not falling below the convergence
criterion for some particular block.

Often the block in question is close to the interface between
a saturated and an unsaturated zone. The interface is usually
moving and hence two-phase conditions are either evolving
or disappearing within blocks in the local area. By
examining the conditions in the area, it is possible to
determine how the interface is moving and estimate the new
primary variables. In the past modellers have attempted to
implement this fix by intervening in the simulation either
manually or by using scripts (O’Sullivan et al., 2012) to
adjust the primary variables in the block or in its
neighbours.

In some cases this allows the simulation to progress and
complete, but in others it does not, in which case it may be

necessary to take the more drastic step of adjusting local
permeabilities. This is unsatisfactory not only because there
may be no physical basis for the permeability change, but
also because it is not guaranteed to solve the problem. A
much more satisfactory approach is to analyse and
understand the problem and develop a solution within the
AUTOUGH?2 code itself.

2.4 Analysis Technique

A number of models were investigated and examples of the
stalled solution behaviour were found. By examining these
examples, a number of simple models were created which
also displayed the stalling behaviour, and an analysis
technique was developed. This technique required editing
the AUTOUGH?2 code to output full information for both
the primary variables and secondary parameters at the
problem block and its neighbours. The maximum time step
size was then limited to enable the behaviour of each
variable and parameter to be recorded and plotted during a
stalled simulation.

The results of this investigation are given in the following
sections for three models. The first two are examples of a
moving interface between a saturated and unsaturated zone.
One model uses EOS2 and the other EOS3. The third model
is an EOS2 simulation that has stalled at a relatively large
time step and the block responsible is not near an
unsaturated zone. In all three examples, plots of the key
variables and parameters are given and the analysis
discussed. A solution for the stalling problem is proposed
and the results of the improved simulation are shown.

3. CASE ONE: A MOVING WATER TABLE

The first example of a simulation that has stalled due to a
moving unsaturated interface is taken from a model of the
Lihir Island geothermal system in Papua New Guinea. The
model uses EOS3 to solve the heat and mass transport in
both the deep reservoir and the shallow unsaturated zone up
to the surface. Thus the model grid follows the surface
topography and bathymetry, and air atmosphere blocks are
used on land and wet atmosphere blocks of the appropriate
pressure are used to represent the sea. The model consists
of 9683 blocks and covers a physical area of 103 km” For
more details of the model refer to O’Sullivan et al. (2011).

From Figure (1) it can be seen that the simulation has
stalled at a time step of approximately 3x10° seconds.
Examining the simulation output revealed that the block
causing the stall was in the 6™ layer of the model, which is
only one layer below the surface at that location. The block
itself is two-phase, as is the one above it, but the block
below contains single phase liquid.

At the point the simulation stalls, the gas phase in the
problem block evolves and then disappears again, from one
NR iteration to the next. In Figure 3 it can be seen that the
flow direction of the gas phase between the problem block
and the block above also changes direction with each NR
iteration, preventing the NR method from converging.
Mathematically this behaviour is caused by a discontinuity
in the value of p, calculated using Equation (11) which in
turn causes discontinuities in the calculations of r(x) and J
during the NR solve.
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Figure 2: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a stalled EOS3
simulation. The results for the pressure change in the block beneath the problem block are shown in (d).

The discontinuity occurs in the calculations of r(x) and J
because of the upwind differencing used by TOUGH2 in
Equation (9). A situation can exist (and occurs surprisingly
often) where the flow direction for each phase, calculated
by Equation (10), can be from a block where the phase is
present to one where it is not. From Equation (9) the
upwind differencing means that a non-zero relative
permeability will be calculated at the interface between the
blocks and subsequently a non-zero flux will be calculated
for the phase across that interface using Equation (8).
Because Equation (8) also contains a contribution from
gravity and the phase density, if the value of the density of
the phase is discontinuous then the calculated flux is also
discontinuous.

a) b)
Two-phase Two-phase
liquid liquid gas
A S X c 4
gas heat * + heat
Two-phase Liquid
ligud nogas  heat ligud nogas  heat
* flow * * flow *
Liquid Liquid

Figure 3: The two states of the problem blocks during a
stalled air/water simulation of Lihir Island
geothermal system.

For the initial state in plot (a) of Figure 3 both the top block
and the problem block contain both phases, so Equation
(11) correctly calculates the density of each phase, and
Equation (10) calculates the gas phase flow direction
correctly. However, as the unsaturated interface moves
upwards, eventually the gas phase in the problem block
disappears. At this point, in TOUGH2 (and the current
version of AUTOUGH2) the EOS3 subroutine calculates
the value of the gas density in the problem block as:
pg =0 (17)
Plot (b) in Figure 2 show clearly the discontinuity in the gas
density calculated in the problem block as a result of using
Equation (17) when the gas saturation drops to zero as
shown in plot (a). Plots (¢) and (d) show the effect of the
discontinuities in the subsequent calculations of the
pressure in the problem block and the block beneath. It is
not difficult to see why the NR method stalls when
attempting to calculate derivatives of discontinuous
functions such as these.

To ensure the value of a phase density is continuous prior to
a phase evolving or after it disappears, a new approach has
been developed where it is calculated in the same way as it
would be for the two-phase mixture.
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Figure 4: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a corrected EOS3
simulation. The results for the pressure change in the block beneath the problem block are shown in (d).

For EOS3 the equations are given below:

(18)

Pg = Pvapour T+ Pair
P1 = Pwater (19)

The values of pyapour and Pygrer are calculated from the
steam tables using the saturation values for the pressure in
the block. This is consistent with the correction already
applied in the current version of AUTOUGH?2 for the pure
water equation of state EOS]1.

1014
1013
1012
101!
1010
10°
10°
107
10°
10°
10°

Step size (s)

0 50 100 150 200
Time step

Figure S: Time step size for two simulations of the Lihir
Island system. The stalled simulation results are
shown in red (-) and the corrected simulation
results in blue (-).

When this approach is applied to the stalled simulation of
the Lihir island system, the simulation immediately begins
increasing the time step and progresses rapidly to the steady
state solution. A comparison of the time step sizes for the
stalled simulation and the simulation using the corrected
approach is shown in Figure 5.

The results for the gas saturation, gas density and pressure
changes for the same blocks in the corrected simulation are
shown in Figure 4. Plot (a) shows that the gas saturation in
the problem block drops to zero and the gas phase
disappears as the unsaturated interface moves upwards.
However, for the corrected solution method the gas density,
shown in plot (b), remains continuous across the phase
change. As a result the block remains single phase liquid,
and the pressure in the block itself and the one beneath both
increase smoothly as seen in plots (c) and (d).

4. CASE TWO: A MOVING BOILING ZONE

The second example of a simulation that has stalled due to a
moving unsaturated interface is taken from a model of the
Wayang Windu geothermal system in Indonesia. The model
is a CO,/water model using EOS2. The model grid follows
the surface topography and uses CO, atmosphere blocks. It
conzsists of 22091 blocks and covers a physical area of 121
km".
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Figure 6: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a stalled EOS2
simulation. The results for the pressure change in the block beneath the problem block are shown in (d).

Figure 1 shows that this simulation has stalled at a time step
of approximately 4x10° seconds. In this case the simulation
output revealed that the block causing the stall was in the
4™ Jayer of the model, three layers below the surface. The
block is at single phase liquid conditions, as is the block
above, whereas in the block below boiling is occurring and
two phases are present. Information from the connection
table shows that in fact counter-flow is taking place in these
blocks, with liquid flowing downwards, and both gas and
heat flowing upwards. Figure 7 shows the state of the three
blocks and the flow between them once the simulation
stalls. Unlike the previous example, none of the flow
directions change as a result of the evolution of the gas
phase in the problem block.

a) b)
Liquid Liquid

liquid  nogas FS liquid  nogas >

v flow  heat flow  heat
Liquid Two-phase

liquid _‘_ liquid o> 4

* g;s he‘at g;s h;at
Two-phase Two-phase

Figure 7: The two states of the problem blocks during a
simulation of Wayang Windu

stalled CO,/water
geothermal system.

Applying the technique described in Section 2.4 allows the
primary variables and secondary parameters to be studied in
more detail and the cause of the stall to be identified. The
key results are plotted in Figure 6. Plot (a) shows that the
gas saturation in the problem block remains very small once
the gas phase has evolved before dropping to zero after a
short time. After approximately 0.25x10% seconds the gas
phase evolves in the problem block again and the stalling
cycle continues.

From Figure 7 it can be seen that regardless of the phase
state of the problem block, the gas phase flows into it from
the block below. This means that in this case, the situation
also arises in which the gas phase flows into a block with
zero gas phase saturation. However it is clear from plot (b)
in Figure 6 that for EOS2 the gas density in a block with
zero gas phase saturation is not set to zero, as it is in
Equation (17) for EOS3. Inspecting the AUTOUGH2 code
reveals that EOS2 has been corrected to include the density
of the water vapour (steam) but not the density of the CO,
gas as shown in Equation (19).

Pg = Pvapour

19

Equation (20) gives the equation for the gas density in a
two-phase block, and it is this discrepancy between the two
that causes the discontinuity shown in plot (b).

Pg = Pvapour + Pco2 (20)
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Figure 8: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a corrected EOS2
simulation. The results for the pressure change in the block beneath the problem block are shown in (d).

For this example the density of the CO, gas is more than ten
times that of the water vapour, and by disregarding its
contribution to the total gas density, the dynamics of the
flow are significantly affected. This can be observed in plots
(c) and (d) of the pressure change in the problem block and
the block beneath it. Sharp discontinuities exist in both and
the oscillatory behaviour makes it impossible for the NR
method to converge for larger time steps.

By applying Equation (20) to calculate the gas density in
blocks where the gas saturation is zero, a corrected version
of EOS2 was obtained that ensures the continuity of the gas
density. As with the EOS3 correction the saturation pressure
is used to calculate the values of pygpeyr and peoy.

Figure (9) shows the results for the same simulation of the
Wayang Windu system using the corrected gas density
calculation. The stalled behaviour immediately ceases and
the time step gradually increases. At several points in the
simulation the time step decreases as the flow adjusts
towards a final steady state. After 120 time steps the time
step begins to increase rapidly and a final time step size of
approximately 5x10" seconds is achieved before the
simulation reaches the desired total time.

Plots of the same parameters for the problem block in the
corrected simulation are shown in Figure (8). During the
first two time steps the model adjusts to the corrected
algorithm and the gas phase evolves then immediately
disappears, before evolving again. This corresponds to a
short dip in the pressure in the same block before it begins
increasing steadily. As expected, plot (b) shows that the gas

density is constant across the changes in gas saturation.
Once the model has adjusted to the corrected algorithm, the
gas saturation in the problem block rises steadily, and plots
(c) and (d) show the pressure is well behaved in both blocks.
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Figure 9: Time step size for two simulations of the
Wayang Windu system. The stalled simulation
results are shown in red (-) and the corrected
simulation results in blue (-).
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5. CASE THREE: APPROACHING STEADY STATE

Since corrections to the density calculations in
AUTOUGH2’s EOS2 and EOS3 have been made, many
models have been tested, and no longer exhibit the stalling
behaviour during the main part of the simulation. However,
as simulations approach steady state they often still display
the same stalling behaviour, although at much larger time
steps. The results for the corrected simulation in Figure (4)
show stalling behaviour developing at time steps of
approximately 2x10" seconds. For most simulations a
steady state is deemed to be obtained once a total time of
1x10" seconds is reached, meaning that less than 100 time
steps were required for the corrected simulations in Section
3.
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Figure 10: Temperature change in a problem block for
two simulations of the Ohaaki system. The stalled
simulation results are shown in red (-) and the
corrected simulation results in blue (-).

In some models the time step at which the stalling behaviour
develops can be much smaller, hence requiring hundreds or
thousands of time steps to reach a steady state. An example
of such a model is presented in this section. The model is of
the Ohaaki geothermal system in New Zealand and is a
COy/water model with a grid following the surface
topography. The model consists of 43012 blocks and covers
a physical area of 240 km®

The output files for the Ohaaki simulation showed that, as in
the previous examples, the stalling behaviour was caused by
one particular block. However, applying the analysis
technique described in Section 2, it was found that no phase
changes were occurring in the problem block or any of its
neighbours. Also, the block was in layer 26, deep in the
model, and so not exposed to a moving water table. Initial
investigations showed that the primary variables and
secondary parameters appeared to be continuous. Closer
inspection revealed that the temperature in the problem
block was indeed discontinuous, though on a scale much
smaller than its magnitude.

The discontinuities appear as spikes in the plot of
temperature change versus NR iteration shown in Figure
(10). While the magnitude of these spikes is very small
compared to the temperature in the block (which was
224.5°C), they still had a significant effect on the NR
solution. This is because from Equation (5) the energy flux
includes a temperature gradient term. One of the
neighbouring blocks had a temperature of 224.4°C, which
meant that the gradient between the blocks was small, and
hence could be affected by the discontinuity. The behaviour
did not appear until close to the steady state because the
error was small until the time step multiplier from Equation

(7) was sufficient to cause the NR method to fail to
converge.

Once the discontinuous temperature had been identified it
was a relatively simple process to debug the AUTOUGH2
code to identify the problem. The problem block was two-
phase in the deep boiling zone of the model. This means that
at each NR iteration the temperature of the block is set to the
saturation temperature, based on the block pressure. The
saturation temperature calculation involves a small internal
one-dimensional Newton-Raphson solve. This 1D NR
method uses a previous estimate of the temperature as its
initial guess and in some circumstances it is possible that
this initial guess returns a saturation pressure already within
the convergence tolerance for the method. These
circumstances occur most commonly when the simulation is
close to steady state and the temperatures and pressures are
changing by very small amounts.

Even though the changes in pressure and temperature are
very small, when the 1D NR solve completes without a
single iteration it arrives at a temperature not exactly
consistent with the temperatures it calculates after a number
of iterations. These show up as the spikes in Figure (10) and
for this model they occur every 60 iterations of the full NR
method, which equates to 12 time steps or four cycles of
stalled time step behaviour.

One option for correcting this problem is to reduce the
convergence tolerance for the 1D NR method. This was
deemed to be somewhat arbitrary, and it was thought that
this would simply delay the problem until smaller changes in
temperature and pressure were encountered. Instead the 1D
NR method was forced to always complete one iteration
regardless of the initial convergence calculation. This is
consistent with other 1D NR solves that occur throughout
AUTOUGH?2.

The resulting temperature change for the problem block is
shown in blue in Figure (10), and a plot of the time step size
for both the stalled and corrected simulations is shown in
Figure (11). Obviously this correction also only delays the
onset of stalling behaviour rather than completely
eliminating it, as the plot for the corrected simulation stalls
again at a time step of approximately 4x10' seconds
compared to 7x10" seconds for the stalled simulation. This
means that for this example the model reached a steady state
4-5 times faster, which is a significant improvement.
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Figure 11: Time step size for two simulations of the
Ohaaki system. The stalled simulation results are
shown in red (-) and the corrected simulation
results in blue (-)
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Investigating the stalling behaviour in the corrected
simulation revealed that discontinuities were now occurring
in several variables and in several blocks. This was found to
be due to limitations of the accuracy with which the linear
equation solver could solve Equation (15). At large time
steps the Jacobian matrix becomes extremely ill-conditioned
and the current linear solvers are unable to achieve the
desired solution tolerance within a practical computational
time frame. Solutions to this problem are an area of current
research.

5. CONCLUSION

A method for investigating stalled TOUGH?2 simulations has
been developed and used to examine three different
examples of the problem. An explanation of why each
simulation has stalled has been given with reference to the
solution algorithm and governing equations. Corrections to
the calculations for the phase densities in EOS2 and EOS3
have been suggested as well as a correction to the algorithm
for calculating the saturation temperature. As a result of
these corrections, simulations no longer stall at the early
stages and large time step sizes can be achieved without any
manual intervention.

These improvements greatly reduce the computational time
for most simulations, remove the need for manual
intervention and make inverse modelling of complex
geothermal systems more tractable.
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