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ABSTRACT 

Numerical modelling has become an important tool in 
managing geothermal systems and planning their 
exploitation. The TOUGH2 simulator is the industry 
standard tool for developing numerical models. It includes 
several different equation-of-state modules and thus can be 
used for modelling many different kinds of geothermal 
fields as well as other complex sub-surface flow problems. 
Under certain conditions TOUGH2 has difficulty in running 
a model up to the very large times required for a natural 
state simulation as it stalls at a relatively small time step 
size. This problem leads to slow model development and 
also poses a significant obstacle to inverse modelling using 
iTOUGH2 or PEST as forward simulations are more 
computationally expensive and may not finish. In this paper 
two conditions leading to stalled simulations are identified 
and analysed. A correction to the air-water and CO2-water 
equation-of-state modules eliminates the first problem. The 
second is eliminated by an adjustment to the saturation 
temperature calculation. Results are presented showing a 
dramatic improvement in the simulation time required to 
achieve a steady state for large models of real geothermal 
systems. 

1. INTRODUCTION  

Numerical simulation is an important tool for planning and 
managing the development of geothermal systems (Burnell 
et al., 2012). Since its development in the 1980s TOUGH2 
(Pruess et al., 1999) has become the industry standard 
simulator and is now widely used. At the same time 
TOUGH2 has been extended to include several different 
equation-of-state modules allowing it to be used for 
modelling many different kinds of geothermal fields, as 
well as other complex sub-surface flow problems. 

Many TOUGH2 simulations must be carried out  in order to 
obtain a well-calibrated model of a geothermal system 
(O’Sullivan et al., 2001). During the calibration process, 
model parameters such as permeabilities and heat and mass 
inputs are adjusted in order to match measured 
observations. Under certain circumstances these changes 
can cause the TOUGH2 simulator to stall at a relatively 
small time step size, which then makes it difficult or 
impossible to reach the desired large simulation time for a 
natural state model. This behaviour is well known to 
geothermal reservoir modellers and has also been reported 
by Noy et al. (2012) in CO2 sequestration simulations using 
TOUGH2. Previously O’Sullivan et al. (2013) proposed a 
scripting approach to automate interventions into stalled 
simulations, which allowed some simulations to continue 
but did not address the underlying problem. 

The objective of the present work was to identify stalled 
simulations, study the cause of the stalling, determine fixes 
for the problem and apply them directly to the 

AUTOUGH2 code, the University of Auckland version of 
TOUGH2 (Yeh et al., 2012). Examples of stalled 
simulations of real geothermal systems were collected over 
several months.  From these, simple test simulations that 
replicated the problem were created. The analysis technique 
developed for studying the problem is described below, 
after a brief discussion of the TOUGH2 solution algorithm. 
It is important to understand how the TOUGH2 solution 
algorithm works to be able to understand why the problem 
occurs and how it can be corrected. Three examples of 
stalled simulations of real geothermal systems have been 
selected and the results of the analysis are presented for 
each model. The results for each simulation using a 
corrected version of the AUTOUGH2 code are presented 
and the improvement is discussed. 

2. TOUGH2 SIMULATOR  

The TOUGH2 simulator solves mass and energy-balance 
equations to determine the properties of non-isothermal 
flows of multiphase, multicomponent fluids in porous and 
fractured media (Pruess et al., 1999). 

2.1 Governing Equations 

The mass-balance and energy-balance equations solved by 
TOUGH2 can be written in the following form (O’Sullivan, 
2012): 

݀
ݐ݀
නܣ఑ܸ݀ ൌ െනܖ. ۴఑݀ܣ ൅ නݍ఑ܸ݀

	

௏஺௏

 (1) 

where ܸ is the volume of integration, ܣ఑ is the amount of 
each quantity ߢ within the volume, ܣ is the surface of the 
volume, ۴఑ is the flux of quantity ߢ across the surface ܖ ,ܣ 
is the normal vector to the surface ܣ and ݍ఑ represents any 
sources or sinks in the volume. For this work we considered 
two common types of systems each requiring governing 
equations for three quantities. The first system uses 
conservation equations for mass of water, mass of CO2 and 
for energy. The equation of state for this type of simulation 
is referred to as EOS2. The second system uses 
conservation equations for mass of water, mass of air and 
for energy. The equation of state for this type of simulation 
is referred to as EOS3.  

The amount of each component per unit volume is 
calculated as the sum of the contributions from each phase 
as shown in Equation (2): 

఑ܣ ൌ ߮ሺߩ௟ ௟ܵܺ఑௟ ൅ ௚ߩ ௚ܵܺ఑௚ሻ (2) 

Here ߮ is the porosity and for each phase, ߚ, the density is 
given by ߩఉ, the saturation by ఉܵ and the mass fraction by 
ܺ఑ఉ. The liquid phase is indicated by the subscript ݈ and the 
gas phase by the subscript ݃. For the amount of energy in 
the volume the definition includes an additional term for the 
contribution of the rock: 
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௘ܣ ൌ ሺ1 െ ߮ሻߩ௥ܿ௥ܶ ൅ ߮ሺߩ௟ݑ௟ ௟ܵ ൅ ௚ݑ௚ߩ ௚ܵሻ (3) 

ܶ is the temperature, ߩ௥ the density of the rock, ܿ௥ its heat 
capacity and ݑఉ the internal energy of phase ߚ. The flux of 
each component ۴఑ in Equation (1) is calculated using the 
contribution of each phase ۴ఉ  weighted by the mass 
fraction: 

۴఑ ൌ ܺ఑௟۴௟ ൅ ܺ఑௚۴௚ (4) 

In some equations of state for TOUGH2 a dispersion term 
can be added to (4) but in most geothermal systems the 
effects of diffusion and hydrodynamic dispersion are small. 
For the energy flux a conductive term is also included 
where ܭ  is the thermal conductivity and the enthalpy of 
each phase ߚ  must be taken into account as shown in 
Equation (5). 

۴௘ ൌ ݄௟۴௟ ൅ ݄௚۴௚ െ  (5) ܶ׏ܭ

The flux of each phase is given by the two-phase form of 
Darcy’s Law: 

۴ఉ ൌ െ
௥ఉ݇	ܓ
ఉߥ

ሺ݌׏ ൅  ሻ (6)܏ఉߩ

Here ܓ is the permeability tensor (usually assumed to be 
diagonal),  ݇௥ఉ the relative permeability of the phase ߥ ,ߚఉ 
its viscosity, ݌ the pressure and ܏ is gravity. Note that for 
this work the effect of capillary pressure was not 
considered. 

Discretising in space and applying implicit time stepping 
reduces Equation (1) to a set of coupled non-linear 
equations which can be written as:  

௜ܸ

௡ାଵݐ∆
൫ܣ఑௜

௡ାଵ െ ఑௜ܣ
௡ ൯ ൌ െ෍ܽ௜௝ܨ఑௜௝

௡ାଵ

௝

൅෍ݍ఑௜௣
௡ାଵ

௣

 (7) 

In Equation (7) the superscript refers to the time step at 
which the quantity is calculated. The term ܽ௜௝ is the area of 
the interface between block ݅ and block ݆ and ܨ఑௜௝

௡ାଵ  is the 
flux of each quantity ߢ across the same interface. The term 
఑௜௣ݍ
௡ାଵ  represents ݌  separate source terms of quantity ߢ  in 

block ݅ and finally the time step size is given by ∆ݐ௡ାଵ. 

The discrete form of Equation (6) is used to calculate the 
fluxes of each quantity: 

ఉ௜௝ܨ
௡ାଵ ൌ െቆ

݇	݇௥ఉ
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െ ఉ௜௝ߩ

௡ାଵ݃௜௝቉ (8) 

To calculate the relative permeability and viscosity term in 
Equation (8) upwind differencing is used: 
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The direction in which each phase flows is determined by 
the pressure gradient and the effects of gravity as defined 
by the following equation:  

ఉ௜௝ܩ
௡ାଵ ൌ

௝݌
௡ାଵ െ ௜݌

௡ାଵ

݀௜௝
െ ఉ௜௝ߩ

௡ାଵ݃௜௝ 
(10) 

 

Now ܩఉ௜௝
௡ାଵ ൐ 0 means that phase ߚ  flows from block ݆ to 

block ݅ and ܩఉ௜௝
௡ାଵ ൏ 0 means the opposite. 

In both Equation (8) and Equation (10) ݃௜௝  is the 
component of gravity acting normally to the interface 
between block ݅ and block ݆ and the density of the phase at 
the interface ߩఉ௜௝

௡ାଵ is calculated simply from the average for 
the two blocks: 

ఉ௜௝ߩ
௡ାଵ ൌ

ఉ௜ߩ
௡ାଵ ൅ ఉ௝ߩ

௡ାଵ

2
 (11) 

In Equation (8) the permeability and block distance terms 
are combined and calculated as a harmonic weight: 

݀௜௝
݇௜௝

ൌ
݀௜
݇௜
൅

௝݀

௝݇
 (12) 

In Equation (10) the block distance term is simply the sum 
of the distance from each block centre to their shared 
interface: 

݀௜௝ ൌ ݀௜ ൅ ௝݀ (13) 

The values of the secondary parameters hβ, uβ, ρβ and νβ are 
calculated using the primary variables and steam table data 
supplied through the EOS modules. 

2.2 Solution Process 

Gathering all the terms in Equation (7) to the left hand side 
gives a coupled  system of nonlinear equations, which must 
be solved at each time step to calculate the new values of 
the primary variables in each block: 

ሻܠሺܚ ൌ ૙ (14) 

This system of equations is solved iteratively using the 
Newton-Raphson (NR) method which can be written in the 
following form (Pruess, 1999): 

െ۸௞ሺܠ௞ାଵ െ ௞ሻܠ ൌ  ௞ሻ (15)ܠሺܚ

where ݇  represents the NR iteration number and ۸  is the 
Jacobian matrix of the system of equations defined as: 

۸ ൌ ൤
ܚ߲
ܠ߲
൨ (16) 

In TOUGH2 the Jacobian is calculated numerically by 
evaluating the change in ܚ corresponding to a small change 
in ܠ.  

Once ܚሺܠ௞ሻ is reduced to the defined convergence limit, the 
NR method is complete and the values of the primary 
variables at the new time step have been calculated. 
TOUGH2 uses adaptive time stepping which means that if 
the NR method successfully converges within a specified 
number of iterations then the time step size is increased. If 
it successfully converges, but only after more than the 
specified number of iterations, the time step remains the 
same. When the NR does not converge within a specified 
iteration number limit then the time step is reduced and 
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another attempt is made at solving for the primary 
variables. 

The simulation is complete for a natural state model once 
the total simulated time reaches the required target, usually 
set at ~1.0x1015s. This large target time does not reflect the 
real time that the system took to develop over geological 
time but rather is a computational technique for ensuring 
that the system is at equilibrium. 

2.3 Stalled simulations 

Due to the highly nonlinear nature of the equations 
governing flow in geothermal systems, the adaptive time 
stepping often reduces and increases the time step size 
many times during the solution process. However, in some 
cases the solution process stalls with the time step unable to 
increase above a relatively small value. This prevents the 
simulation from reaching the specified total time and hence 
it does not complete. This behaviour is often manifested by 
a cycle of time step reductions followed by a single time 
step increase. Figure (1), below, shows this type of 
behaviour for two different models: one of the Lihir Island 
geothermal system and the other of the Wayang Windu 
geothermal system. 

 

Figure 1: Time step size for two stalled simulations. 
Results for the Wayang Windu model using 
EOS2 (-) and the Lihir Island model using EOS3 
(-). 

This situation occurs when the NR method is able to 
converge within the maximum number of iterations at one 
time step size, but cannot converge at a larger time step 
size. TOUGH2 can be set to output the maximum residual, 
,௞ሻܠሺܚ  at each iteration throughout the simulation. This 
reveals that the problem is usually caused by the residual at 
the larger time step not falling below the convergence 
criterion for some particular block.   

Often the block in question is close to the interface between 
a saturated and an unsaturated zone. The interface is usually 
moving and hence two-phase conditions are either evolving 
or disappearing within blocks in the local area. By 
examining the conditions in the area, it is possible to 
determine how the interface is moving and estimate the new 
primary variables. In the past modellers have attempted to 
implement this fix by intervening in the simulation either 
manually or by using scripts (O’Sullivan et al., 2012) to 
adjust the primary variables in the block or in its 
neighbours. 

In some cases this allows the simulation to progress and 
complete, but in others it does not, in which case it may be 

necessary to take the more drastic step of adjusting local 
permeabilities. This is unsatisfactory not only because there 
may be no physical basis for the permeability change, but 
also because it is not guaranteed to solve the problem. A 
much more satisfactory approach is to analyse and 
understand the problem and develop a solution within the 
AUTOUGH2 code itself. 

2.4 Analysis Technique 

A number of models were investigated and examples of the 
stalled solution behaviour were found. By examining these 
examples, a number of simple models were created which 
also displayed the stalling behaviour, and an analysis 
technique was developed. This technique required editing 
the AUTOUGH2 code to output full information for both 
the primary variables and secondary parameters at the 
problem block and its neighbours. The maximum time step 
size was then limited to enable the behaviour of each 
variable and parameter to be recorded and plotted during a 
stalled simulation. 

The results of this investigation are given in the following 
sections for three models. The first two are examples of a 
moving interface between a saturated and unsaturated zone. 
One model uses EOS2 and the other EOS3. The third model 
is an EOS2 simulation that has stalled at a relatively large 
time step and the block responsible is not near an 
unsaturated zone. In all three examples, plots of the key 
variables and parameters are given and the analysis 
discussed. A solution for the stalling problem is proposed 
and the results of the improved simulation are shown. 

3. CASE ONE: A MOVING WATER TABLE  

The first example of a simulation that has stalled due to a 
moving unsaturated interface is taken from a model of the 
Lihir Island geothermal system in Papua New Guinea. The 
model uses EOS3 to solve the heat and mass transport in 
both the deep reservoir and the shallow unsaturated zone up 
to the surface. Thus the model grid follows the surface 
topography and bathymetry, and air atmosphere blocks are 
used on land and wet atmosphere blocks of the appropriate 
pressure are used to represent the sea. The model consists 
of 9683 blocks and covers a physical area of 103 km2. For 
more details of the model refer to O’Sullivan et al. (2011). 

From Figure (1) it can be seen that the simulation has 
stalled at a time step of approximately 3x105 seconds. 
Examining the simulation output revealed that the block 
causing the stall was in the 6th layer of the model, which is 
only one layer below the surface at that location. The block 
itself is two-phase, as is the one above it, but the block 
below contains single phase liquid.  

At the point the simulation stalls, the gas phase in the 
problem block evolves and then disappears again, from one 
NR iteration to the next. In Figure 3 it can be seen that the 
flow direction of the gas phase between the problem block 
and the block above also changes direction with each NR 
iteration, preventing the NR method from converging. 
Mathematically this behaviour is caused by a discontinuity 
in the value of ߩ௚ calculated using Equation (11) which in 
turn causes discontinuities in the calculations of ܚሺܠሻ and ۸ 
during the NR solve. 
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a) b) 

c) d) 

  

Figure 2: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a stalled EOS3 
simulation. The results for the pressure change in the block beneath the problem block are shown in (d). 

 

The discontinuity occurs in the calculations of ܚሺܠሻ and ۸ 
because of the upwind differencing used by TOUGH2 in 
Equation (9). A situation can exist (and occurs surprisingly 
often) where the flow direction for each phase, calculated 
by Equation (10), can be from a block where the phase is 
present to one where it is not. From Equation (9) the 
upwind differencing means that a non-zero relative 
permeability will be calculated at the interface between the 
blocks and subsequently a non-zero flux will be calculated 
for the phase across that interface using Equation (8). 
Because Equation (8) also contains a contribution from 
gravity and the phase density, if the value of the density of 
the phase is discontinuous then the calculated flux is also 
discontinuous. 

a) b) 

 
 
Figure 3: The two states of the problem blocks during a 

stalled air/water simulation of Lihir Island 
geothermal system. 

For the initial state in plot (a) of Figure 3 both the top block 
and the problem block contain both phases, so Equation 
(11) correctly calculates the density of each phase, and 
Equation (10) calculates the gas phase flow direction 
correctly. However, as the unsaturated interface moves 
upwards, eventually the gas phase in the problem block 
disappears. At this point, in TOUGH2 (and the current 
version of AUTOUGH2) the EOS3 subroutine calculates 
the value of the gas density in the problem block as: 

௚ߩ ൌ 0 (17) 

Plot (b) in Figure 2 show clearly the discontinuity in the gas 
density calculated in the problem block as a result of using 
Equation (17) when the gas saturation drops to zero as 
shown in plot (a). Plots (c) and (d) show the effect of the 
discontinuities in the subsequent calculations of the 
pressure in the problem block and the block beneath. It is 
not difficult to see why the NR method stalls when 
attempting to calculate derivatives of discontinuous 
functions such as these.  

To ensure the value of a phase density is continuous prior to 
a phase evolving or after it disappears, a new approach has 
been developed where it is calculated in the same way as it 
would be for the two-phase mixture. 
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a) b) 

c) d) 

  

Figure 4: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a corrected EOS3 
simulation. The results for the pressure change in the block beneath the problem block are shown in (d). 

 

For EOS3 the equations are given below: 

௚ߩ ൌ ௩௔௣௢௨௥ߩ ൅  ௔௜௥ߩ
(18) 

௟ߩ ൌ  ௪௔௧௘௥ (19)ߩ

The values of ߩ௩௔௣௢௨௥  and ߩ௪௔௧௘௥  are calculated from the 
steam tables using the saturation values for the pressure in 
the block. This is consistent with the correction already 
applied in the current version of AUTOUGH2 for the pure 
water equation of state EOS1. 

 

Figure 5: Time step size for two simulations of the Lihir 
Island system. The stalled simulation results are 
shown in red (-) and the corrected simulation 
results in blue (-). 

When this approach is applied to the stalled simulation of 
the Lihir island system, the simulation immediately begins 
increasing the time step and progresses rapidly to the steady 
state solution. A comparison of the time step sizes for the 
stalled simulation and the simulation using the corrected 
approach is shown in Figure 5. 

The results for the gas saturation, gas density and pressure 
changes for the same blocks in the corrected simulation are 
shown in Figure 4. Plot (a) shows that the gas saturation in 
the problem block drops to zero and the gas phase 
disappears as the unsaturated interface moves upwards. 
However, for the corrected solution method the gas density, 
shown in plot (b), remains continuous across the phase 
change. As a result the block remains single phase liquid, 
and the pressure in the block itself and the one beneath both 
increase smoothly as seen in plots (c) and (d). 

4. CASE TWO: A MOVING BOILING ZONE  

The second example of a simulation that has stalled due to a 
moving unsaturated interface is taken from a model of the 
Wayang Windu geothermal system in Indonesia. The model 
is a CO2/water model using EOS2. The model grid follows 
the surface topography and uses CO2 atmosphere blocks. It 
consists of 22091 blocks and covers a physical area of 121 
km2.  
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a) b) 

c) d) 

Figure 6: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a stalled EOS2 
simulation. The results for the pressure change in the block beneath the problem block are shown in (d). 

 

Figure 1 shows that this simulation has stalled at a time step 
of approximately 4x106 seconds. In this case the simulation 
output revealed that the block causing the stall was in the 
4th layer of the model, three layers below the surface. The 
block is at single phase liquid conditions, as is the block 
above, whereas in the block below boiling is occurring and 
two phases are present. Information from the connection 
table shows that in fact counter-flow is taking place in these 
blocks, with liquid flowing downwards, and both gas and 
heat flowing upwards. Figure 7 shows the state of the three 
blocks and the flow between them once the simulation 
stalls. Unlike the previous example, none of the flow 
directions change as a result of the evolution of the gas 
phase in the problem block. 

a) b) 

 
 

Figure 7: The two states of the problem blocks during a 
stalled CO2/water simulation of Wayang Windu 
geothermal system. 

Applying the technique described in Section 2.4 allows the 
primary variables and secondary parameters to be studied in 
more detail and the cause of the stall to be identified. The 
key results are plotted in Figure 6. Plot (a) shows that the 
gas saturation in the problem block remains very small once 
the gas phase has evolved before dropping to zero after a 
short time. After approximately 0.25x108 seconds the gas 
phase evolves in the problem block again and the stalling 
cycle continues. 

From Figure 7 it can be seen that regardless of the phase 
state of the problem block, the gas phase flows into it from 
the block below. This means that in this case, the situation 
also arises in which the gas phase flows into a block with 
zero gas phase saturation. However it is clear from plot (b) 
in Figure 6 that for EOS2 the gas density in a block with 
zero gas phase saturation is not set to zero, as it is in 
Equation (17) for EOS3. Inspecting the AUTOUGH2 code 
reveals that EOS2 has been corrected to include the density 
of the water vapour (steam) but not the density of the CO2 
gas as shown in Equation (19). 

௚ߩ ൌ  ௩௔௣௢௨௥ (19)ߩ

Equation (20) gives the equation for the gas density in a 
two-phase block, and it is this discrepancy between the two 
that causes the discontinuity shown in plot (b). 

௚ߩ ൌ ௩௔௣௢௨௥ߩ ൅  ஼ைଶ (20)ߩ

 



35th New Zealand Geothermal Workshop: 2013 Proceedings 
17 – 20 November 2013 

Rotorua, New Zealand 

a) b) 

c) d) 

  

Figure 8: Results for (a) gas saturation, (b) gas density and (c) pressure change in the problem block in a corrected EOS2 
simulation. The results for the pressure change in the block beneath the problem block are shown in (d). 

 

For this example the density of the CO2 gas is more than ten 
times that of the water vapour, and by disregarding its 
contribution to the total gas density, the dynamics of the 
flow are significantly affected. This can be observed in plots 
(c) and (d) of the pressure change in the problem block and 
the block beneath it. Sharp discontinuities exist in both and 
the oscillatory behaviour makes it impossible for the NR 
method to converge for larger time steps. 

By applying Equation (20) to calculate the gas density in 
blocks where the gas saturation is zero, a corrected version 
of EOS2 was obtained that ensures the continuity of the gas 
density. As with the EOS3 correction the saturation pressure 
is used to calculate the values of ߩ௩௔௣௢௨௥ and	ߩ஼ைଶ. 

Figure (9) shows the results for the same simulation of the 
Wayang Windu system using the corrected gas density 
calculation. The stalled behaviour immediately ceases and 
the time step gradually increases. At several points in the 
simulation the time step decreases as the flow adjusts 
towards a final steady state. After 120 time steps the time 
step begins to increase rapidly and a final time step size of 
approximately 5x1013 seconds is achieved before the 
simulation reaches the desired total time. 

Plots of the same parameters for the problem block in the 
corrected simulation are shown in Figure (8). During the 
first two time steps the model adjusts to the corrected 
algorithm and the gas phase evolves then immediately 
disappears, before evolving again. This corresponds to a 
short dip in the pressure in the same block before it begins 
increasing steadily. As expected, plot (b) shows that the gas 

density is constant across the changes in gas saturation. 
Once the model has adjusted to the corrected algorithm, the 
gas saturation in the problem block rises steadily, and plots 
(c) and (d) show the pressure is well behaved in both blocks. 

 

Figure 9: Time step size for two simulations of the 
Wayang Windu system. The stalled simulation 
results are shown in red (-) and the corrected 
simulation results in blue (-). 
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5. CASE THREE: APPROACHING STEADY STATE  

Since corrections to the density calculations in 
AUTOUGH2’s EOS2 and EOS3 have been made, many 
models have been tested, and no longer exhibit the stalling 
behaviour during the main part of the simulation. However, 
as simulations approach steady state they often still display 
the same stalling behaviour, although at much larger time 
steps. The results for the corrected simulation in Figure (4) 
show stalling behaviour developing at time steps of 
approximately 2x1013 seconds. For most simulations a 
steady state is deemed to be obtained once a total time of 
1x1015 seconds is reached, meaning that less than 100 time 
steps were required for the corrected simulations in Section 
3. 

  

Figure 10: Temperature change in a problem block for 
two simulations of the Ohaaki system. The stalled 
simulation results are shown in red (-) and the 
corrected simulation results in blue (-). 

In some models the time step at which the stalling behaviour 
develops can be much smaller, hence requiring hundreds or 
thousands of time steps to reach a steady state. An example 
of such a model is presented in this section. The model is of 
the Ohaaki geothermal system in New Zealand and is a 
CO2/water model with a grid following the surface 
topography. The model consists of 43012 blocks and covers 
a physical area of 240 km2  

The output files for the Ohaaki simulation showed that, as in 
the previous examples, the stalling behaviour was caused by 
one particular block. However, applying the analysis 
technique described in Section 2, it was found that no phase 
changes were occurring in the problem block or any of its 
neighbours. Also, the block was in layer 26, deep in the 
model, and so not exposed to a moving water table. Initial 
investigations showed that the primary variables and 
secondary parameters appeared to be continuous. Closer 
inspection revealed that the temperature in the problem 
block was indeed discontinuous, though on a scale much 
smaller than its magnitude.  

The discontinuities appear as spikes in the plot of 
temperature change versus NR iteration shown in Figure 
(10). While the magnitude of these spikes is very small 
compared to the temperature in the block (which was 
224.5C), they still had a significant effect on the NR 
solution. This is because from Equation (5) the energy flux 
includes a temperature gradient term. One of the 
neighbouring blocks had a temperature of 224.4C, which 
meant that the gradient between the blocks was small, and 
hence could be affected by the discontinuity. The behaviour 
did not appear until close to the steady state because the 
error was small until the time step multiplier from Equation 

(7) was sufficient to cause the NR method to fail to 
converge. 

Once the discontinuous temperature had been identified it 
was a relatively simple process to debug the AUTOUGH2 
code to identify the problem. The problem block was two-
phase in the deep boiling zone of the model. This means that 
at each NR iteration the temperature of the block is set to the 
saturation temperature, based on the block pressure. The 
saturation temperature calculation involves a small internal 
one-dimensional Newton-Raphson solve. This 1D NR 
method uses a previous estimate of the temperature as its 
initial guess and in some circumstances it is possible that 
this initial guess returns a saturation pressure already within 
the convergence tolerance for the method. These 
circumstances occur most commonly when the simulation is 
close to steady state and the temperatures and pressures are 
changing by very small amounts. 

Even though the changes in pressure and temperature are 
very small, when the 1D NR solve completes without a 
single iteration it arrives at a temperature not exactly 
consistent with the temperatures it calculates after a number 
of iterations. These show up as the spikes in Figure (10) and 
for this model they occur every 60 iterations of the full NR 
method, which equates to 12 time steps or four cycles of 
stalled time step behaviour. 

One option for correcting this problem is to reduce the 
convergence tolerance for the 1D NR method. This was 
deemed to be somewhat arbitrary, and it was thought that 
this would simply delay the problem until smaller changes in 
temperature and pressure were encountered. Instead the 1D 
NR method was forced to always complete one iteration 
regardless of the initial convergence calculation. This is 
consistent with other 1D NR solves that occur throughout 
AUTOUGH2. 

The resulting temperature change for the problem block is 
shown in blue in Figure (10), and a plot of the time step size 
for both the stalled and corrected simulations is shown in 
Figure (11). Obviously this correction also only delays the 
onset of stalling behaviour rather than completely 
eliminating it, as the plot for the corrected simulation stalls 
again at a time step of approximately 4x1013 seconds 
compared to 7x1012 seconds for the stalled simulation. This 
means that for this example the model reached a steady state 
4-5 times faster, which is a significant improvement. 

  
Figure 11: Time step size for two simulations of the 

Ohaaki system. The stalled simulation results are 
shown in red (-) and the corrected simulation 
results in blue (-) 
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Investigating the stalling behaviour in the corrected 
simulation revealed that discontinuities were now occurring 
in several variables and in several blocks. This was found to 
be due to limitations of the accuracy with which the linear 
equation solver could solve Equation (15). At large time 
steps the Jacobian matrix becomes extremely ill-conditioned 
and the current linear solvers are unable to achieve the 
desired solution tolerance within a practical computational 
time frame. Solutions to this problem are an area of current 
research. 

5. CONCLUSION 

A method for investigating stalled TOUGH2 simulations has 
been developed and used to examine three different 
examples of the problem. An explanation of why each 
simulation has stalled has been given with reference to the 
solution algorithm and governing equations. Corrections to 
the calculations for the phase densities in EOS2 and EOS3 
have been suggested as well as a correction to the algorithm 
for calculating the saturation temperature. As a result of 
these corrections, simulations no longer stall at the early 
stages and large time step sizes can be achieved without any 
manual intervention. 

These improvements greatly reduce the computational time 
for most simulations, remove the need for manual 
intervention and make inverse modelling of complex 
geothermal systems more tractable.  
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